0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
|
|
- Annikki Mäkinen
- 5 vuotta sitten
- Katselukertoja:
Transkriptio
1 HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä ovat diskreetin jakauman kertymäfunktioita ja mitkä jatkuvan jakauman kertymäfunktioita? Laske diskreeteille jakaumille niiden pistetodennäköisyysfunktio ja jatkuville jakaumille niiden tiheysfunktio. 0 kun x < 0, 0 kun x < 0, / kun 0 x < /4, F (x) = x 4 / kun 0 x <, F (x) = 7/ kun /4 x < 6/7, kun x, kun x 6/7, 0 kun x < 0, 0 kun x < 0, F (x) = 4 sin(7x) kun 0 x <, F 4 (x) = x 5 kun 0 x <, kun x, kun x. Ratkaisu: Funktio F on selvästi kasvava ja lisäksi kaikilla x R, F (x+) = F (x) eli F on oikealta jatkuva. Selvästi myös F ( ) = 0 ja F ( ) =, joten lauseen. nojalla F on kertymäfunktio. Täten on olemassa satunnaismuuttuja X, jolle F on X :n kf. Koska F ( ) = F (+) =, niin F ei ole jatkuva pisteessä, jolloin se ei voi olla jatkuvan jakauman kertymäfunktio, koska tällöin sen tulisi olla jatkuva koko R:ssä. Kun x =, pistetodennäköisyys P(X = x) = P(X = ) = P(X ) P(X < ) = F () F ( ) = = ja kaikilla x R\{}, P (X = x) = 0. Ainoa nollasta poikkeava pistetodennäköisyys saadaan siten pisteessa x =. Funktio, kun x =, f (x) = 0, muualla ei kuitenkaan voi olla pistetodennäköisyysfunktio (esim. Lause.4), joten satunnaismuuttuja X ei voi olla myöskään diskreetti eikä F siten voi olla diskreetin jakauman kf. Funktio F on myös kasvava ja oikealta jatkuva kaikilla x R ja lisäksi F ( ) = 0 ja F ( ) =, joten lauseen. nojalla F on kertymäfunktio. Täten on olemassa satunnaismuuttuja X, jolle F on X :n kf. Huomataan, että F ei ole jatkuva pisteissä 0,, 6 ja, joten se ei voi olla jatkuvan jakauman kf. Kun x {0,, 6}, niin 0 =, kun x = 0, 7 P(X = x) = F (x) F (x ) = = 0, kun x =, 4 7 = 4, kun x = 6. 7
2 Muualla pistetodennäköisyys P(X = x) = 0. Merkitään Koska f on kaikkialla ei-negatiivinen ja, kun x = 0, 0 f (x) = P (X = x) =, kun x =, 4 4, kun x = , muualla. f (x) =, x niin f on diskreetin satunnaismuuttujan pistetodennäköisyysfunktio ja siten myös F on diskreetin jakauman kf. Huomataan, että F ( ) = 4 sin ( ) 7 < 0 = F (0), joten F ei ole kasvava funktio, jolloin se ei voi olla kertymäfunktio. Funktio F 4 on selvästi kasvava, oikealta jatkuva ja lisäksi F 4 ( ) = 0 ja F 4 ( ) =, joten lauseen. nojalla F 4 on kertymäfunktio. Koska lim F 4(x) = 0 = lim F 4(x) ja x 0 x 0+ lim F 4(x) = = lim F 4(x) x x + ja muualla F 4 on polynomifunktiona tai vakiofunktiona selvästi jatkuva, niin F 4 on jatkuva koko R:ssä. Kun x < 0 tai kun x >, niin derivaatta F 4(x) = 0. Kun x (0, ), F 