Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Koko: px
Aloita esitys sivulta:

Download "Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:"

Transkriptio

1 Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie kasalaie käytäössä tutustumaa. Asiaa liittyy hyvi likeisesti myös rosetuaalie kasvu. Muistettaee, että jos joki kohde kasvaa % aja t kuluessa, ii ajassa, joka sisältää kl t: t mittaisia aikajaksoja, kohde kasvaa α -kertaiseksi, missä α + 0 o s. korkotekijä tai kasvutekijä. Prosettiluku voi luoollisesti olla egatiivieki, jolloi ollaa tekemisissä egatiivise kasvu, rosetuaalise väheemise kassa. Oletetaa aluksi sellaie teoreettie tilae, että Sari o maksettava kertaa aia vuode loussa a (vaikkaa säästöö omalle tilillee tai elivelkojaa Jaelle, joka taas voi aa rahat säästöö omalle tilillee), ja että kuki vuode loussa ääomaa liitetää % mukaa laskettu vuotuie korko. Halutaa tietää, kuika suureksi summaksi (K) ääoma o vuode aikaa kasvaut. Kysymysasettelut o tieteki muotoiltava äivällee. Lasketaa kulleki a euro maksuerälle eriksee, kuika suureksi erä o vuodessa kasvaut: Viimeie erä, joka siis maksetaa viimeise eli. vuode loussa, ei ehdi kasvaa korkoa laikaa, jote se suuruus o vai elkkä a euroa. Toiseksi viimeie maksuerä ehtii kasvaa korkoa vuode, jote se arvo :e vuode loussa o αa. Kolmaeksi viimeie maksuerä ehtii kasvaa korkoa kaksi vuotta, ja se arvo o tuolloi site aα. Päättelyä äi jatkae todetaa, että kaikkei esimmäie maksuerä ehtii kasvaa korkoa ( ) vuotta ja o s. erääivää arvoltaa a euroa. Ku kaikki maksuerää, joista jokaie o kasvaut korkoa eriituise aja, lasketaa yhtee, saadaa (Jae) tili (ko. aikajakso äättyessä) ääomaksi K a + aα + aα + aα aα (7)

2 a ( + α + α + α α ), sillä oha viimeksi kirjoitetulla rivillä sulkulausekkeessa geometrise joo termie summa, missä esimmäie termi o ykköe, termie lukumäärä ja suhdelukuα. Käytäössä tilae voisi olla vaikka sellaie, että Sari olisi maksettava viisi kl 00 euro suuruisia summia, esimmäie vaikkaa..007, jolloi viimeise maksu äivämäärä o..0. Ku käytäössä usei uhutaa äi muodostuva ääoma K ykyarvosta k elettäessä vuode 007 viimeistä äivää, ii K tarkoittaa..0 Jae tilillä olevaa summaa ja k tarkoittaa sitä kertasummaa, joka itäisi tilille laittaa..007, ja joka sitte kasvaisi K markaksi..0 meessä tilii muutoi koskematta kui lisäämällä korot. Yleisesti rahaa o tilillä korkokautta (esimerkissä tasa eljä vuotta, vaikka Sari viisi erää maksaaki). kα ja Tällöi o K K kα (I) Huom.! O toki mahdollista uhua tuleva ääoma ykyarvosta k vaikkaa , jos kerra Sari juuri tuolloi vetoja hävisi. Tällöi k: esimmäie korkokausi olisi vai 6½ kuukautta. Tuleva ääoma ykyarvosta o edellä uhuttu elettäessä äivää..007, jolloi tilillä oloaika o siis tasa 4 vuotta. Päivämäärissä sikatarkkaa!!! Jos maksatussysteemi o sellaie, että summa maksetaaki jokaise vuode alussa, ii jokaie maksuerä ehtii kasvaa korkoa vuotta itemmä aja, viimeie maksuerä vuode, toiseksi viimeie kaksi vuotta, je. ja esimmäie maksuerä täydet vuotta. Tämä tarkoittaa Sari elivelkataauksessa esimerkiksi sitä, että hä maksaisi Jae tilille esimmäise 00 erä..007, toise..008 ja viidee..0 ja sitte kysyttäisii, mikä o tilitilae..0. Tässä taauksessa kaavaa (I) o oikealle uolelle lisättävä tekijä α (oha jokaie maksuerä ollut vuotta idemmä aja akissa), jolloi (7)

