4.3 Signaalin autokorrelaatio

Koko: px
Aloita esitys sivulta:

Download "4.3 Signaalin autokorrelaatio"

Transkriptio

1 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä. Puheekäsittelyssä sitä käytetää erityisesti puhee perustaajuude määrittämisessä Autokorrelaatio määritelmä Meidä tarkoituksiimme riittää hyvi määritellä autokorrelaatio vai äärellise pituisille sigaaleille, jotka käytäössä ovat kehyksiä jostai pidemmästä sigaalista. Kuviossa 4. o esimerkki tällaisesta sigaalista. Sigaali ideksoii kaalta o usei kuiteki äppärämpää esittää tämä äärettömä pitkää sigaalia, joka o muualla kui tämä äärellise ikkua kohdalla. Kuvio 4. esittää tämä ollilla jatketu sigaali. Sigaali s() autokorrelaatio r(k) määritellää kaavalla r(k) = = s()s( k), (4.) missä k saa kaikki kokoaislukuarvot k =...,,,,,,.... Huomaa että autokorrelaatio o siis e fuktio vastaavasti kui esimerkiksi FFT o taajuude fuktio, joka takia sitä imitetää myös autokorrelaatiofuktioksi. Autokorrelaatio o itse asiassa korrelaatio sigaalie s() ja s( k) välillä: se arvo o sitä suurempi mitä eemmä ämä sigaalit korreloivat keskeää. Eräs ogelma autokorrelaatio määrittelemisessä kaavalla (4.) o se, että suuremmilla illä k summaa tulee mukaa vähemmä termejä ja tämä takia autokorrelaatio arvo pieeee e kasvaessa sigaalista riippumatta. Esimerkiksi jos meillä o N: äyttee pituie ikkua vakiosigaalia (eli s() = ku < N ja s() = muulloi), ku k < N autokorrelaatio o r(k) = s()s( k) = = N =k N =k s()s( k) = N k. Ku N < k, vastaavalla päättelyllä todetaa että autokorrelaatio o r(k) = N k.

2 4.3. SIGNAALIN AUTOKORRELAATIO 53. puhekehys äyte Kuvio 4.: Äärellise pituie kehys. Ku k N, toie termi summassa (4.) o aia, jote kaike kaikkiaa tässä tapauksessa autokorrelaatioksi tulee { N k, ku k < N r(k) =, ku k N Toisi saoe tämä autokorrelaatio määritelmä suosii pieempiä itä. Tämä takia autokorrelaatiosta löytyy myös pari muuelmaa joissa tämä ogelma pyritää kiertämää. Esimmäie muuelma o määritellä autokorrelaatio kaavalla r (k) = s()s( k), (4.) N k jossa yksikertaisesti otetaa keskiarvo kaikista ollasta eroavista tulo termeistä ellä k. Tämä kyllä poistaa arvoje pieeemise ogelma mutta tilalle tulee toie: mitä suurempi k o, sitä vähemmä termejä summaa tulee mukaa ja sitä epäluotettavampi tulos o. Esimerkiksi kohiaisella sigaalilla autokorrelaatio voi saada suuriaki arvoja ku o suuri vaikka sigaali ei äillä illä oikeastaa korreloikaa, esimerkki tästä löytyy jäljempää. Koko homma saataisii perusteltua täsmällisemmi sillä että tämä autokorrelaatiofuktio estimaattori variassi kasvaa ku kasvaa (vaikka se oki harhato) mutta tämä vaatisi stokastiste prosessie teoriaa jote ei käydä tätä se tarkemmi läpi.

3 54. ollilla jatkettu puhekehys äyte Kuvio 4.: Nollilla jatkettu äärellise pituie kehys. Vielä yksi muuos autokorrelaatiosta saadaa kaavalla r (k) = N = N+ s()s( k), ku N < k < N ja summa laskemisee käytetää s(): arvoja ku = N +,..., N. Tässä jippo o siiä, että kaikilla illä otetaa summaa mukaa sama määrä termejä jolloi luotettavuus säilyy. Ogelmaa o se että sigaalista tarvitaa pidempi ikkua kui edellisillä meetelmillä ja eri illä autokorrelaatio tulee laskettua eri äytteide yli, joka seurauksea osa seuraava kappalee omiaisuuksista eivät ole voimassa. Jatkossa käytämme autokorrelaatiota (4.) mutta o hyvä pitää mielessä että myös vaihtoehtoja o olemassa. Matlabissa autokorrelaatio saa laskettua komeolla xcorr. Autokorrelaatiofuktio omiaisuuksia Kaava (4.) autokorrelaatiolla o seuraavat omiaisuudet: r(k) = r( k), toisi saoe autokorrelaatio o symmetrie fuktio - e suhtee. Jätetää tämä lukija todettavaksi.