4(x) = 5x 4. Merkitään F 4 (x):llä funktion F 4 vasemmanpuoleista derivaattaa pisteessä x ja F 4 + (x):llä funktion F 4 oikeanpuoleista derivaattaa pisteessä x. Koska F 4 (0) = 0 = = F 4 + (0), niin F 4 on derivoituva pisteessä 0. Koska F 4 () = 5 4 = 5 0 = F 4 + (), niin F 4 ei ole derivoituva pisteessä. Koska muualla F 4 on polynomi- tai vakiofunktiona derivoituva (derivaatta itse asiassa johdettiin jo näissä alueissa), niin F 4 on derivoituva kaikkialla paitsi yhdessä pisteessä ja derivaatta F 4 on jatkuva kaikkialla paitsi tässä pisteessä. Nyt lauseen.7 nojalla F 4 on jatkuvan jakauman kertymäfunktio, eli on olemassa satunnaismuuttuja X 4, jolle F 4 on X 4 :n kf. X 4 :n tiheysfunktioksi (merk. f 4 ) voidaan saman lauseen nojalla valita F 4 :n derivaatta F 4. Derivaattaa ei ole määritelty pisteessä x =, mutta koska tiheysfunktion arvo voidaan valita vapaasti äärellisen monessa pisteessa, niin voidaan valita esimerkiksi f 4 () = 5, jolloin eräs X 4 :n tiheysfunktio on 5x 4, kun 0 < x, f 4 (x) = 0, muualla.. Olkoon α > 0. Määritellään jatkuva jakauma, jonka tf on f(x) = k h(x), jossa h on h(x) = (x ) α, kun < x <, ja h on nolla muualla. (a) Laske vakion k arvo, (b) johda jakauman kertymäfunktio, (c) johda jakauman kvantiilifunktio. Ratkaisu:
3 (a) Koska f on tiheysfunktio, niin = = k / f(x) dx = α (x )α = k α k(x ) α dx = k (x ) α dx [ ( ( ) α )α] = α k α. Tästä voidaan ratkaista, että k = α. α (b) Koska tiheysfunktio tunnetaan, voidaan kertymäfunktio ratkaista lauseen.6 avulla. Olkoon F tehtävän jakauman kertymäfunktio. Kun x (, ), niin F (x) = x f(u) du = x α α (u )α du = α α α x/ (u ) α = α (x )α. Lisäksi F (x) = 0, kun x ja F (x) =, kun x. (c) Koska F on kertymäfunktio, niin sille on olemassa kvantiilifunktio F : (0, ) (, ). Kvantiilifunktion lauseke voidaan selvittää ratkaisemalla x yhtälöstä F (x) = u (x α )α = u eli F (u) = α u+ kaikilla u (0, ). x = α α u x = α u +. Olkoon X > 0 jatkuvasti jakautunut sm, jonka tf f X (x) on jatkuva ja aidosti positiivinen, kun x > 0 (ja f X (x) = 0 muuten). Laske satunnaismuuttujien Y ja Z kertymäfunktiot, kun Y =, Z = X X X +. Tarkista, että sekä Y :n että Z :n jakauma on jatkuva (joko sovella lausetta.7 tai tarkista lauseen. oletukset). Laske lopuksi Y :n ja Z :n tiheysfunktiot. Ratkaisu: Koska X > 0, niin Y = X > 0. Nyt kaikilla y > 0 pätee ( ) ( ) F Y (y) = P(Y y) = P y = P X = P (X y ) X y (X < y ) ( ) y = F X Nyt siis F Y = P 0, kun y (, 0], F Y (y) = ( ) F X y, kun y (0, ) on jatkuva pisteessä 0, koska ( ) lim F Y (y) = lim F X y 0+ y 0+ y. = F X ( ) = = 0 = lim y 0 F Y (y).