3 aα ( α ) K (II) Esim. 7. Oletetaa, että Sari maksaa Jae tilille viisi 00 euro suuruista summaa vuosittai vuode viimeiseä äivää ja esimmäie maksu o Olkoo tili korko 4%, jolloi vuode 0 viimeiseä äivää Jae tilillä o 5 00 (,04 ) K,04 546,56 euroa yhtälö (I) mukaa. Jos Sari haluaisi maksaa koko summa kertamaksulla vaikkaa juuri..007, ii (,04 ) k 469, α (,04 (,04 ) ja summa olisi sitä ieemi, mitä aiemmi hä maksusa suorittaisi. Kasvaisiha se Jae tilillä korkoa. Edellä saottu edellyttäisi tietysti sitä, että Jae tilitilatee tulisi..0 olla juuri 546..euroa yöristettyä kokoaisii setteihi euro suuruie ääoma kasvaisi siis eljässä vuodessa 4% mukaa 546 euroksi ja setiksi. Huom.! Jos maksut suoritetaaki uolivuosittai (kuukausittai), o kaavoissa korvattava arvolla ½ (/) ja korvattava arvolla (). kt Ku korkolasku kaavaa r sijoitetaa t ½ (vuotta), ii korkoa 0 kasvava summa k arvo uoli vuotta myöhemmi o k ½ K ½ k + k( + ), ja vuodessa uole vuode mittaisia 0 00 korkokausia o kaikkiaa kl. Etää sitte, ku maksut suoritetaa kerra kuussa? Esim. 8. Erja o ostaut lähes uude Mercedes-Bezi ja kauiaa kassa soiut, että maksaisi käsirahaksi keluutetu vaha BMW: lisäksi kolme vuode aja a) 000 /vuosi aia tasavuosie kuluttua kauateosta b) 00 /kk kuki kuukaude loussa. (7)

4 Oletetaa, että Erja soi kauat Samaa iltaa hä taaa uelmiesa rissi, joka koeajaa MB: ja se hyväksi toteaa. Prissi o tieteki rikas ja toteaa, ettei autokauiaille korkoja maksella. Prissi siis käy suorittamassa jäljellä oleva kauahia välittömästi. Kuika suure summa rissi kumaisessaki taauksessa maksoi, jos osamaksukaua korko oli 8% (korkotaso ousee)? Jos Erja olisi joutuut osamaksukierteesee, hä olisi kolmesti maksaut 000 euroa eli , ja Jäljellä oleva osamaksukauasumma ykyarvo saadaa suoraa yhtälöstä (I) eli k α k ja ku a 000, α + α ( 0 000(,08 ).08 ja, ii k 095, ,08 0,08 mk 7 settiä. Rahaa säästyi yli 5000 euroa. Asia syvemmäksi ymmärtämiseksi tilaetta voidaa katsella vielä yksityiskohtaisemmiki. Tiedustellaa siis, mitkä ovat e kolme rahasummaa, a, a ja a, joista 8 % koro mukaa - esimmäie kasvaa kolmessa vuodessa 000 euroksi - toie kasvaa kahdessa vuodessa 000 euroksi ja - kolmas kasvaa vuodessa 000 euroksi. Nyt o 000 aα aα aα a + a + a + + k α α α 000( α + α + ) 000( k 000( + + ). α α α α α ( Sovellutuksissa o tieteki huomattavasti jalomaa ystyä johtamaa laskukaava joka tilateelle eriksee kui käyttää valmiita kaavoja. Kaava johtamistaito osoittaa vakuuttavasti asia kohtalaise syvää ymmärtämistä, mitä taas valmiisee kaavaa sijoittelemie ei välttämättä ole. 4(7)