4 4.3. SIGNAALIN AUTOKORRELAATIO 55 r() = sigaali eergia. Tämä seuraa suoraa siitä että r() = s(). r() r(k) kaikilla k: arvoilla. Otetaa lähtökohdaksi perusmatika kursseilta tuttu Cauchy-Schwarz epäyhtälö N: pituisille reaalivektoreille x ja y: ( N ( N ) ( N ) x()y()) x() y(). = = = Myös tässä voidaa summata kaikkie kokoaislukuideksie yli kuha vai äärellie määrä arvoista poikkeaa ollasta. Ku meillä o joku k ii otetaa vektoriksi x sigaali s() ja vektoriksi y viivästetty sigaali s( k). Huomaa että koska s():ssa vai äärellise mota arvoa eroaa ollasta, sekä s() että s( k) voidaa esittää äärellise pituisia vektoreia. Kokreettie esimerkki: jos s() = [ 3 ] ja k = ii tehdää vektorit x = [ 3 ] ja y = [ 3 ]. Nyt ku sovelletaa Cauchy-Schwarz-epäyhtälöä äihi vektoreihi saadaa ( ( ) ( ) s()s( k)) s() s( k) ( ) = s(), koska s() = s( k). Tästä seuraa että r(k) r(), josta puolestaa seuraa että r() r(k). autokorrelaatiofuktio Fourier-muuos = sigaali Fourier-muuokse amplitudi eliö (Wieer-Khichi teoreema). Tarkallee ottae siis r() exp( jω) = s() exp( jω).

5 56 Tämä o hituse yllättävä tulos ja yksi tapa hahmottaa sitä o seuraava: autokorrelaatiofuktio r(k) symmetrisyydestä seuraa helposti että se Fouriermuuos o reaalie. Tämä teoreema saoo että Fourier-muuos o paitsi reaalie myös ei-egatiivie (koska edellise yhtälö oikea puoli o aia. Tällä kurssilla emme isommi käytä tätä tulosta mutta se o kuiteki hyvä pitää miele perukoilla. Esimerkkejä autokorrelaatiosta Katsotaa läpi muutamia sigaaleja ja iide autokorrelaatio jotta saadaa joki käsitys siitä mite autokorrelaatio toimii. Olemme lähiä kiiostueita siitä mikä autokorrelaatiofuktio muoto o, jote tätä tarkoitusta varte autokorrelaatio saadaa äppärästi ormalisoitua jakamalla se arvot r():lla. Esimerkki : s() = eli vakiosigaali. Totesimme jo aiemmi että tämä sigaali autokorrelaatiofuktio o r(k) = N k. Tässä tapauksessa r() = N, jote ormalisoitu autokorrelaatio (siis autokorrelaatio jaettua sigaali eergialla) o r(k) = k N. Tämä o esitetty kuviossa 4.3. Tässä o oleellista huomata että vaikka s(): äytteet eri illä korreloivat täysi, ii sigaali ikkuoiti aiheuttaa se että autokorrelaatio kuiteki pieeee lieaarisesti e kasvaessa. Esimerkki : s() = satuaista kohiaa joka keskiarvo =. Ajatellaa vaikka että sigaali saadaa heittämällä 4-sivuista oppaa joka arvot ovat 3,, ja. Ku k = ii r() o sigaali eergia, kute tavallista. Ku k, meillä o summa r(k) = s()s( k). Nyt mikä tahasa kahde arvo s() ja s( k) tulo saadaa taulukosta

6 4.3. SIGNAALIN AUTOKORRELAATIO 57 vakiosigaali ormalisoitu autokorrelaatio Kuvio 4.3: Vakiosigaali ja autokorrelaatio. Todetaa että tauluko alkioide summa o ja jokaie iistä o yhtä todeäköie, jote summasta s()s( k) tulee arvoksi keskimääri. Tämä päättely saataisii huomattavasti vakaammalle pohjalle käyttämällä todeäköisyyslaskea teoriaa mutta tämä tarkkuus riittää meidä tarpeisiimme. Eli satuaise sigaali tapauksessa autokorrelaatio r(k) o sigaali eergia ku k = ja koko lailla ku k. Kuviossa 4.4 o esitetty yksi realisaatio tästä sigaalista ku se pituus o N = ja tämä ormalisoitu autokorrelaatio. Todetaa että autokorrelaatio ei ole tarkallee ku k mutta kuiteki aika liki. Kuviossa 4.5 o esitelty tilae ku sigaali pituus N =, josta huomataa että ormalisoitu autokorrelaatio o huomattavasti pieempi ku k. Normalisoitu autokorrelaatio käyttäe kaavaa (4.) o vielä laskettu kuviossa 4.6 josta välittömästi havaitaa että pitkillä illä tämä meetelmä ei ole kovi luotettava. Tavallaa ämä kaksi esimerkkisigaalia kuvastavat autokorrelaatio ääripäitä: täysi korreloiva sigaali ormalisoitu autokorrelaatio o k ja täysi N satuaise sigaali ormalisoitu autokorrelaatio o impulssi (siis ku k =