4 Muualla F Y on jatkuva joko vakiofunktiona tai yhdistettynä funktiona jatkuvasta funktiosta F X. Siten F Y on jatkuva koko R:ssä. Lisäksi F Y on derivoituva kaikkialla, paitsi mahdollisesti pisteessä y = 0 ja sen derivaatta, kun y R \ {0}, on F Y 0, kun y < 0, (y) = ( ) ( ) y 4 fx y, kun y > 0. Derivaattafunktio on jatkuva kaikkialla paitsi mahdollisesti pisteessä y = 0. Näin ollen lauseen.7 nojalla F Y on jatkuvan jakauman kertymäfunktio ja sen erääksi tiheysfunktioksi voidaan valita 0, kun y 0, f Y (y) = ( ) ( ) y 4 fx y, kun y > 0. Koska X > 0, niin muunnoksen Z = X nimittäjä X + > 0. Tällöin Z > X+ ja Z < kaikilla X > 0, koska Z on aidosti kasvava, kun X > 0. Nyt ( ) X F Z (z) = P(Z z) = P X + z X+>0 = P (X( z) z + ) z>0 = P = P (X Xz + z)) = P (X Xz z + ) ( X z + ) ( ) z + = F X z z Siis 0, kun z, ( ) F Z (z) = F z+ X z, kun z (, ), kun z Nyt ( ) z + lim F Z(z) = lim F X = F X (0) = 0 = lim z + z + z F Z(z), z missä yhtäsuuruus F X (0) = 0 johtuu siitä, että X > 0. Lisäksi ( ) z + lim F Z (z) = lim F X = F X ( ) = = lim F Z (z). z z z z + Näin ollen F Z on jatkuva pisteissä ja. Koska muualla F Z on jatkuva joko vakiofunktiona tai yhdistettynä funktiona jatkuvasta funktiosta, niin F Z on jatkuva koko R:ssä. Lisäksi F Z on derivoituva kaikkialla, paitsi mahdollisesti pisteissä z = 0 ja z = ja sen derivaatta, kun z R \ {0, }, on ( ) 5 F Z(z) f z+ ( z) = X z, kun z (, ) 0, muualla Derivaattafunktio on jatkuva kaikkialla paitsi mahdollisesti pisteissä z = ja z =. Näin ollen lauseen.7 nojalla F Z on jatkuvan jakauman kertymäfunktio ja sen erääksi tiheysfunktioksi voidaan valita ( ) 5 f z+ ( z) f Z (z) = X z, kun z (, ) 0, muualla. 4. Olkoon U U(0, ) tasajakautunut sm. Etsi sellainen muunnos g : R R, että sm X = g(u) on
5 a) on jatkuvasti jakautunut ja tf on f X (x) = ({ 0 < x < } + { x }x ) (vihje. kvantiilifunktio) b) on diskreetti ja ptnf on f X on f X (x) = { x = 07 } + { x {, 8 } } 4 8 (vihje. g porrasfunktio, jonka voit etsiä suoraan tai määritelmän.9 ja lauseen. avulla) Ratkaisu: (a) Selvitetään ensin X :n kertymäfunktio F X Kun x < 0, F X (x) = 0. Kun x (0, ), ja sitä kautta kvantiilifunktio F X. F X (x) = x 0 f X (t) dt = x 0 dt = 0 x/ t = x. Kun x, on F X (x) = x + f X (t) dt = x + t dt = + = x + = x. x/ t Koska F X on jatkuvan jakauman kf, niin sille on olemassa kvantiilifunktio F X. Kvantiilifunktion lauseke voidaan selvittää ratkaisemalla x yhtälöstä F X (x) = u. Kun x (0, ), niin F X (x) = u (0, ) ja F X (x) = u x = u x = u. Kun x [, ), niin F X (x) = u [, ) ja Kvantiilifunktioksi F X F X (x) = u x = u x = u x = ( u). : (0, ) R saadaan siis F X (x) = u, kun u (0, ) ( u) kun u [, ) Nyt lauseen. nojalla satunnaismuuttujalla FX (U) on jakauma, jonka kertymäfunktio on F X ja siten myös tiheysfunktio f X. Muunnokseksi g : R R voidaan siten valita FX, kun vain valitaan, että g(u) = 0, kun u 0 tai u.