5 Toisessa vaihtoehdossa Erja iti maksaa 6 kl 00 eriä. Kuukaude mittaisia korkokausia o vuodessa, ja korkotekijä o tällöi 8 t 8 5 α ja korkokausia kolmessa vuodessa kaikkiaa 6 kl. Yhtälö (I) mukaa saadaa k [( ) ) ( ) settiä. Jos laia maksetaa takaisi site, että ääoma lyheys o joka kerta samasuuruie, laia hoito voi alussa olla melko rasittavaa, sillä oha jokaise lyheykse yhteydessä maksettava myös kulloiki jäljellä oleva ääoma korko. Asutolaiat saattavat viedä ottajasa maksukyvy äärirajoille. Jotta maksurasitus olisi laiaajalle tasaisemi, käytetää takaisimaksussa usei auiteettieriaatetta. Vuosittai, useimmite ehkä kuukausittai maksetaa koko laia-aja (ellei korkokata muutu) yhtä suuri maksu, jota saotaa laia auiteetiksi ja laiaa kuoletuslaiaksi. Tähä s. tasaerää sisältyvät sekä jäljellä oleva ääoma korko että lyheys. Heti laia ottamise jälkee lyheys saattaa olla ieemi kui korko ku taas laia-aja louuolella viimeisissä erissä korko o lyheyksee verrattua vähäie. Esim. 9. Oletetaa, että Riikka lähtee oiskelemaa kauukii, jossa vuokraasutotilae o sage huoo. Niiä ostavat Riika (äveriäät) vahemmat oiskelukauugista yksiö ja ottavat tätä varte akista laiaa euroa 5.5% korolla kymmeeksi vuodeksi. Laia sovitaa takaisimaksettavaksi a) kymmeeä yhtä suurea tasaerää vuode välei laia ostamisesta b) 0 yhtä suurea tasaerää kuukausittai. Laske ko. tasaerä suuruus sekä se, c) kuika aljo kumaisessaki taauksessa jouduttii maksamaa korkoa. 5(7)

6 a) Jaetaa laia kymmeee osaa a, a, a,..., a9 ja a, joide summa laia ääoma k. Esimmäie osa a kasvaa korkoa vuode ja se arvo tällöi, siis vuotta myöhemmi laia vuotuismaksu a. Tässä imeomaisessa taauksessa a a. 055 ja yleisesti o a aα, missä α +. 0 Toie osa a ehtii kasvaa korkoa kaksi vuotta, ja se arvo tämä aja kuluttua laia vuotuismaksu a ja toisaalta a yleisesti o voimassa a a α. a. ; 055 Viimeie osa a ehtii kasvaa korkoa korolle vuotta, ja tämä jälkee seki arvo laia vuotuismaksu a Yleisesti o voimassa a a α. O saatu kymmee yhtälöä: a aα a aα a aα a... aα a a a α a a α... a a α Laskemalla yhtee oikeauoleise ryhmä kaikki kymmee yhtälöä saadaa (alaideksei varustetut a-kirjaita yhtee laskie) laia ääoma k a + a a9 + a ) 9 α α α α α + α + α α + α + a ( a. α α ( Ratkaistaa saatu yhtälö a: suhtee, jolloi tullaa yhtälöö (III): 6(7)

7 kα ( a (III) Jos laiaa lyheetää kerra vuodessa, ii 80000,055 (,055 ) a 6,45, settiä. Maksamalla kl lasketu suuruisia eriä Riika vahemmat maksavat akille yhteesä 64., jote he tulevat maksaeeksi korkoa tämä summa ja laia ääoma erotukse verra, suuillee siis ( ) 64 euroa!! b) Jos laiaa lyheetää kuukausittai, o lyheyksiä kaikkiaa kl ja korkotekijä α + + sekä kuukausimaksu akk 868, settiä. Maksamalla 0 kl lasketu suuruisia eriä Riika vahemmat maksavat akille kaikkiaa oi 485, jote akki ettoaa korkoa 485. Kaattaa aa merkille, että maksettaessa tasaerällä kuukausittai maksu ei ole kahdestoista osa koko vuode maksusta. Valitsemalla maksu kerra kuussa säästää koroissa lähes 960 euroa verrattua siihe, että suorittaisi maksu kerra vuodessa. 7(7)

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 206 Talousmatematiika perusteet, ORMS030 5. harjoitus, viikko 7 5. 9.2.206 R ma 0 2 F455 R5 ti 0 2 F9 R2 ma 4 6 F455 R6 to 2 4 F455 R3 ti 08 0 F455 R7 pe 08 0 F455 R4 ti 2 4 F455

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS030 6. harjoitus, viikko 0 3. 7.3.04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

3 10 ei ole rationaaliluku.