7 58 kohiasigaali ormalisoitu autokorrelaatio Kuvio 4.4: Satuaissigaali autokorrelaatio. ja muute). Käytäö sigaalit elävät jossai äide ääripäide välimaastossa jota varte katsotaa pari esimerkkiä autokorrelaatiosta eri puheääteissä. Esimerkki 3: kuviossa 4.7 o esitetty kehys (suorakaideikkualla ikkuoitu) [ä]-ääteestä ja se autokorrelaatio. Havaitaa että autokorrelaatiossa o useita suuria piikkejä jote eri et korreloivat vahvasti keskeää. Erityisesti ellä 5 autokorrelaatiossa o iso positiivie piikki joka johtuu puhee perustaajuudesta tässä kehyksessä; yhdellä jaksopituudella viivästetty puhe äyttää aika samalta kui viivästämätö puhe. Tässä kehyksessä puhee perustaajuus o siis 6 Hz 5 7 Hz. Itse asiassa autokorrelaatio piikkie etsitä o hyvä tapa löytää puhee perustaajuus (tästä tarkemmi seuraavassa luvussa). Esimerkki 4: kuviosta 4.7 löytyy kehys (taas suorakaideikkualla ikkuoitu) [s]-ääteestä ja se autokorrelaatio. Tässä tapauksessa autokorrelaatio o kohtuullise impulssimaie mikä viittaa siihe että [s]-äätee aaltomuoto o melko satuaie.

8 4.3. SIGNAALIN AUTOKORRELAATIO 59 pidempi kohiasigaali ormalisoitu autokorrelaatio Kuvio 4.5: Pidemmä satuaissigaali autokorrelaatio. pidempi kohiasigaali ormalisoitu autokorrelaatio r (k) Kuvio 4.6: Satuaissigaali autokorrelaatio kaavalla (4.).

9 6. [ä] ääe ormalisoitu autokorrelaatio Kuvio 4.7: [ä]-ääe ja autokorrelaatio..3 [s] ääe ormalisoitu autokorrelaatio Kuvio 4.8: [s]-ääe ja autokorrelaatio.

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

Kompleksiluvut. Johdanto

Kompleksiluvut. Johdanto Kompleksiluvut Johdato Tuomo Pirie tuomo.pirie@tut.fi Aikoje kuluessa o matematiikassa kohdattu tilateita, jolloi käytetyt määrittelyt ja rajoitukset (esimerkiksi käytetyt lukujoukot) eivät ole olleet

Lisätiedot

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit 2. Mittaus ja data 2.. Johdato Voidaksemme keksiä tosimaailma relaatioita tarkastelemme sitä kuvaavaa dataa, jote esiksi selvitämme, mitä data perimmiltää o. Data kerätää kuvaamalla mielekiitoaluee oliot

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

1. abstraktit algoritmit 2. näytteistämiseen perustuva synteesi (tallennus, prosessointi) 3. spektrimallit 4. fysikaaliset mallit.

1. abstraktit algoritmit 2. näytteistämiseen perustuva synteesi (tallennus, prosessointi) 3. spektrimallit 4. fysikaaliset mallit. Ääisyteesi ja efektit Lähteet: -Toloe, Välimäki, Karjalaie. (1998). Evaluatio of moder soud sythesis methods. Report o. 48, Helsiki Uiversity of Techology, Acoustics Lab. -Roads. (1996). Computer music

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

Esimerkki 2 (Kaupparatsuongelma eli TSP)

Esimerkki 2 (Kaupparatsuongelma eli TSP) 10 Esimerkki 2 (Kaupparatsuogelma eli TSP) Kauppamatkustaja o kierrettävä kaupukia site, että hä lähtee kaupugista 1 ja palaa sie sekä käy jokaisessa muussa kaupugissa täsmällee kerra. Matka kaupugista

Lisätiedot

3.6. Geometrisen summan sovelluksia

3.6. Geometrisen summan sovelluksia Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa

Lisätiedot

LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000

LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 Laskuharjoitus Detaljibalassi Osoita, että siirtymätodeäköisyydet π m α m ; ρ, m ρ α m ----- ; ρ < ρ, m m π m, m m ja π m ρ α m ------------------ ρ +, m π

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut: Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie

Lisätiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

Todennäköisyyslaskenta I. Heikki Ruskeepää Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus

Lisätiedot

- menetelmän pitää perustua johonkin standardissa ISO 140-5 esitetyistä menetelmistä

- menetelmän pitää perustua johonkin standardissa ISO 140-5 esitetyistä menetelmistä RAKENNUKSEN ULKOVAIPAN ÄÄNENERISTYSTÄ KOSKEVAN ASEMAKAAVAMÄÄRÄYKSEN TOTEUTUMISEN VALVONTA MITTAUKSIN Mikko Kylliäie, Valtteri Hogisto 2 Isiööritoimisto Heikki Helimäki Oy Piikatu 58 A, 3300 Tampere mikko.kylliaie@helimaki.fi

Lisätiedot

Tilastotieteen perusteet

Tilastotieteen perusteet VAASAN YLIOPISTO Tilastotieteeperusteet Luetoruko Christia Gustafsso SISÄLLYSLUETTELO 1. JOHDANTO... 3 1.1. Mitä tilastotiede o?... 3 1.. Tilastotietee historiaa... 4. HAVAINTOAINEISTO JA MITTAAMINEN...