6 (b) Selvitetään jälleen aluksi X :n kertymäfunktio F X. Tälle diskreetille jakaumalle kertymäfunktio on porrasfunktio: 0, kun x < 07, kun x [ 07, ) 4 F X (x) = P(X x) = 5, kun x [, 8) 8, kun x 8. Kertymäfunktion F X yleistetty käänteisfunktio (määritelmä.9) F X (u) = inf{x : F (x) u} = 07, kun u (0, ] 4, kun u (, 5] 4 8 8, kun u ( 5, ) 8 Nyt kuten äsken lauseen. nojalla satunnaismuuttujalla FX (U) on jakauma, jonka kertymäfunktio on F X ja siten myös pistetodennäköisyysfunktio f X. Muunnokseksi g : R R voidaan siten valita FX, kun vain valitaan, että g(u) = 0, kun u 0 tai u. 5. Olkoon X jatkuvasti jakautunut sm, jonka tf on f X on jatkuva (mahdollisesti lukuunottamatta äärellisen monta poikkeuskohtaa). Olkoon g(x) = x { x < 0 } + (x + ){ x 0 }. Määrää sm:n Y = g(x) kf ja varmista, että Y on jatkuvasti jakautunut. Laske myös sen tiheysfunktio tapauksessa, kun X U(, ). Ratkaisu: Tarkastellaan aluksi muunnoksen g(x) kuvaajaa: Huomataan, että g(x) > 0 kaikilla x, joten P(g(X) y) = 0, kun y 0. Kun 0 < y <, niin P(Y y) = P(g(X) y) = P({X y} ({X < 0}) = P( y X < 0) = P(X < 0) P(X < y) = F X (0) F X ( y).
7 Kun y, niin P(Y y) = P(g(X) y) = P[{g(X) y} ({X < 0} {X 0})] = P[({g(X) y} {X < 0}) ({g(x) y} {X 0})] = P[{g(X) y} {X < 0}] + P[{g(X) y} {X 0}]. Merkitään A = P[{g(X) y} {X < 0}] ja B = P[{g(X) y} {X 0}], jolloin P(Y y) = A + B, kun y. Nyt ja A = P[{g(X) y} {X < 0}] = P[{X y} {X < 0}] = P[{ y X y} {X < 0}] = P[ y X < 0] = P[X < 0] P[X < y] = F X (0) F X ( y) B = P[{g(X) y} {X 0}] = P[{X + y} {X 0}] = P[{X y } {X 0}] = P [ 0 X y ] = P [ X y ] ( ) P [X < 0] = F X y FX (0). Näin ollen, kun y, saadaan P(Y y) = A + B = F X (0) F X ( ( ) y) + F X y FX (0) ( ) = F X y FX ( y). Satunnaismuuttujan Y = g(x) kertymäfunktioksi saadaan siten Koska 0, kun y 0 F Y (y) = P(Y y) = F X (0) F X ( y), kun 0 < y < F X ( y ) F X ( y), kun y. lim F Y (y) = F X (0) F X ( 0) = F X (0) F X (0) = 0 = lim F Y (y), y 0+ y 0 niin F Y on jatkuva pisteessä y = 0. Lisäksi koska ja lim F Y (y) = F X (0) F X ( ) = F X (0) F X ( ) y lim F ( ) Y (y) = F X FX ( ) = F X ( 0) F X ( ) = F X (0) F X ( ), y + niin F Y on jatkuva pisteessä y = ja siten koko R:ssä, koska muualla F Y on jatkuva joko vakiofunktiona tai yhdistettynä funktiona jatkuvasta funktiosta. Lisäksi F Y on derivoituva kaikkialla paitsi mahdollisesti pisteissä y = 0 ja y = ja sen derivaatta, kun y R \ {0, }, on 0, kun y < 0 F Y (y) = f y X( y), kun 0 < y < ( f y ) X ( y ) + f y X( y), kun y >.