3 10 ei ole rationaaliluku. Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi Calculus Lukio 8 MAA Differetiaali- ja itegraalilaskea jatkokurssi Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Differetiaali- ja itegraalilaskea jatkokurssi

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua) Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse

Lisätiedot

R S T R S. Yhdeksäs termi a. Vastaus: Yhdeksäs termi on 99.

R S T R S. Yhdeksäs termi a. Vastaus: Yhdeksäs termi on 99. 9. Aritmeettise lukujoo yleie termi a = a + ( ) d Erotusluku a = a + ( ) d a = 7, a = 7, = 7 = 7 + ( ) d 0d = 90 :0 d = 9 Yhdeksäs termi a 9 = 7 + (9 ) 9 = 99 Vastaus: Yhdeksäs termi o 99. 0. Lukujoo rekursiivie

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia? Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä

Lisätiedot

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria

Lisätiedot

BH60A0900 Ympäristömittaukset

BH60A0900 Ympäristömittaukset BH60A0900 Yäitöittauket Lakuhajoitu Kuiva ja kotea kaau, tilavuuvita ehtävä Savukaau läötila o 00 ja aie 99 kpa. ekittäviät kaaukooetit ovat 0 %, H 0 %, 0 % ja lout tyeä. ikä o a) kotea ja kuiva kaau tilavuukie

Lisätiedot

117 = 27 + (11 1) d = 90 :10. Yhdeksäs termi a. Vastaus: Yhdeksäs jäsen on 99.

117 = 27 + (11 1) d = 90 :10. Yhdeksäs termi a. Vastaus: Yhdeksäs jäsen on 99. a = a+ ( ) d a = 7, a = 7, = 7 = 7 + ( ) d 0d = 90 :0 d = 9 Yhdeksäs termi a 9 = 7 + (9 ) 9 = 99 Vastaus: Yhdeksäs jäse o 99. 0. Aritmeettisesta lukujoosta tiedetää, että S =. Mikä o lukujoo 7. ja :s jäse?

Lisätiedot

TEHTÄVIEN RATKAISUT OPETTAJAN MATERIAALI

TEHTÄVIEN RATKAISUT OPETTAJAN MATERIAALI TEHTÄVIEN RATKAISUT OPETTAJAN MATERIAALI Sisällysluettelo 1 Prosettilasketa ja verotus 3 Prosettilasketa 3 Verotus 18 2 Hiat ja raha arvo 23 Ideksit 23 Euro ja muut valuutat 39 3 Laiat ja talletukset 52

Lisätiedot

3 Lainat ja talletukset

3 Lainat ja talletukset 3 Laiat ja talletukset Korkolasku 17. 0,8 3 = 64,96 ( Lähdevero määrä pyöristetää alaspäi täysii kymmeii setteihi. Lähdeveroa peritää 64,90. 173. 0,05 1 6 = 40,5 ( a 0,8 40,5 = 11,7 ( Lähdeveroa peritää

Lisätiedot

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että

Lisätiedot

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p MAA9 Koe.5.0 Jussi Tyi Tee koseptii pisteytysruudukko! Muista kirjata imesi ja ryhmäsi. Valitse kuusi tehtävää!. a) Ratkaise yhtälö si x. Ilmoita vastaus radiaaeia! b) Määritä paljoko o cos. Ilmoita tarkka

Lisätiedot

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n.

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n. POHDIN projekti Neliöide summa Lukujoo : esimmäise jäsee summa kirjoitetaa tavallisesti muotoo S ai i 1. Aritmeettisesta lukujoosta ja geometrisesta lukujoosta muodostetut summat voidaa johtaa varsi helposti.

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

3 x < < 3 x < < x < < x < 9 2.

3 x < < 3 x < < x < < x < 9 2. Matematiika johdatokurssi Kertaustehtävie ratkaisuja 1. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x + 1. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Laajennetaan lukualuetta lisäämällä murtoluvut

Laajennetaan lukualuetta lisäämällä murtoluvut 91 5 KOMPLEKSILUVUT 5.1 LUKUALUEEN LAAJENNUS Luoolliset luvut N : 1,, 3,... Määritelty - yhteelasku ab N, ku a, b N - kertolasku ab N, ku a, b N Kysymys: Löytyykö aia sellaie x N, että ax b, ku a, b N