Lisätiedot

3.9. Mallintaminen lukujonojen avulla harjoituksia

3.9. Mallintaminen lukujonojen avulla harjoituksia 3.9 Mallitamie lukujooje avulla harjoituksia 3.9. Mallitamie lukujooje avulla harjoituksia Lukujoo määritelmä harjoituksia 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA

VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA VÄRISPEKTRIKUVIEN TEHOKAS SIIRTO TIETOVERKOISSA Juha Lehtoe 0.3.00 Joesuu yliopisto Tietojekäsittelytiede Kadidaatitutkielma ESIPUHE Ole kirjoittaut tämä kadidaatitutkielma Joesuu yliopistossa Tietojekäsittelytietee

Lisätiedot

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia?

Kuluttajahintaindeksi (KHI) Kuluttajahintaindeksi (KHI) Kysymys Miten mitata rahan arvon muutoksia? Kuluttajahitaideksi (KHI) Kysymys Mite mitata raha arvo muutoksia? Kuluttajahitaideksi (KHI) o sovittu kulutustavaroide ja palveluide hitakehitykse mittari. KHI muodostetaa paiotettua keskiarvoa eri pääryhmie

Lisätiedot

Valvontakortit. Sovelletun Matematiikan Erikoistyö. Pastinen Tommi 23.4.2010

Valvontakortit. Sovelletun Matematiikan Erikoistyö. Pastinen Tommi 23.4.2010 Valvotakortit Sovelletu Matematiika Erikoistyö Pastie Tommi 3.4. Tässä työssä perehdytää valvotakortteihi tilastollisessa laaduvalvoassa perusteoria ja esimerkkitapauste kautta. Sisältö Johdato... 3 Tilastollisesta

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

tilavuudessa dr dk hetkellä t olevien elektronien

tilavuudessa dr dk hetkellä t olevien elektronien Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

15 MEKAANISET AALLOT (Mechanical Waves)

15 MEKAANISET AALLOT (Mechanical Waves) 3 15 MEKAANISET AALLOT (Mechaical Waves) Luoto o täyä aaltoja. Aaltoliikettä voi sytyä systeemeissä, jotka poikkeutettua tasapaiotilastaa pyrkivät palaamaa siihe takaisi. Aalto eteee, ku poikkeama (häiriö)

Lisätiedot

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/

Lisätiedot

TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998.

TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Kokooma 23.1.2008. Viimeisi perustemuutos o vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Sisällysluettelo

Lisätiedot

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi

Valo-oppia. Haarto & Karhunen. www.turkuamk.fi Valo-oia Haarto & Karhue Valo sähkömageettisia aaltoia Sähkömageettiste aaltoje teoria erustuu Maxwelli yhtälöihi S S E da 0 B da Q (Gaussi laki) 0 (Gaussi laki magetismissa) dφb E ds dt (Faraday laki)

Lisätiedot

TIIVISTELMÄRAPORTTI (SUMMARY REPORT)

TIIVISTELMÄRAPORTTI (SUMMARY REPORT) 2012/MAT814 ISSN 1797-3457 (vekkojulkaisu) ISBN (PDF) 978-951-25-2408-2 TIIVISTELMÄRAPORTTI (SUMMARY REPORT) Vaiheistettu heijastipita valemaalia Joha Ste, Päivi Koivisto, Ato Hujae, Tommi Dufva, VTT,

Lisätiedot

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan

MAB7 Talousmatematiikka. Otavan Opisto / Kati Jordan 3.3 Laiat MAB7 Talousmatematiia Otava Opisto / Kati Jorda Laia ottamie Suuri osa ihmisistä ottaa laiaa jossai elämävaiheessa. Pailaiaa tarvitaa yleesä vauusia ja/tai taausia. Laiatulle pääomalle masetaa

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää Todeäköisyyslasketa sivuaieopiskelijoille Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 5 1.3 Aksiomaattie todeäköisyys 7 1.4 Ehdollie todeäköisyys 12

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

Kertaustehtävät. 300 s 600. 1. c) Värähtelyn jaksonaika on. = = 2,0 Hz 0,50 s. Värähtelyn taajuus on. f = T

Kertaustehtävät. 300 s 600. 1. c) Värähtelyn jaksonaika on. = = 2,0 Hz 0,50 s. Värähtelyn taajuus on. f = T Kertaustehtävät. c) Värähtely jaksoaika o Värähtely taajuus o f = T 00 s T = = 0,50 s. 600 = =,0 Hz 0,50 s.. b) Harmoie voima o muotoa = kx. Sovitaa suuta alas positiiviseksi. Tasapaiotilassa o voimassa

Lisätiedot

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja.

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja. POHDIN rojekti Jatkuva korko ja e Eksoettifuktioille voidaa johtaa omiaisuus f ( x) f (0) f( x). Riittää ku oletetaa, että f (0) o olemassa. Nyt eksoettifuktioide f( x) 2 x ja gx ( ) 3 x välistä yritää

Lisätiedot

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa.