8 Derivaattafunktio on jatkuva kaikkialla, paitsi mahdollisesti pisteissä y = 0 ja y =. Täten lauseen.7 nojalla F Y on jatkuvan jakauman kertymäfunktio, eli satunnaismuuttuja Y on jatkuvasti jakautunut. Y :n tiheysfunktioksi voidaan valita sen kertymäfunktion derivaatta ja tf:n arvot pisteissä 0 ja voidaan valita vapaasti. Näin ollen Y :n tiheysfunktioksi kelpaa 0, kun y 0 f Y (y) = f y X( y), kun 0 < y ( f y ) X ( y ) + f y X( y), kun y >. Tapauksessa X U(, ), on, kun x (, ) f X (x) = 0, muualla, jolloin 0 < Y = g(x) < 9 ja 0, kun y 0 f Y (y) =, kun 0 < y y (, kun < y < 9 y ) 0, kun y 9 6. Satunnaismuuttujalla Y = ln X on tasajakauma U(a, b) (jossa a < b). Laske tf f X käyttämällä muuttujanvaihtotekniikkaa (monisteen Lause. tai muistisääntö (.)). Ratkaisu: Y :llä on tasajakauma U(a, b), joten Y :n tiheysfunktio on f Y (y) = {y (a, b)}. b a Merkitään Y = g(x), missä g(x) = ln X. Kun Y = ln X (a, b), niin X (e a, e b ). Merkitään A = (e a, e b ) ja B = (a, b), missä a < b. Logaritmifunktio on aidosti kasvava, joten myös g : A B on aidosti kasvava ja siten bijektio joukkojen A ja B välillä. Nyt g:llä on käänteiskuvaus g = h : B A. Ratkaistaan käänteiskuvauksen lauseke: g(x) = y ln x = y ln x = y x = e y. Saadaan siis h(y) = e y. Nyt sekä g että sen käänteiskuvaus h ovat jatkuvasti derivoituvia, joten g on diffeomorfismi (tai h on diffeomorfismi). Nyt koska Y :llä on jatkuva jakauma tf:llä f Y ja h : B A on diffeomorfismi ja P (Y B) =, niin lauseen. nojalla satunnaismuuttujalla X = h(y ) on jatkuva jakauma tiheysfunktiolla f X (x) = f Y (g(x)) g (y) {x A} = b a x {x (e a b, e )} = x(b a) {x (e a b, e )}.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
LisätiedotTehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Tehtävät -5 perustuvat monisteen kappaleisiin..7 ja tehtävä 6 kappaleeseen.8..
Lisätiedot2 exp( 2u), kun u > 0 f U (u) = v = 3 + u 3v + uv = u. f V (v) dv = f U (u) du du f V (v) = f U (u) dv = f U (h(v)) h (v) = f U 1 v (1 v) 2
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 208 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I. Satunnaismuuttuja U Exp(2) ja V = U/(3 + U). Laske f V käyttämällä muuttujanvaihtotekniikkaa.
LisätiedotTodennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
Lisätiedot1. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden heittojen lukumäärä, joilla tuli 1, 2, 3 tai 4.
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 206 Kurssikoe 28.0.206 Ratkaisuehdotuksia. Kuusisivuista noppaa heitetään, kunnes saadaan silmäluku 5 tai 6. Olkoon X niiden
Lisätiedot1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan
Lisätiedotk S P[ X µ kσ] 1 k 2.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 28 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
LisätiedotHY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 2017 Harjoitus 1 Ratkaisuehdotuksia
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I Osa tämän viikon tehtävistä ovat varsin haastavia, joten ei todellakaan
LisätiedotJATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.
JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva
Lisätiedotx 4 e 2x dx Γ(r) = x r 1 e x dx (1)
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta IIA, syksy 217 217 Harjoitus 6 Ratkaisuehdotuksia Tehtäväsarja I 1. Laske numeeriset arvot seuraaville integraaleille: x 4 e 2x dx ja 1
LisätiedotMATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
Lisätiedotsin(x2 + y 2 ) x 2 + y 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 2 Ratkaisuedotukset 2.1. Tutki funktion g : R 2 R, g(0, 0) = 0, jatkuvuutta. g(x, y) = sin(x2 + y 2 ) x 2 + y 2, kun (x,
Lisätiedotx = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio TKK (c) Ilkka Mellin (2007) 1 Kertymäfunktio >> Kertymäfunktio: Määritelmä Diskreettien jakaumien
LisätiedotAnalyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
Lisätiedot2.1 Satunnaismuuttuja ja sen jakauma
2.1 Satunnaismuuttuja ja sen jakauma Satunnaismuuttuja (lyhenne sm, engl. random variable, rv (joskus myös variate), sv. stokastisk variabel (joskus myös slumpvariabel)) on satunnaiskokeeseen liittyvä
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
LisätiedotToispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
LisätiedotSeurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa
Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään
LisätiedotJohdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Kertymäfunktio TKK (c) Ilkka Mellin (2005) 1 Kertymäfunktio Kertymäfunktio: Määritelmä Diskreettien jakaumien kertymäfunktiot Jatkuvien jakaumien kertymäfunktiot TKK (c)
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotRatkaisuehdotus 2. kurssikoe
Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
Lisätiedot1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.
Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla
Lisätiedot5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Lisätiedot2.1 Satunnaismuuttuja ja sen jakauma
2.1 Satunnaismuuttuja ja sen jakauma Satunnaismuuttuja (lyhenne sm, engl. random variable, rv (joskus myös variate), sv. stokastisk variabel (joskus myös slumpvariabel)) on satunnaiskokeeseen liittyvä
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
LisätiedotRatkaisuehdotus 2. kurssikokeeseen
Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
LisätiedotSinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.
Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
LisätiedotKuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Olkoon f : R R f(x 1, x ) = x 1 + x Olkoon C R. Määritä tasa-arvojoukko Sf(C) = {(x 1, x
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotOletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
LisätiedotTilastollinen päättömyys, kevät 2017 Harjoitus 6B
Tilastollinen päättömyys, kevät 7 Harjoitus 6B Heikki Korpela 8. helmikuuta 7 Tehtävä. Monisteen teht. 6... Olkoot Y,..., Y 5 Nµ, σ, ja merkitään S 5 i Y i Y /4. Näytä, että S/σ on saranasuure eli sen
Lisätiedot13. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: = 1 + y x + ( y ) 2 (y )
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Differentiaaliyhtälöt, kesä 00 Tehtävät 3-8 / Ratkaisuehdotuksia (RT).6.00 3. Ratkaisu. Kirjoitetaan tehtävän DY hieman eri muodossa: y = + y + y = + y + ( y ) (y
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotJohdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1
Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita
LisätiedotDiskreetti derivaatta
Diskreetti derivaatta LuK-tutkielma Saara Sadinmaa 43571 Matemaattisten tieteiden koulutusohjelma Oulun yliopisto Syksy 017 Sisältö Johdanto 1 Peruskäsitteitä 3 Ominaisuuksia 4 3 Esimerkkejä 8 4 Potenssifunktioita
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 9 3.11.009 alkavalle viikolle Ratkaisuedoituksia Rami Luisto Sivuja: 5 Näissä arjoituksissa saa käyttää kaikkia koulusta tuttuja koulusta tuttujen
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta
LisätiedotTehtävä 1. Näytä, että tason avoimessa yksikköpallossa
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2018 Harjoitus 2 Ratkaisuehdotukset Tehtävä 1. Näytä, että tason avoimessa yksikköpallossa määritelty kuvaus B(0, 1) := x R 2 : x
LisätiedotMatematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)
Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)
LisätiedotAnalyysi I (sivuaineopiskelijoille)
Analyysi I (sivuaineopiskelijoille) Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2017 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 19 1 of 18 Kahden muuttujan funktioista
LisätiedotSallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II. kurssikoe 18.1.15 Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu ja MAOL taulukkokirjaa
LisätiedotRatkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
LisätiedotJohdantoa INTEGRAALILASKENTA, MAA9
Lyhyehkö johdanto integraalilaskentaan. Johdantoa INTEGRAALILASKENTA, MAA9 Integraalilaskennan lähtökohta 1: Laskutoimitukset + ja ovat keskenään käänteisiä, samoin ja ovat käänteisiä, kunhan ei jaeta
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan
LisätiedotLuku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 2A Satunnaismuuttujan odotusarvo Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi
LisätiedotJohdatus tn-laskentaan torstai 16.2.2012
Johdatus tn-laskentaan torstai 16.2.2012 Muunnoksen jakauma (ei pelkkä odotusarvo ja hajonta) Satunnaismuuttujien summa; Tas ja N Vakiokerroin (ax) ja vakiolisäys (X+b) Yleinen muunnos: neulanheittoesimerkki
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotMS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
LisätiedotMikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.
4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
Lisätiedote int) dt = 1 ( 2π 1 ) (0 ein0 ein2π
Matematiikan ja tilastotieteen laitos Funktionaalianalyysin peruskurssi Kevät 9) Harjoitus 7 Ratkaisuja Jussi Martin). E Hilbert avaruus L [, π]) ja gt) := t, t [, π]. Määrää funktion g Fourier kertoimet
Lisätiedot0 3 y4 dy = 3 y. 15x 2 ydx = 15. f Y (y) = 5y 4 1{0 y 1}.
HY, MTL / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIb, syksy 18 Harjoitus Ratkaisuehdotuksia Tehtäväsar I 1. Satunnaismuuttujilla X Y on tkuva yhteiskauma yhteistiheysfunktiolla f
Lisätiedotf(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
LisätiedotHY / Matematiikan ja tilastotieteen laitos Tilastollinen päättely II, kevät 2017 Harjoitus 4 Ratkaisuehdotuksia. Tehtäväsarja I
HY / Matematiikan ja tilatotieteen laito Tilatollinen päättely II, kevät 207 Harjoitu 4 Ratkaiuehdotukia Tehtäväarja I. (Kvantiili-kvantiili kuvion [engl. q q plot] idea.) Olkoon atunnaimuuttujalla X ellainen
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 4. lokakuuta 2007 Antti Rasila () TodB 4. lokakuuta 2007 1 / 17 1 Moniulotteiset todennäköisyysjakaumat Johdanto Kaksiulotteiset satunnaismuuttujat Kaksiulotteisen
LisätiedotDiplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
LisätiedotVastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
LisätiedotMatemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe (kesto 2h 30 min)
Matemaattisten tieteiden kandiohjelma / MTL Todennäköisyyslaskenta IIb Kurssikoe 8..7 (kesto h 3 min) Sallitut apuvälineet: kirjoitusvälineet, laskin sekä käsinkirjoitettu, A4-kokoinen lunttilappu. Ei
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon
LisätiedotMAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio
MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen
Lisätiedotr > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
LisätiedotJohdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1
Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat
Lisätiedot(a) avoin, yhtenäinen, rajoitettu, alue.
1. Hahmottele seuraavat tasojoukot. Mitkä niistä ovat avoimia, suljettuja, kompakteja, rajoitettuja, yhtenäisiä, alueita? (a) {z C 1 < 2z + 1 < 2} (b) {z C z i + z + i = 4} (c) {z C z + Im z < 1} (d) {z
LisätiedotSatunnaismuuttujien muunnokset ja niiden jakaumat
Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja
Lisätiedot8.1 Ehdolliset jakaumat
8 Ehdollinen jakauma Tämän kappaleen tärkeitä käsitteitä: Ehdollinen jakauma; ehdollinen ptnf/tf. Kertolaskusääntö eli ketjusääntö yhteisjakauman esittämiseksi. Ehdollinen odotusarvo ja ehdollinen varianssi.
LisätiedotInjektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
LisätiedotIlkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio
Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio
LisätiedotMatematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Lisätiedot031021P Tilastomatematiikka (5 op) viikko 2
031021P Tilastomatematiikka (5 op) viikko 2 Jukka Kemppainen Mathematics Division Satunnaismuuttuja Useissa luonnon- tai teknistieteellisissä sovellutuksissa satunnaiskokeen lopputulos on numeerinen lukuarvo.
LisätiedotVastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen
Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion
Lisätiedotx 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua
Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö
LisätiedotRatkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)
Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
Lisätiedotb) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)
Matematiikan TESTI, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/017 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
Lisätiedot6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 25.9.2017 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Lisätiedot5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
Lisätiedot