Lisätiedot

HE 174/1995 vp ESITYKSEN PÄÄASIALLINEN SISÄLTÖ PERUSTELUT

HE 174/1995 vp ESITYKSEN PÄÄASIALLINEN SISÄLTÖ PERUSTELUT HE 174/1995 vp Hallituksen esitys Eduskunnalle laeiksi palkkaturvalain 2 ja :n sekä merimiesten palkkaturvalain 2 ja :n muuttamisesta ESITYKSEN PÄÄASIALLINEN SISÄLTÖ Esityksessä ehdotetaan muutettavaksi

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

Ehdollinen todennäköisyys

Ehdollinen todennäköisyys Ehdollie todeäköisyys Kerrataa muutama todeäköisyyslaskea laskusäätö. Tapahtuma E komplemettitapahtuma E o "E ei tapahdu". Koska todeäköisyyksie summa o 1, P ( E = 1 P (E. Joskus o helpompi laskea komplemettitapahtuma

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

Verkoston ulkoisvaikutukset

Verkoston ulkoisvaikutukset Verkosto ulkoisvaikutukset Varia luku 35 Luettavaa Varia (2006, 7. paios, luku 35, s.658 655) Forget produtivity: more people should joi Faebook saatavilla http://www.ab.et.au/ews/stories/2008/1 1/27/2431283.htm

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET. Kokooma Viimeisin perustemuutos vahvistettu

YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET. Kokooma Viimeisin perustemuutos vahvistettu YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET Kokooma 20.2.2017 Viimeisin perustemuutos vahvistettu 22.12.2016. 1 Perusteen 2.11.2015 voimaantulosäännös Voimaantulo Poikkeussäännös

Lisätiedot

PENNO Selvitä rahatilanteesi

PENNO Selvitä rahatilanteesi PENNO Selvitä rahatilanteesi TIEDÄTKÖ, KUINKA PALJON SINULLA ON RAHAA KÄYTÖSSÄSI? Kuuluuko arkeesi taiteilu laskujen ja välttämättömien menojen kanssa? Tiedätkö, mihin rahasi kuluvat? Tämän Penno-työkirjan

Lisätiedot

Lasketaan esimerkkinä seuraava tehtävä. Monisteen sivulla 14 on vastaavanlainen. x 1

Lasketaan esimerkkinä seuraava tehtävä. Monisteen sivulla 14 on vastaavanlainen. x 1 Kertausta Luku o viimeistä pkälää (iduktio) lukuu ottamatta kertausta koulukurssi asioista (tai asioista joide pitäisi kuulua koulukurssii) Tämä luku kädää siksi lueoilla läpi opeasti Jos asiat eivät ole

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

Tunnuslukuja 27 III TUNNUSLUKUJA

Tunnuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat

Lisätiedot

LIIKE-ELÄMÄN MATEMATIIKKA 2 MAT2LH001

LIIKE-ELÄMÄN MATEMATIIKKA 2 MAT2LH001 HAAGA-HELIA ammattikorkeakoulu Liiketalous, Pasila LIIKE-ELÄMÄN MATEMATIIKKA 2 MAT2LH001 Katri Währ Kevät 2012 ESIPUHE Tämä luetoruko o tarkoitettu oppikirja tueksi eikä suikaa korvaamaa sitä. Kaikki viittaukset

Lisätiedot

YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET. Kokonaisperuste vahvistettu 20.12.2006. Voimassa 1.1.2007 alkaen.

YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET. Kokonaisperuste vahvistettu 20.12.2006. Voimassa 1.1.2007 alkaen. YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET Kokonaisperuste vahvistettu 20.12.2006. Voimassa 1.1.2007 alkaen. YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET 1

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Vastaukset raportoidaan vain, jos kohderyhmään kuuluvia vastaajia on vähintään viisi henkilöä. Lukumäärä = n.