λ x = 0,100 nm, Eγ = 0,662 MeV, θ = 90. λ λ+ λ missä ave tarkoittaa aikakeskiarvoa. S-114.46 Fysiikka V (Sf) Tetti 16.5.00 välikokee alue 1. Oletetaa, että protoi ja elektroi välie vetovoia o verraollie suureesee r ( F =- kr) eikä etäisyyde eliö kääteisarvoo ( F =-k / r ). Käytä kulaliikeäärä

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802 Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha

Lisätiedot

3 Ikkunointi. Kuvio 1: Signaalin ikkunointi.

3 Ikkunointi. Kuvio 1: Signaalin ikkunointi. 3 Ikkunointi Puhe ei ole stationaarinen signaali, vaan puheen ominaisuudet muuttuvat varsin nopeasti ajan myötä. Tämä on täysin luonnollinen ja hyvä asia, mutta tämä tekee sellaisten signaalinkäsittelyn

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006

Digitaalinen Signaalinkäsittely T0125 Luento 4-7.04.2006 Digitaalinen Signaalinkäsittely T5 Luento 4-7.4.6 Jarkko.Vuori@evtek.fi Z-taso Z-taso on paljon käytetty graafinen esitystapa jonka avulla voidaan tarkastella signaalien taajuussisältöjä sekä järjestelmien

Lisätiedot

Kanavamallien vertailu LTE-järjestelmissä

Kanavamallien vertailu LTE-järjestelmissä Juha Jäämaa Kaavamallie vertailu LTE-järjestelmissä Elektroiika, tietoliiketee ja automaatio tiedekuta Diplomityö, joka o jätetty opiäytteeä tarkastettavaksi diplomi-isiööri tutkitoa varte Espoossa 0.5.00.

Lisätiedot

Matlab-tietokoneharjoitus

Matlab-tietokoneharjoitus Matlab-tietokoneharjoitus Tämän harjoituksen tavoitteena on: Opettaa yksinkertaisia piirikaavio- ja yksikkömuunnoslaskuja. Opettaa Matlabin perustyökaluja mittausten analysoimiseen. Havainnollistaa näytteenottotaajuuden,

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

Lahopuuinventoinnin menetelmien vertailu Nuuksion ulkoilualueilla

Lahopuuinventoinnin menetelmien vertailu Nuuksion ulkoilualueilla Metsätietee aikakauskirja t i e d o a t o Aika Kagas, Tuomas Aakala, Haa Alae, Maarit Haavisto, Jai Heikkilä, Au Kaila, Sami Kakaapää, Hau Kämäri, Olli Leio, Atti Mäkie, Eeva Nurmela, Sami Oksa, Atti Saari,

Lisätiedot

Aikaisemmat selvitykset. Hammaslääkäriliitto on selvittänyt terveyskeskusten. terveyskeskusten hammaslääkäritilannetta

Aikaisemmat selvitykset. Hammaslääkäriliitto on selvittänyt terveyskeskusten. terveyskeskusten hammaslääkäritilannetta S E L V I T Y S Terveyskeskuste hammaslääkäritilae lokakuussa 2005 ANJA EEROLA, TAUNO SINISALO Hammaslääkäriliitto selvitti julkise ja yksityise sektori hammaslääkärie työvoimatilatee lokakuussa 2005 kahdella

Lisätiedot

Oppimistavoite tälle luennolle

Oppimistavoite tälle luennolle Oppiistavoite tälle lueolle Yksikköoperaatiot ja teolliset prosessit CHEM-A00 (5 op) Tislaus ja uutto Yärtää erotusprosessie suuittelu perusteet Tutea tislaukse ja uuto toiitaperiaatteet Tutea tpillisipiä

Lisätiedot

Kun vuoden alussa varastossa oli 100 karaattia ja Antwerpenin ostot oheisen kuvan

Kun vuoden alussa varastossa oli 100 karaattia ja Antwerpenin ostot oheisen kuvan Optimoitimeetelmät Kirjallisuutta: Rardi Roald R.: Optimizatio i Operatios Research, 998 Wisto Waye L.: Operatios Research. Applicatios ad Algorithms, 3rd editio, 994. Matemaattie mallius ja ogelmie ratkaisu

Lisätiedot

Matematiikkalehti 1/2015. http://solmu.math.helsinki.fi

Matematiikkalehti 1/2015. http://solmu.math.helsinki.fi Matematiikkalehti /205 http://solmu.math.helsiki.fi 2 Solmu /205 Solmu /205 ISSN-L 458-8048 ISSN 459-0395 (Paiettu) ISSN 458-8048 (Verkkolehti) Matematiika ja tilastotietee laitos PL 68 (Gustaf Hällströmi

Lisätiedot

Liike-elämän matematiikka Opettajan aineisto

Liike-elämän matematiikka Opettajan aineisto Liike-elämä matematiikka Opettaja aieisto Pirjo Saarae, Eliisa Kolttola, Jarmo Pösö ISBN 978-951-37-5741-0 Päivitetty 13.8.2014 Tehtävie ratkaisut - Luku 1 Verotus - Luku 2 Katelaskut ja talousfuktiot

Lisätiedot

RATKAISUT: 15. Aaltojen interferenssi

RATKAISUT: 15. Aaltojen interferenssi Physica 9. paios (6) : 5. a) Ku kaksi tai useapia aaltoja eteee saassa äliaieessa, aaltoje yhteisaikutus issä tahasa pisteessä o yksittäiste aaltoje sua. b) Ku aallot kohtaaat, haaitaa iide yhteisaikutus.