Vastaukset raportoidaan vain, jos kohderyhmään kuuluvia vastaajia on vähintään viisi henkilöä. Lukumäärä = n. Näyttötutkitoje palautejärjestelmä Tietolähde: AIPAL-tietokata 1( 11) Hakuehdot Kysymyssarja Opetuskieli Järjestäjä Valtakualliset palautekysymykset fi suomi 0016107-9 Kouvola kaupuki Vastaukset raportoidaa

Lisätiedot

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit 2. Mittaus ja data 2.. Johdato Voidaksemme keksiä tosimaailma relaatioita tarkastelemme sitä kuvaavaa dataa, jote esiksi selvitämme, mitä data perimmiltää o. Data kerätää kuvaamalla mielekiitoaluee oliot

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

HEIJASTUMINEN JA TAITTUMINEN

HEIJASTUMINEN JA TAITTUMINEN S-08-0 OPTIIKKA /6 HEIJASTUMINEN JA TAITTUMINEN Laboratoriotyö S-08-0 OPTIIKKA /6 Sisällysluettelo Teoria... 3 Työ suoritus... 4. Kokoaisheijastus... 4. Brewsteri kulma... 5 3 Mittauspöytäkirja... 6 S-08-0

Lisätiedot

SV ruotsi Kouvolan seudun ammattiopisto

SV ruotsi Kouvolan seudun ammattiopisto Näyttötutkitoje palautejärjestelmä Tietolähde: AIPAL-tietokata ( ) Hakuehdot Kysymyssarja Opetuskieli Järjestäjä Valtakualliset palautekysymykset FI suomi SV ruotsi 006075-9 Kouvola kaupuki Oppilaitos

Lisätiedot

Digitaalinen signaalinkäsittely Signaalit, jonot

Digitaalinen signaalinkäsittely Signaalit, jonot Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,

Lisätiedot

Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja:

Määritä seuraavien suodattimien impulssivasteet ja tutki, ovatko ne kausaaleja: TL56, Näytejoosysteemit (K5). Kausaali suodati käyttää laskeassaa vai ykyisiä ja aiempia ajaetkiä (= pieemmillä ideksiarvoilla) mitattuja tai laskettuja sigaaliarvoja, jotka suodati lukee muistista. Kausaalisuus

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

YRITTÄJIEN ELÄKELAIN (YEL) VÄHIMMÄISEHTOJEN MUKAISEN VAKUUTUKSEN PERUSTEET

YRITTÄJIEN ELÄKELAIN (YEL) VÄHIMMÄISEHTOJEN MUKAISEN VAKUUTUKSEN PERUSTEET YRITTÄJIEN ELÄKELAIN (YEL) VÄHIMMÄISEHTOJEN MUKAISEN VAKUUTUKSEN PERUSTEET Kokooma 30.3.2006. Viimeisin perustemuutos on vahvistettu 20.12.2004. Voimassa 1.1.20 Perusteen 13.6.2003 voimaantulosäännös Voimaantulo

Lisätiedot

KAIKKI MINKÄ OLET AINA HALUNNUT TIETÄÄ KENRAALIBASSOSTA, MUTTA ET OLE KEHDANNUT KYSYÄ. Sakari Vainikka Sakari Vainikka

KAIKKI MINKÄ OLET AINA HALUNNUT TIETÄÄ KENRAALIBASSOSTA, MUTTA ET OLE KEHDANNUT KYSYÄ. Sakari Vainikka Sakari Vainikka KAIKKI MINKÄ OLET AINA HALUNNUT TIETÄÄ KENRAALIBASSOSTA, MUTTA ET OLE KEHDANNUT KYSYÄ Sakari Vaiikka Sakari Vaiikka I KOLMISOINNUT 1. Soiut raketuvat seitsesävelisestä diatoisesta sävelmateriaalista site,

Lisätiedot

EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE

EUROOPAN UNIONIN NEUVOSTO. Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE EUROOPAN UNIONIN NEUVOSTO Bryssel, 27. heinäkuuta 2011 (27.07) (OR. en) 13263/11 CONSOM 133 SAATE Lähettäjä: Euroopan komissio Saapunut: 25. heinäkuuta 2011 Vastaanottaja: Neuvoston pääsihteeristö Kom:n

Lisätiedot

LASKUHARJOITUKSIA. 1. Myllyn ainetase ja kiertokuorman laskeminen. syöte F,f. A lite A,a MYLLY. tuote P,p LUO KITIN. Ylite Y,y. Tehtävä 1.

LASKUHARJOITUKSIA. 1. Myllyn ainetase ja kiertokuorman laskeminen. syöte F,f. A lite A,a MYLLY. tuote P,p LUO KITIN. Ylite Y,y. Tehtävä 1. LASKUHARJOITUKSIA. Mylly aietase ja kiertokuorma laskemie Tehtävä. Kuvassa o mylly suljetussa iirissä luokittime kassa. Mylly kiertokuorma o 00 % ja mylly rimäärisyötevirta F = t/h. Laske mylly tuotevirta

Lisätiedot

Kompleksilukujen alkeet

Kompleksilukujen alkeet Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi

Lisätiedot

Jokaisesta talletetusta Smk. 1,500: maksetaan. vana syistä, joiden yhtiö katsoo olevan hänen mää« Jokainen henkilö, joka on täyttänyt 21 vuotta

Jokaisesta talletetusta Smk. 1,500: maksetaan. vana syistä, joiden yhtiö katsoo olevan hänen mää« Jokainen henkilö, joka on täyttänyt 21 vuotta >Ai,i4éfow f Vaikka yhtiö koettaa estää petoksia, ei se pidä itseään vastuunalaisena, jos maksu tapahtuu henkilöille, jotka esittävät tämän sopimuksen, vaikka eivät olekaan valtuutettuja siihen, ellei

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Rekursioyhtälön ratkaisu ja anisogamia

Rekursioyhtälön ratkaisu ja anisogamia Rekursioyhtälö ratkaisu ja aisogamia Eeva Vilkkumaa.0.2008 Rekursioyhtälö ratkaisu (Liite I) Edellie esitelmä: +/m -koiraide (p) ja -aaraide (P) osuus populaatiossa kehittyy rekursiivisesti: p P + + a

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

3.2 Sijaintiluvut. MAB5: Tunnusluvut

3.2 Sijaintiluvut. MAB5: Tunnusluvut MAB5: Tuusluvut 3.2 Sijaitiluvut Sijaitiluvut ovat imesä mukaiset: e etsivät muuttuja tyypillise arvo, jos sellaie o olemassa, tai aiaki luvu, joka lähellä muuttuja arvoja o eite. Sijaitiluvut jaetaa kahtee

Lisätiedot

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, kertausta. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, kertausta Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Kaavio kirjoitetaan kaarisulkujen väliin

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Peruskoulun matematiikkakilpailu

Peruskoulun matematiikkakilpailu Peruskoulun matematiikkakilpailu 6.11.2013 Työskentelyaika 50 minuuttia. Laskinta ei saa käyttää. Muista perustelut! Perustele tehtävät 3-8 laskulausekkeella, piirroksella tai selityksellä. Tehtävät 1-3

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

n = = RT S Tentti

n = = RT S Tentti S-5 Tetti 500 a) Kuika suuri o molekyylie traslaatioliikkee kieettie eergia kuutiometrissä ilmaa jos ilma lämpötila o 00 K ja paie 0 bar? b) Mikä o kieettise eergia kokoaismäärä ku myös muut liikelajit

Lisätiedot

Noora Nieminen. Hölderin epäyhtälö

Noora Nieminen. Hölderin epäyhtälö Noora Niemie Hölderi epäyhtälö Matematiika aie Turu yliopisto 4. huhtikuuta 2008 Sisältö 1 Johdato 1 2 Cauchy-Schwarzi epäyhtälö 2 2.1 Cauchy-Schwarzi epäyhtälö todistus............. 2 2.2 Aritmeettis-geometrise

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

1992 vp - HE 132. Lakiehdotus liittyy vuoden 1993 valtion talousarvioon. lain mukaan. Opetus- ja kulttuuritoimen rahoituksesta

1992 vp - HE 132. Lakiehdotus liittyy vuoden 1993 valtion talousarvioon. lain mukaan. Opetus- ja kulttuuritoimen rahoituksesta 1992 vp - HE 132 Hallituksen esitys Eduskunnalle laiksi valtion pelastusoppilaitoksista annetun lain 4 :n muuttamisesta ESITYKSEN PÄÄASIALLINEN SISÅLTÖ Esityksessä ehdotetaan muutettavaksi valtion pelastusoppilaitoksista

Lisätiedot

SV ruotsi. 00208916-8 Keski-Pohjanmaan koulutusyhtymä

SV ruotsi. 00208916-8 Keski-Pohjanmaan koulutusyhtymä Näyttötutkitoje palautejärjestelmä Tietolähde: AIPAL-tietokata 0-JAN- ( 6) Hakuehdot Kysymyssarja Opetuskieli Järjestäjä Valtakualliset palautekysymykset FI suomi SV ruotsi 000896-8 Keski-Pohjamaa koulutusyhtymä