Lisätiedot

Kuulohavainnon perusteet

Kuulohavainnon perusteet Kuulohavainnon ärsyke on ääni - mitä ääni on? Kuulohavainnon perusteet - Ääni on ilmanpaineen nopeaa vaihtelua: Tai veden tms. Markku Kilpeläinen Käyttäytymistieteiden laitos, Helsingin yliopisto Värähtelevä

Lisätiedot

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt

Todennäköisyyslaskenta: Todennäköisyys ja sen laskusäännöt Todeäköisyys ja se laskusääöt Todeäköisyyslasketa: Todeäköisyys ja se laskusääöt 1. Johdato 2. Joukko opi peruskäsitteet 3. Todeäköisyyslaskea peruskäsitteet 4. Todeäköisyyslaskea peruslaskusääöt 5. Klassie

Lisätiedot

S-114.3812 Laskennallinen Neurotiede

S-114.3812 Laskennallinen Neurotiede S-114.3812 Laskennallinen Neurotiede Laskuharjoitus 2 4.12.2006 Heikki Hyyti 60451P Tehtävä 1 Tehtävässä 1 piti tehdä lineaarista suodatusta kuvalle. Lähtötietoina käytettiin kuvassa 1 näkyvää harmaasävyistä

Lisätiedot

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa,

Kuva 22: Fraktaalinen kukkakaali. pituus on siis 4 AB. On selvää, että käyrän pituus kasvaa n:n kasvaessa, Tortai 6..999 = Geometria o hyvä tapa kuvata ykikertaiia kappaleita, mutta kappaleie tullea äärettömä moimutkaiiki, käy iie kuvaamie klaie geometria avulla mahottomaki. Eimerkiki rataviiva pituue määrittämie

Lisätiedot

Korkojen aikarakenteen ja tulevan inflaation välinen yhteys

Korkojen aikarakenteen ja tulevan inflaation välinen yhteys Korkoje aikaraketee ja tuleva iflaatio välie yhteys Perttu Tuomi Pro gradu -tutkielma Kasataloustietee laitos Tamperee yliopisto Toukokuu 2000 1 Tamperee yliopisto Kasataloustietee laitos TUOMI PERTTU:

Lisätiedot

Kombinatoriikka. Iiro Honkala 2015

Kombinatoriikka. Iiro Honkala 2015 Kombiatoriikka Iiro Hokala 2015 Sisällysluettelo 1. Haoi torit 1 2. Lokeroperiaate 3 3. Tuloperiaate 3 4. Permutaatioista ja kombiaatioista 4 5. Toistokombiaatioista 5 6. Biomikertoimista 5 7. Multiomikertoimista

Lisätiedot

SV ruotsi. 02532 Kokkolan sosiaali- ja terveysalan opisto

SV ruotsi. 02532 Kokkolan sosiaali- ja terveysalan opisto Näyttötutkitoje palautejärjestelmä Tietolähde: AIPAL-tietokata Valittu aikajakso 0.0.00-0..00 0-DEC-0 ( ) Hakuehdot Kysymyssarja Opetuskieli Valtakualliset palautekysymykset FI suomi SV ruotsi Oppilaitos

Lisätiedot

7303045 Laaja matematiikka 2 Kevät 2005 Risto Silvennoinen

7303045 Laaja matematiikka 2 Kevät 2005 Risto Silvennoinen 7303045 Lj mtemtii 2 Kevät 2005 Risto Silveoie. Luusrjt Kos srjt ovt summie jooj, ertmme esi jooje teori. Joot Joo o mtemtii iei perustvimpi äsitteitä j se vull ohdt äärettömyys esimmäistä ert. Luulueit

Lisätiedot

Zeon PDF Driver Trial

Zeon PDF Driver Trial Matlab-harjoitus 2: Kuvaajien piirto, skriptit ja funktiot. Matlabohjelmoinnin perusteita Numeerinen integrointi trapezoidaalimenetelmällä voidaan tehdä komennolla trapz. Esimerkki: Vaimenevan eksponentiaalin

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot

N:o 294 2641. Liite 1. Staattisen magneettikentän (0 Hz) vuontiheyden suositusarvo.