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 111A Tietoraketeet ja algoritmit, 016-017, Harjoitus, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje kompleksisuusluokat

Lisätiedot

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1 Lineaarialgebran kertaustehtävien b ratkaisuista. Määritä jokin kanta sille reaalikertoimisten polynomien lineaariavaruuden P aliavaruudelle, jonka virittää polynomijoukko {x, x+, x x }. Ratkaisu. Olkoon

Lisätiedot

HE 137/1997 vp PERUSTELUT

HE 137/1997 vp PERUSTELUT HE 137/1997 vp Hallituksen esitys Eduskunnalle laiksi valtion eläkerahastosta annetun lain 4 ja 6 :n muuttamisesta ESITYKSEN PÄÄASIALLINEN SISÄLTÖ Esityksessä ehdotetaan muutettavaksi valtion eläkerahastosta

Lisätiedot

Millainen on Osuuspankin asuntopalvelu?

Millainen on Osuuspankin asuntopalvelu? Millainen on Osuuspankin asuntopalvelu? 1 Mistä asuntopalvelumme koostuu? Olitpa sitten hankkimassa ensimmäistä omaa kotia tai vaihtamassa nykyistä, saat meiltä juuri sinulle sopivan asuntolainan. Hoidamme

Lisätiedot

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla Metsätietee päivä, 6.0.0 Katobiomassa määrä mallitamie leimikoissa hakkuukoemittauste avulla Heikki Ovaskaie, Itä Suome yliopisto Pirkko Pihlaja, UPM Kymmee Teijo Palader, Itä Suome yliopisto Johdato Suomessa

Lisätiedot

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14)

Tilastotieteen jatkokurssi 8. laskuharjoitusten ratkaisuehdotukset (viikot 13 ja 14) Tilatotietee jatkokuri 8. lakuharjoitute ratkaiuehdotuket (viikot 13 ja 14) 1) Perujoukko o aluee A aukkaat ja tutkittavaa omiaiuutea ovat tulot, Tiedämme, että perujouko tulot oudattaa ormaalijakaumaa,

Lisätiedot

Keskijännitejohdon jännitteen alenema

Keskijännitejohdon jännitteen alenema Keskijäitejohdo jäittee aleea Kiviraa johtolähtö Ei ole ieltä laskea jäittee aleeaa pääuutajalta asti vaa lasketaa se P097: ltä. Xpoweri ukaa jäite uutaolla P097 o 0575,8V. Jäitteealeea uutao P097-P157

Lisätiedot

5. Väliestimoi tehtävän 3 tilanteessa tulppien keskimääräinen kestoa.

5. Väliestimoi tehtävän 3 tilanteessa tulppien keskimääräinen kestoa. MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuiee luetomoistee lukuu 5 liittye 1. Olkoo puoluee A kaatusosuus populaatiossa 30 %. Tarkastellaa tästä populaatiosta tehtyä satuaisotosta, joka koko

Lisätiedot

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi

Matriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä.

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. 3 1 3 ja 1. Laske lukujen 4 summa b. erotus c. tulo d. osamäärä e. käänteislukujen

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Postimaksukonepalvelun käyttöohje

Postimaksukonepalvelun käyttöohje 1 (11) Julkinen - Public Postimaksukonepalvelun käyttöohje 2 (11) Julkinen - Public POSTIMAKSUKONEPALVELUT KÄYTTÖVARAN MAKSAMINEN POSTIMAKSUKONEELLE 1 Yleistä Postimaksukonepalvelu on postimaksukoneita

Lisätiedot

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen

TEHTÄVÄKORI Monisteita matikkaan. Riikka Mononen ---------------------------------------- TEHTÄVÄKORI Monisteita matikkaan Riikka Mononen ---------------------------------------- Tehtäväkori 2016 TEHTÄVÄKORI Monisteita matikkaan -materiaali on kokoelma

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

Valtion eläkemaksun laskuperusteet 2010

Valtion eläkemaksun laskuperusteet 2010 VALTIOKONTTORI PÄÄTÖS Dnro 3/30/2010 Valtion eläkemaksun laskuperusteet 2010 Valtiokonttori on 15.1.2010 hyväksynyt nämä laskuperusteet noudatettavaksi laskettaessa valtion eläkelaissa tarkoitettuja työnantajan

Lisätiedot

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:

1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla: MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan

Lisätiedot