N:o 294 2641. Liite 1. Staattisen magneettikentän (0 Hz) vuontiheyden suositusarvo. N:o 94 641 Liite 1. Staattise mageettiketä (0 Hz) vuotiheyde suositusarvo. Altistumie Koko keho (jatkuva) Mageettivuo tiheys 40 mt Tauluko selityksiä Suositusarvoa pieemmätki mageettivuo tiheydet saattavat

Lisätiedot

3.7. Rekursiivisista lukujonoista

3.7. Rekursiivisista lukujonoista .7 Rekursiivisist lukujooist.7. Rekursiivisist lukujooist Kerrt vielä, että lukujoo void määritellä khdell eri tvll, joko käyttämällä lyyttistä säätöä ti rekursiivist säätöä. Joo määrittelemie rekursiivisesti

Lisätiedot

tehty 20 päivänä toukokuuta 1998 (Asia N:o IV/M.1016 - PRICE WATERHOUSE/COOPERS & LYBRAND) (Ainoastaan englanninkielinen teksti on todistusvoimainen)

tehty 20 päivänä toukokuuta 1998 (Asia N:o IV/M.1016 - PRICE WATERHOUSE/COOPERS & LYBRAND) (Ainoastaan englanninkielinen teksti on todistusvoimainen) K(1998) 1388 lopull. KOMISSION PÄÄTÖS tehty 20 päivää toukokuuta 1998 yrityskeskittymä julistamisesta yhteismarkkioille ja ETA-sopimukse toimitaa soveltuvaksi (Asia N:o IV/M.1016 - PRICE WATERHOUSE/COOPERS

Lisätiedot

Laudatur 6 Todennäköisyys ja tilastot Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava

Laudatur 6 Todennäköisyys ja tilastot Tarmo Hautajärvi Jukka Ottelin Leena Wallin-Jaakkola Opettajan aineisto Helsingissä Kustannusosakeyhtiö Otava Laudatur 6 Todeäköisyys ja tilastot Tarmo Hautajärvi Jukka Otteli Leea Walli-Jaakkola Opettaja aieisto Helsigissä Kustausosakeyhtiö Otava SISÄLLYS Toimiallisia tehtäviä...3 Ratkaisut kirja tehtävii...4

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Levyistä bitteihin. - DJ-toiminnan digitalisoituminen ja sen ongelmat tekijänoikeuslain viitekehyksessä. Tero Uuttana. Pro gradu-tutkielma

Levyistä bitteihin. - DJ-toiminnan digitalisoituminen ja sen ongelmat tekijänoikeuslain viitekehyksessä. Tero Uuttana. Pro gradu-tutkielma Levyistä bitteihi - DJ-toimia digitalisoitumie ja se ogelmat tekijäoikeuslai viitekehyksessä Tero Uuttaa Pro gradu-tutkielma Yhteiskutapolitiikka/ kulttuuripolitiikka Yhteiskutatieteide ja filosofia laitos

Lisätiedot

ViewSonic. VFM1036W Digital Photo Frame. - User Guide. - Guide de l utilisateur. - Bedienungsanleitung. - Guía del usuario.

ViewSonic. VFM1036W Digital Photo Frame. - User Guide. - Guide de l utilisateur. - Bedienungsanleitung. - Guía del usuario. ViewSoic Digital Photo Frame - User Guide - Guide de l utilisateur - Bedieugsaleitug - Guía del usuario - Guia do usuário - Käyttöopas - Руководство пользователя - Kullaιcι kιlavuzu - Οδηγός χρηστών Model

Lisätiedot

Ekologiset mallit ja ekologisten riskien hallinta metsäsuunnittelussa

Ekologiset mallit ja ekologisten riskien hallinta metsäsuunnittelussa Kagas & Kagas Metsätietee aikakauskirja Ekologiset mallit ja ekologiste riskie hallita metsäsuuittelussa k a t s a u s Aika Kagas Aika Kagas ja Jyrki Kagas Ekologiset mallit ja ekologiste riskie hallita

Lisätiedot

Sähkövirran määrittelylausekkeesta

Sähkövirran määrittelylausekkeesta VRTAPRLASKUT kysyttyjä suureita ovat mm. virrat, potentiaalit, jännitteet, resistanssit, energian- ja tehonkulutus virtapiirin teho lasketaan Joulen laista: P = R 2 sovelletaan Kirchhoffin sääntöjä tuntemattomien

Lisätiedot

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö

Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Signaalien tilastollinen mallinnus T-61.3040 (5 op) Syksy 2006 Harjoitustyö Harjoitustyön sekä kurssin suorittaminen Kurssin suorittaminen edellyttää sekä tentin että harjoitustyön hyväksyttyä suoritusta.

Lisätiedot

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S 3.3. Aritmeettie summ 3.3. Aritmeettie summ Mikä olisi helpoi tp lske 0 esimmäistä luoollist luku yhtee? Olisiko r voim käyttö 0 + + + 3 + + 00 hyvä jtus? Tekiik vull se iki toimii. Fiksumpiki tp kuiteki

Lisätiedot

JÄRJESTELMÄTARKASTELU JA OPTIMOINTI VAIMENNINAKUSTIIKASSA

JÄRJESTELMÄTARKASTELU JA OPTIMOINTI VAIMENNINAKUSTIIKASSA JÄRJESTELMÄTARKASTELU JA OPTIMOINTI VAIMENNINAKUSTIIKASSA Jukka Tattari ja Jari Kataja VTT Tuotteet ja tuotato PL 137, 3311 TAMPERE etuimi.sukuimi@vtt.fi 1 JOHDANTO Esitemässä tarkasteaa reaktiivisii kompoetteihi

Lisätiedot

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO

Aki Taanila YHDEN SELITTÄJÄN REGRESSIO Aki Taanila YHDEN SELITTÄJÄN REGRESSIO 26.4.2011 SISÄLLYS JOHDANTO... 1 LINEAARINEN MALLI... 1 Selityskerroin... 3 Excelin funktioita... 4 EKSPONENTIAALINEN MALLI... 4 MALLIN KÄYTTÄMINEN ENNUSTAMISEEN...

Lisätiedot

Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista

Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista Ajankäyttötutkimuksen satoa eli miten saan ystäviä, menestystä ja hyvän arvosanan tietojenkäsittelyteorian perusteista Harri Haanpää 18. kesäkuuta 2004 Tietojenkäsittelyteorian perusteiden kevään 2004

Lisätiedot

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua

766320A SOVELTAVA SÄHKÖMAGNETIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 7663A OVLTAVA ÄHKÖMAGNTIIKKA, ohjeita tenttiin ja muutamia teoriavinkkejä sekä pari esimerkkilaskua 1. Lue tenttitehtävä huolellisesti. Tehtävä saattaa näyttää tutulta, mutta siinä saatetaan kysyä eri

Lisätiedot

Sote-alueen muodostamisen tarkemmat kriteerit on todettu väliraportin luvussa 4.1.2. (sivut 18 19).

Sote-alueen muodostamisen tarkemmat kriteerit on todettu väliraportin luvussa 4.1.2. (sivut 18 19). KYSYMYKSET Sosiaali- ja terveydehuoltoalueet (sote-alue) Väliraporti perusteella kua tulee kuulua sote-alueesee, joka järjestää sille sosiaali- ja terveyspalvelut. Sote-alue muodostuu maakutie keskuskaupukie

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Aamukatsaus 03.06.2002

Aamukatsaus 03.06.2002 Ideksit & korot New Yorki päätöskurssit, euroa Muutos Päätös Muutos-% Helsiki New York (NY/Hel) Dow Joes 9925,3 +0,14 Nokia 15,36 14,87-3,20 % S&P 500 1067,1 +0,23 Soera 3,97 3,78-4,75 % Nasdaq 1615,7-0,99

Lisätiedot

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi

RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa

Lisätiedot

Tässä numerossa. Juurta jaksain. Torstai 21. 8. 2000. Seepia 3

Tässä numerossa. Juurta jaksain. Torstai 21. 8. 2000. Seepia 3 Seepia 3 Tässä umerossa 3. Paiomeetelmie problematiikkaa 6. Moelaista kukkimista 7. Kummalliset kaksikotiset kukkakasvit. Biolumiesessi 0. Talopoikaisherätys Taskassa 6. Kultaie kulmio 8. Fiboacci illuusio

Lisätiedot

Tilapäinen vanhempainraha lapsen hoidon yhteydessä [Tillfällig föräldrapenning vid vård av barn]

Tilapäinen vanhempainraha lapsen hoidon yhteydessä [Tillfällig föräldrapenning vid vård av barn] Tilapäie vahempairaha lapse hoido yhteydessä [Tillfällig föräldrapeig vid vård av bar] Klicka här, skriv ev. Udertitel Lapset sairastuvat usei. Tämä vuoksi voit saada tilapäistä vahempairahaa, jos joudut

Lisätiedot

Nuori hammaslääkäri 2014

Nuori hammaslääkäri 2014 Nuori hammaslääkäri 2014 Jaakko Koivumäki, Merja Auero, Aja Eerola, Terhi Karaharju-Suvato, Aariitta Kottoe, Ritva Näpäkagas, Kaisu Pieihäkkie, Nora Savaheimo, Liisa Suomie, Tiia Tuooe Tutkimusraportti

Lisätiedot

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä

Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn

Lisätiedot

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002

Säätötekniikan matematiikan verkkokurssi, Matlab tehtäviä ja vastauksia 29.7.2002 Matlab tehtäviä 1. Muodosta seuraavasta differentiaaliyhtälöstä siirtofuntio. Tämä differentiaaliyhtälö saattaisi kuvata esimerkiksi yksinkertaista vaimennettua jousi-massa systeemiä, johon on liitetty

Lisätiedot

VA L i n ta ko e 2 0 1 4

VA L i n ta ko e 2 0 1 4 Luva saatuasi merkitse vastauslomakeumerosi eli vastauslomakkee 3 oikeassa yläreuassa oleva umero. Vastauslomakeumero VA L i ta ko e 2 0 1 4 ko g i t i ot i e d e ja psyko l o g i a a i e i s to- ja tehtävävihko

Lisätiedot

Digitaalinen signaalinkäsittely Kuvankäsittely

Digitaalinen signaalinkäsittely Kuvankäsittely Digitaalinen signaalinkäsittely Kuvankäsittely Teemu Saarelainen, teemu.saarelainen@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Signal Processing: A Practical Approach H.Huttunen, Signaalinkäsittelyn menetelmät,

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot