10.5 Jaksolliset suoritukset

Koko: px
Aloita esitys sivulta:

Download "10.5 Jaksolliset suoritukset"

Transkriptio

1 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e jakso lopussa. Olkoo korkotekjä r, sllo kasvaut pääoma o. jakso lopussa k 2. jakso lopussa 2 k r k rk 3. jakso lopussa 3 k r2 krkr 2 k. jakso lopussa k r k rk r 2 k r k (geom. sarja! ) asvaut pääoma. jakso lopussa saadaa ss geometrse sarja summaa kr kr r r k k Seuraavaks laskemme, mte suur alkupääoma ptää tllle tallettaa. jakso alussa, jotta pääoma (lma muta talletuksa) ols. jakso lopussa el sama ku jaksollste talletuste tapauksessa. Tarvttava alkupääoma saadaa dskottaamalla loppupääoma. jakso alkuu el v k Saomme, että o jaksollse maksusarja arvo. jakso lopussa el. jakso loppuu prologotu arvo. Vastaavast o jaksollse maksusarja arvo. jakso alussa el. jakso alkuu dskotattu arvo. Merktää 4

2 42 s prologottekjä a = jakso lopussa suortettuje yhtäsuurte maksuje dskottaustekjä = jakso lopussa suortettuje yhtäsuurte maksuje jollo pääoma. jakso lopussa = k s maksusarja ykyarvo = k a Esmerkk.5.: Asakas akoo säästää vuode aja ste, että jokase vuode lopussa hä tallettaa säästötllle sama suuruse rahamäärä k. Asakkaa tavote o, että. vuode lopussa tlllä o mk. Mte suur tulee kertatalletukse k olla, ku tllle maksettava korko o % p.a.? Nyt ss, mk ja,. k s k s k, k mk = 6 274,55 mk, Auteettlaa. Asakas laaa paksta summa ja kuolettaa laa maksamalla kertaa samasuuruse kuoletuserä, auteet k. Auteett maksetaa aa korkojakso lopussa ja se osa auteetsta, joka ylttää koro, lyhetää laaa. Stä mukaa ku korko väheee kasvaa lyheykse osuus kuoletuserästä. Seuraava taulukko kuvaa auteettlaa hotoa, ku korkokata o ja korkotekjä r 42

3 43 korkojakso laa määrä jakso alussa korko lyheys laa määrä jakso lopussa k k r k 2 r k k 3 2 r k 2 k k r k 2 k r k el korkojakso laa määrä jakso lopussa r k 2 2 r k r rk k r2 k r r k rk k 2 r k r r k r k rk k r r k r Laa tulee kuoletettua jakso kuluessa, jos r r r r k k r r r r k r k Saamme seuraava tulokse Jos auteettlaa määrä o, korkojaksoje lukumäärä ja korkokata, mssä kuoletuserä = k c, 43

4 44 kuoletuskerro c a Esmerkk.5.2: Asakas ottaa mk: auteettlaa. Laa-aka o vuotta ja korko %. Mkä o kuoletuserä, ku laaa lyheetää kerra vuodessa? k c,,, mk = 6 274,55 mk Esmerkk.5.3: Lyheetää edellse esmerk laaa kuukaustta. Sllo korkojaksoja o ja korkokata o,. Ss,, k c mk = 32,5 mk, Esmerkk.5.4: Asakas laaa paksta mk ja sop maksavasa laa korkoee vuode kuluttua (korko %). Selvytyäksee laa maksusta hä alkaa välttömäst säästää. Hä avaa tl (joka korko o %) ja alkaa tallettaa kuukaustta tllle tasaerä k ste, että vuode kuluttua hä kasvaeella pääomalla maksaa laa pos. Määrtä k. Merktää laa määrää :lla. orkojaksoje määrä o ja kuukausttae korkokata o,. Esmerk.5. mukasest ks r k r k s,,, mk = 32,5 mk 44

5 45 Osamaksukauppa. Tarkastellaa kauppaa, jossa asakas ostaa tavara, joka käteshta o H. auppas ja asakas sop, että kaupatekohetkellä suortetaa käsraha h ja se jälkee kertaa kuukaude väle osamaksuerä k. Vuotue mellskorko o p%. Peraatteessa eräs tapa hotaa käytäö järjestelyt o seuraava. auppas ottaa paksta osamaksuvelkaa H h vastaava auteettlaa, ja asakas kuolettaa laa osamaksulla. Ss k c c H h p, mssä äytäössä laa järjestävä rahotusyhtö per osamaksulsä m, joka ssältää korvaukse vakuusprovsosta (. 3-5 % osamaksuvelasta), luottorskstä (. - 2 % osamaksuvelasta), luottoteto-, lomake-, ym. kustaukset sekä lkevahtovero. Ss k c ( m ) c H h m Esmerkk.5.5: Asakas ostaa auto, joka käteshta ols 4 mk, osamaksulla ste, että käsraha o 2%, laa-aka 8 kk ja osamaksulsä 2 mk. Vuotue mellskorko o 6 % ja osamaksut ja korko suortetaa kuukaustta. äsraha o ss h, 2 4 mk = 8 mk. Osamaksulla kuoletettava laa määrä o H hm 4 mk 8 mk + 2 mk = 34 mk. Osamaksuerä (korkojaksoja) o 8 kappaletta ja korkokata o 6,. k c ( H h m) c, 34 mk 8 6,6,6 8,6 8 34mk=237,5mk Esmerkk.5.6: Asakas ostaa veee maksae käsraha 4 mk ja kuukaustta osamaksuerä 4 mk vuode aja. Osamaksulsä o 2 mk ja vuotue mellskorko o 5 %. Laske käteshta. k c H h m H k hm c 45

6 46,5 H 4mk 4 mk mk=,5,5 8 3,66 mk Yhteeveto: k k k k k k k k k s k a k k c s a c prologottekjä a dskottaustekjä kuoletustekjä 46

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 206 Talousmatematiika perusteet, ORMS030 5. harjoitus, viikko 7 5. 9.2.206 R ma 0 2 F455 R5 ti 0 2 F9 R2 ma 4 6 F455 R6 to 2 4 F455 R3 ti 08 0 F455 R7 pe 08 0 F455 R4 ti 2 4 F455

Lisätiedot

Raja-arvot. Osittaisderivaatat.

Raja-arvot. Osittaisderivaatat. 1 MAT-13440 LAAJA MATEMATIIKKA 4 Tamperee teklle ylopsto Rsto Slveoe Kevät 2010 Luku 3 Raja-arvot Osttasdervaatat 1 Fuktode raja-arvot Tarkastelemme fuktota f : A, jode määrttelyjoukko A T Muuttujat ovat

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

Jokaisesta talletetusta Smk. 1,500: maksetaan. vana syistä, joiden yhtiö katsoo olevan hänen mää« Jokainen henkilö, joka on täyttänyt 21 vuotta

Jokaisesta talletetusta Smk. 1,500: maksetaan. vana syistä, joiden yhtiö katsoo olevan hänen mää« Jokainen henkilö, joka on täyttänyt 21 vuotta >Ai,i4éfow f Vaikka yhtiö koettaa estää petoksia, ei se pidä itseään vastuunalaisena, jos maksu tapahtuu henkilöille, jotka esittävät tämän sopimuksen, vaikka eivät olekaan valtuutettuja siihen, ellei

Lisätiedot

Pihtiputaan Lämpö ja Vesi Oy:lle myönnetyn pääomalainan lainan muuttaminen sekä yhtiön kunnalle maksamat muut korvaukset

Pihtiputaan Lämpö ja Vesi Oy:lle myönnetyn pääomalainan lainan muuttaminen sekä yhtiön kunnalle maksamat muut korvaukset Kunnanhallitus 110 06.06.2016 Pihtiputaan Lämpö ja Vesi Oy:lle myönnetyn pääomalainan lainan muuttaminen sekä yhtiön kunnalle maksamat muut korvaukset 406/220/2016 (367/220/2015) Kunnanhallitus 15.06.2015

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 04 Talousmatematiika perusteet, ORMS030 6. harjoitus, viikko 0 3. 7.3.04 R ma 0 D5 R5 ti 4 6 C09 R ma 4 6 D5 R6 to 4 C09 R3 ti 08 0 D5 R7 pe 08 0 D5 R4 ti 4 C09 R8 pe 0 D5. Laske

Lisätiedot

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.

Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352. Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun

Lisätiedot

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x)

Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Päätöksentekijä on riskipakoinen, jos hyötyfunktio on konkaavi. a(x) = U (x) U (x) Arvo (engl. value) = varmaan attribuutin tulemaan liittyvä arvo. Hyöty (engl. utility) = arvo, jonka koemme riskitilanteessa eli, kun teemme päätöksiä epävarmuuden (todennäköisyyksien) vallitessa. Vrt.

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset

KANSANTALOUSTIETEEN PÄÄSYKOE : Mallivastaukset KANSANTALOUSTIETEEN PÄÄSYKOE.6.016: Mallivastaukset Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti Pohjola, Taloustieteen oppikirja, 014] sivuihin. (1) (a) Julkisten menojen kerroin (suljetun

Lisätiedot

Vaihdettavat valuutat klo 15.30

Vaihdettavat valuutat klo 15.30 HAAGA-HELIA HARJOITUS 4/Ratkaisut s. / 6 Liike-elämän matematiikka Syksy 20 Käytä tehtävissä tarvittaessa alla olevia valuuttakursseja. Kurssit ilmaisevat yhden euron arvon kyseisessä valuuttayksikössä.

Lisätiedot

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A:

A = B = T = Merkkijonon A osamerkkijono A[i..j]: n merkkiä pitkä merkkijono A: Merkkjonot (strngs) n merkkä ptkä merkkjono : T T T G T n = 18 kukn merkk [], mssä 0 < n, kuuluu aakkostoon Σ, jonka koko on Σ esm. bttjonot: Σ = {0,1} ja Σ = 2, DN: Σ = {,T,,G} ja Σ = 4 tetokoneen aakkosto

Lisätiedot

10.8 Investoinnin sisäinen korkokanta

10.8 Investoinnin sisäinen korkokanta 154 108 Investoinnin sisäinen korkokanta Investoinnin sisäinen korkokanta on se laskentakorko, jolla investoinnin nettonykyarvo on nolla Investointi on tuottava (kannattava), jos sen sisäinen korkokanta

Lisätiedot

Prosenttilaskuja osakeseurannan avulla

Prosenttilaskuja osakeseurannan avulla Prosenttilaskuja osakeseurannan avulla Miten sijoittamalla voi ansaita rahaa? Nyt pääset tutustumaan sijoitusmaailman saloihin ja testaamaan eri sijoitusmuotoja! Aloitus Ratkaiskaa pareittain seuraavat

Lisätiedot

OKON KORKO 12 VI/2004 LAINAKOHTAISET EHDOT

OKON KORKO 12 VI/2004 LAINAKOHTAISET EHDOT OKON KORKO 12 VI/2004 LAINAKOHTAISET EHDOT Nämä lainakohtaiset ehdot muodostavat yhdessä Op-joukkovelkakirjaohjelman 6.5.2004 listalleottoesitteen yleisten ehtojen kanssa tämän lainan ehdot. Yleisiä ehtoja

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1]

Lähdemateriaalina käytetty Pertti Louneston kirjaa Clifford Algebras and spinors [1] Lähdmatraala kättt Prtt Lousto kraa Clfford Algbras ad spors [] Krtausta Clfford algbra määrtllää algbraks kvadraattsll vktoravaruudll (sm. skalaartulolla. Clfford algbra oka alko vodaa sttää algbra katavktord

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT

COULOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT COUOMBIN VOIMA JA SÄHKÖKENTTÄ, PISTEVARAUKSET, JATKUVAT VARAUSJAKAUMAT SISÄTÖ: Coulombn voma Sähkökenttä Coulombn voman a sähkökentän laskemnen pstevaaukslle Jatkuvan vaauksen palottelemnen pstevaauksks

Lisätiedot

RAHOITUSTARKASTUS Annettu 18.12.2008 Korvaa - Voimassa 1.1.2009

RAHOITUSTARKASTUS Annettu 18.12.2008 Korvaa - Voimassa 1.1.2009 PP01 PP01 KOROT Luokittelutekijät Kantaerä Korko, % Rivino Tno 05 10 05 9 Luottojen keskikorko J030000, Kr 10 10 9 Talletusten keskikorko K02 15 0 Tuottavan pääoman keskikorko - 20 0 Kuluttavan pääoman

Lisätiedot

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4

Lohkoasetelmat. Lohkoasetelmat. Lohkoasetelmat: Mitä opimme? Lohkoasetelmat. Lohkoasetelmat. Satunnaistettu täydellinen lohkoasetelma 1/4 TKK (c) lkka Melln (005) Koesuunnttelu TKK (c) lkka Melln (005) : Mtä opmme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Mten varanssanalyysssa tutktaan yhden tekän vakutusta vastemuuttujaan, kun

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Kompleksilukujen alkeet

Kompleksilukujen alkeet Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi

Lisätiedot

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN

MTTTP1 SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN MTTTP SELITYKSIÄ JA ESIMERKKEJÄ KAAVAKOKOELMAN KAAVOIHIN LIITTYEN Aesto kaavoje () (3), (9) ja () esmerkkeh Lepakot pakallstavat hyötesä lähettämällä korkeataajusta äätä Ne pystyvät pakallstamaa hyöteset

Lisätiedot

Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa

Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa Harjoituksia 9 Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa 1. Kirjoita yhtälö ja ratkaise x. a) lukujen x ja 6 summa on yhtä suuri kuin lukujen x ja 4 tulo. b) Kun luku x kerrotaan kolmella

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

3. Datan käsittely lyhyt katsaus

3. Datan käsittely lyhyt katsaus 3. Datan kästtel lht katsaus Havatsevan tähtteteen peruskurss I, luento..0 Thomas Hackman HTTPK I, kevät 0, luento 3 3. Datan kästtel Ssältö Tähtteteellsten havantojen vrheet Korrelaato Funkton sovtus

Lisätiedot

Vellamonkodit Oy:n järjestely. Liiketoimintajaosto

Vellamonkodit Oy:n järjestely. Liiketoimintajaosto Vellamonkodit Oy:n järjestely Liiketoimintajaosto 31.5.2016 Vellamonkodit Oy:n tase Omistus kaupunki 13,98% (päiväkoti) ja Kotilinnasäätiö 86,02% (asuinrakennus) Taseen loppusumma 5,9 milj. euroa, josta

Lisätiedot

Suomen kielessä on 6 verbityyppiä:

Suomen kielessä on 6 verbityyppiä: Suomen kielessä on 6 verbityyppiä: 1 nukkua itkeä lukea nauraa seisoa 2 vokaalia syödä juoda imuroida uida 2 3 -da -dä purra mennä tulla nousta -ra -na -la -sta 4 haluta herätä karata 1 vokaali & -ta -tä

Lisätiedot

Asunto Oy Vantaan Kaneli Tikkurilantie 35,01370 Vantaa Asunto Oy Vantaan Kaneli sijaitsee omalla tontilla.

Asunto Oy Vantaan Kaneli Tikkurilantie 35,01370 Vantaa Asunto Oy Vantaan Kaneli sijaitsee omalla tontilla. Asunto Oy Vantaan Kaneli Tikkurilantie 35,01370 Vantaa Asunto Oy Vantaan Kaneli sijaitsee omalla tontilla. MYYNTIHINTALUETTELO pvm 26.1.2015 Hinnat voimassa toistaiseksi Päivitetty 4.1.2016 Huoneisto tyyppi

Lisätiedot

Klicka här, skriv ev. Undertitel

Klicka här, skriv ev. Undertitel Klicka här, skriv ev. Undertitel Vanhempainraha on vanhemmille maksettava korvaus, jotta he voisivat töissä olon sijaan olla kotona lastensa kanssa. Tätä korvausta maksetaan yhteensä 480 päivältä lasta

Lisätiedot

PENNO Selvitä rahatilanteesi

PENNO Selvitä rahatilanteesi PENNO Selvitä rahatilanteesi TIEDÄTKÖ, KUINKA PALJON SINULLA ON RAHAA KÄYTÖSSÄSI? Kuuluuko arkeesi taiteilu laskujen ja välttämättömien menojen kanssa? Tiedätkö, mihin rahasi kuluvat? Tämän Penno-työkirjan

Lisätiedot

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut

Mat /Mat Matematiikan peruskurssi C3/KP3-I Harjoitus 2, esimerkkiratkaisut Harjotus, esmerkkratkasut K 1. Olkoon f : C C, f(z) z z. Tutk, mssä pstessä f on dervotuva. Ratkasu 1. Jotta funkto on dervotuva, on sen erotusosamäärän f(z + ) f(z) raja-arvon 0 oltava olemassa ja ss

Lisätiedot

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0.

1 0 2 x 1 a. x 1 2x c b 2a c a. Alimmalta riviltä nähdään että yhtälöyhmällä on ratkaisu jos ja vain jos b 3a + c = 0. BM20A5800 - Funktot, lneaaralgebra, vektort Tentt, 26.0.206. (a) Krjota yhtälöryhmä x + 2x 3 = a 2x + x 2 + 5x 3 = b x x 2 + x 3 = c matrsmuodossa Ax = b ja ratkase x snä erkostapauksessa kun b = 0. Mllä

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 kevät 2017 Talousmatematiika perusteet, ORMS1030 Opettaja: Matti Laaksoe A1. välikoe torstaia 16.2.2017 A Ratkaise 3 tehtävää. Kokeessa saa olla mukaa laski ja taulukkokirja (MAOL tai vastaava). Ku teet

Lisätiedot

HÄMEENLINNAN VERKATEHDAS, PAVILJONKI ALUSTAVA LUONNOS VE-2

HÄMEENLINNAN VERKATEHDAS, PAVILJONKI ALUSTAVA LUONNOS VE-2 HÄ VRKHD, PVJK V V-2 JK RKKHD Y P R 3 J 1 H K P + 3 5 8 ( ) 9 2 5 2 2 7 F + 3 5 8 ( ) 9 2 5 2 2 7 1 WWWJKF V 5 K R V 4 R P V 395 84 36 425 V 6 D 45 615 R 6 63 25 3 6 65 67 HPH 66 PÄ Ä Ä 69 JK V 3 6 7 7

Lisätiedot

Palauta hakemus liitteineen osoitteella: Lindorff Oy Back Office, Vapaaehtoiset velkajärjestelyt PL Turku. Postinumero ja postitoimipaikka

Palauta hakemus liitteineen osoitteella: Lindorff Oy Back Office, Vapaaehtoiset velkajärjestelyt PL Turku. Postinumero ja postitoimipaikka 2017 1 / 5 Selvitämme mahdollisuudet Lindorffin olevien velkojen vapaaehtoiseen järjestelyyn hakemuksessa annettujen tietojen perusteella. Lähetämme hakemuksen saavuttua vastaanottoilmoituksen, jossa kerromme

Lisätiedot

KGU kannassa omaisuuden hallinta moduuli on valmiiksi asennettu.

KGU kannassa omaisuuden hallinta moduuli on valmiiksi asennettu. 1 Investointien hallinta ja poistot Investointien (esimerkiksi koneet ja laitteet, maa-alueet ja kiinteistöt) hallinta Odoo kirjanpidossa tehdään "Omaisuuden hallinta" moduulin alaisuudessa. Siellä voidaan

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot

Smilehouse Workspace API 15 ja 16 maksumoduulin asennusohje Versio 1.2

Smilehouse Workspace API 15 ja 16 maksumoduulin asennusohje Versio 1.2 Laskulla ja Osamaksulla Smilehouse Workspace API 15 ja 16 maksumoduulin asennusohje Versio 1.2 asennusohje 2 1. JOUSTORAHAN EDUT VERKKOKAUPPIAALLE... 3 2. KÄYTTÖÖNOTTO VERKKOKAUPPAAN... 3 3. JOUSTORAHAN

Lisätiedot

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k.

T p = 0. λ n i T i B = Käytetään kohdan (i) identiteetin todistamiseen induktiotodistusta. : Oletetaan, että väite on totta, kun n = k. Olkoot A R n n ja T R n n sten, että on olemassa ndeks p N jolle T p = Tällästä matrsa kutsutaa nlpotentks Näytä, että () () () Olkoot Määrtä matrs B n (λi + A) n = (λi + T ) n = B = n mn n,p ( ) n λ n

Lisätiedot

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol.

. g = 0,42g. Moolimassat ovat vastaavasti N 2 :lle 28, 02g/ mol ja typpiatomille puolet tästä 14, 01g/ mol. LH-1 Kaasusälö ssältää 1, g typpeä 1800 K lämpötlassa Sälön tlavuus on 5,0 l Laske pane sälössä ottamalla huomoon, että tässä lämpötlassa 30 % typpmolekyylestä, on hajonnut atomeks Sovella Daltonn laka

Lisätiedot

Toimitettaessa verotusta vuodelta 2004 voidaan todeta, että yhtiön kirjanpidon mukainen voitto on 250 000 i. Lisäksi todetaan seuraavaa:

Toimitettaessa verotusta vuodelta 2004 voidaan todeta, että yhtiön kirjanpidon mukainen voitto on 250 000 i. Lisäksi todetaan seuraavaa: OIKEUSTIETEELLINEN TIEDEKUNTA FINANSSIOIKEUS Julkisoikeuden laitos Aineopinnot OTK, ON täydennystentti 2.12.2004 Vastaukset kysymyksiin 1, 2, 3a ja 3b eri arkeille. Kysymykseen 4 vastataan erilliselle

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Kymenlaakson ammattikorkeakoulussa on käytössä BasWaren TEMmatkanhallintajärjestelmä.

Kymenlaakson ammattikorkeakoulussa on käytössä BasWaren TEMmatkanhallintajärjestelmä. 1 TYÖ-, KOULUTUS- JA ULKOMAAN MATKOJA KOSKEVA TEM-MATKANHALLINTAJÄRJESTELMÄ Yleistä Kymenlaakson ammattikorkeakoulussa on käytössä BasWaren TEMmatkanhallintajärjestelmä. Henkilöstön kaikki matkasuunnitelmat

Lisätiedot

8 Joukoista. 8.1 Määritelmiä

8 Joukoista. 8.1 Määritelmiä 1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä

Lisätiedot

Perustaso Fixed limit Kootut ohjeet

Perustaso Fixed limit Kootut ohjeet Perustaso Fixed limit Kootut ohjeet 1 Perusteet mikä on positiosi pokeripöydässä? Blindit Myöhäinen - LP Keski - MP Varhainen - EP 2 Ennen loppia Aloituskäsitaulukko erittäin vahvat kädet: AA, KK, QQ /

Lisätiedot

Ehdotus NEUVOSTON ASETUS

Ehdotus NEUVOSTON ASETUS EUROOPAN KOMISSIO Bryssel 16.9.2015 COM(2015) 463 final 2015/0213 (NLE) Ehdotus NEUVOSTON ASETUS yhdenteentoista Euroopan kehitysrahastoon sovellettavasta varainhoitoasetuksesta 2 päivänä maaliskuuta 2015

Lisätiedot

SISÄLLYSLUETTELO. Palkka- ja palkkioselvitys...3

SISÄLLYSLUETTELO. Palkka- ja palkkioselvitys...3 PALKKA- JA PALKKIOSELVITYS 2015 SISÄLLYSLUETTELO Palkka- ja palkkioselvitys...3 Tämä sivu on tulostettu HKScanin verkkovuosikertomuksesta 2015. Lue kertomus kokonaisuudessaan osoitteesta vuosikertomus2015.hkscan.com.

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

PÄÄKAUPUNKISEUDUN KAUPPAKIRJA Sivu 1/6 JUNAKALUSTO OY

PÄÄKAUPUNKISEUDUN KAUPPAKIRJA Sivu 1/6 JUNAKALUSTO OY PÄÄKAUPUNKISEUDUN KAUPPAKIRJA Sivu 1/6 KAUPPAKIRJA 1. Sopijapuolet Ostajat: (1) Helsingin kaupunki Osoite: Pohjoisesplanadi 11 13, 00170 Helsinki / PL 1, 00099 Helsingin kaupunki (jäljempänä Helsinki)

Lisätiedot

Rekursioyhtälön ratkaisu ja anisogamia

Rekursioyhtälön ratkaisu ja anisogamia Rekursioyhtälö ratkaisu ja aisogamia Eeva Vilkkumaa.0.2008 Rekursioyhtälö ratkaisu (Liite I) Edellie esitelmä: +/m -koiraide (p) ja -aaraide (P) osuus populaatiossa kehittyy rekursiivisesti: p P + + a

Lisätiedot

PK-YRITYKSEN RAHOITUSINSTRUMENTTIEN SUUNNITTELU. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN RAHOITUSINSTRUMENTTIEN SUUNNITTELU. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN RAHOITUSINSTRUMENTTIEN SUUNNITTELU KTT, DI TOIVO KOSKI elearning Community Ltd Yrityksen rahoituslähteet 1. Oman pääomanehtoinen rahoitus Tulorahoitus Osakepääoman korotukset 2. Vieraan pääomanehtoinen

Lisätiedot

HE 174/1995 vp ESITYKSEN PÄÄASIALLINEN SISÄLTÖ PERUSTELUT

HE 174/1995 vp ESITYKSEN PÄÄASIALLINEN SISÄLTÖ PERUSTELUT HE 174/1995 vp Hallituksen esitys Eduskunnalle laeiksi palkkaturvalain 2 ja :n sekä merimiesten palkkaturvalain 2 ja :n muuttamisesta ESITYKSEN PÄÄASIALLINEN SISÄLTÖ Esityksessä ehdotetaan muutettavaksi

Lisätiedot

Autoveron vientipalautuskäytännöt muuttuvat miten uutta lakia sovelletaan? Auto 2016 /

Autoveron vientipalautuskäytännöt muuttuvat miten uutta lakia sovelletaan? Auto 2016 / Autoveron vientipalautuskäytännöt muuttuvat miten uutta lakia sovelletaan? Auto 2016 / 17.11.2016 Autoverolain muutos 1.1.2017 Laki autoverolain muuttamisesta (561/2016) Vientipalautus (säännösmuutos)

Lisätiedot

Tätä ohjetta sovelletaan ennen alkaneisiin työsuhteisiin. Tampereen työllistämistuen myöntämisen edellytykset työnantajalle

Tätä ohjetta sovelletaan ennen alkaneisiin työsuhteisiin. Tampereen työllistämistuen myöntämisen edellytykset työnantajalle Tätä ohjetta sovelletaan ennen 1.10.2016 alkaneisiin työsuhteisiin. TAMPEREEN TYÖLLISTÄMISTUKI Tampereen työllistämistuen tavoitteena on edistää yksilöllisiä erityispalveluita tarvitsevien työnhakijoiden

Lisätiedot

REITTIPOHJAINEN KÄYTTÖOIKEUSSOPIMUS NRO

REITTIPOHJAINEN KÄYTTÖOIKEUSSOPIMUS NRO LIITE 1 KÄYTTÖOIKEUSSOPIMUS Uudenmaan elinkeino-, liikenne- ja ympäristökeskus REITTIPOHJAINEN KÄYTTÖOIKEUSSOPIMUS NRO 1. Sopijapuolet Tilaaja: Uudenmaan elinkeino-, liikenne- ja ympäristökeskus PL 36,

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Tilinpäätösohjeeseen vuodelle 2001 liittyviä esimerkkejä

Tilinpäätösohjeeseen vuodelle 2001 liittyviä esimerkkejä Tilinpäätösohjeeseen vuodelle 2001 liittyviä esimerkkejä 1 Pitkäaikainen saaminen 2 2 Lyhytaikainen saaminen 3 3 Pitkäaikainen velka 4 4 Lyhytaikainen velka 5 5 Matkaennakko 6 6 Talousarviotalouden ulkopuolelta

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

Kunnanhallitus PERHEHOIDON JA TUKIPERHEIDEN HOITOPALKKIOT SEKÄ KULU- JA KÄYNNISTÄMISKORVAUKSET VUODELLE 2017

Kunnanhallitus PERHEHOIDON JA TUKIPERHEIDEN HOITOPALKKIOT SEKÄ KULU- JA KÄYNNISTÄMISKORVAUKSET VUODELLE 2017 Kunnanhallitus 316 12.12.2016 PERHEHOIDON JA TUKIPERHEIDEN HOITOPALKKIOT SEKÄ KULU- JA KÄYNNISTÄMISKORVAUKSET VUODELLE 2017 Kunnanhallitus 12.12.2016 316 Perhehoitopalkkion määrä on tarkistettava kalenterivuosittain

Lisätiedot

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24

1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 SISÄLTÖ 1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN 7 1.1 Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 1.2 Yhtälöitä 29 Epäyhtälö 30 Yhtälöpari 32 Toisen

Lisätiedot

Kaupunginhallitus liite nro 11 (1/10) 1 SOPIMUS KORVAUKSEN MAKSAMISESTA LUONNOS Osapuolet. Sopimuksen tausta ja tarkoitus

Kaupunginhallitus liite nro 11 (1/10) 1 SOPIMUS KORVAUKSEN MAKSAMISESTA LUONNOS Osapuolet. Sopimuksen tausta ja tarkoitus Kaupunginhallitus 17.8.2015 liite nro 11 (1/10) 1 SOPIMUS KORVAUKSEN MAKSAMISESTA LUONNOS 7.8.2015 Osapuolet 1. Äänekosken kaupunki Hallintokatu 4, 44100 Äänekosken 2. Rakennusliike Porrokki Oy (Y-tunnus:

Lisätiedot

Vuosikatsaus [tilintarkastamaton]

Vuosikatsaus [tilintarkastamaton] Vuosikatsaus 1.1. 31..20 [tilintarkastamaton] Vahvaa etenemistä laajalla rintamalla Neljännen vuosineljänneksen liikevaihto+korkotuotot nousivat 24.6% edellisvuodesta ja olivat EUR 5.8m (EUR 4.7m /20)

Lisätiedot

OSTOLIIKENTEEN EHDOT KOULULAISKULJETUKSET

OSTOLIIKENTEEN EHDOT KOULULAISKULJETUKSET KOULULAISKULJETUKSET Ostoliikennesopimuksen LIITE OSTOLIIKENTEEN EHDOT KOULULAISKULJETUKSET Nämä ehdot liitetään ostoliikennesopimukseen. Sopimuksessa voidaan poiketa näistä ehdoista. Hoidettaessa sopimussuhteeseen

Lisätiedot

Annettu Korvaa Voimassa. Saamistodistusten arvonmuutos; euro- ja muut kuin euromääräiset erät (valuutoittain)

Annettu Korvaa Voimassa. Saamistodistusten arvonmuutos; euro- ja muut kuin euromääräiset erät (valuutoittain) VIRATI VIRANOMAISYHTEISTYÖRYHMÄ (Rahoitustarkastus/Suomen Pankki/Tilastokeskus) Annettu Korvaa Voimassa 4.10.2004 1.1.2001 31.12.2007 alkaen KORKORISKI R Frekvenssi: Vastaustarkkuus: Palautusviive: Määrittelyistä

Lisätiedot

PALKKA- JA PALKKIOSELVITYS. F-Secure Oyj

PALKKA- JA PALKKIOSELVITYS. F-Secure Oyj PALKKA- JA PALKKIOSELVITYS F-Secure Oyj 4. huhtikuuta 2016 Sisällys Hallituksen ja yhtiön johtoryhmän jäsenten palkitseminen... 3 Hallitus... 3 Hallituksen palkitseminen... 3 Toimitusjohtaja... 3 Johtoryhmän

Lisätiedot

Toimituksen laskuttaminen erissä

Toimituksen laskuttaminen erissä 1 Toimituksen laskuttaminen erissä Johdanto Laskutus voidaan toimitusprojekteissa sopia monella eri tavalla: Ennakkoon maksetut toimitukset ( esim. nettikauppa), Ennakkomaksu ( käsiraha), ja loppusumma

Lisätiedot

SÄÄNNÖT [1] Sijoitusrahasto. Rahaston voimassa olevat säännöt on vahvistettu 12.1.2016. Säännöt ovat voimassa 1.3.2016 alkaen.

SÄÄNNÖT [1] Sijoitusrahasto. Rahaston voimassa olevat säännöt on vahvistettu 12.1.2016. Säännöt ovat voimassa 1.3.2016 alkaen. SÄÄNNÖT [1] Sijoitusrahasto Rahaston voimassa olevat säännöt on vahvistettu 12.1.2016. Säännöt ovat voimassa 1.3.2016 alkaen. -sijoitusrahaston säännöt Rahaston säännöt muodostuvat näistä rahastokohtaisista

Lisätiedot

K3K M2K HHA K3K20 0

K3K M2K HHA K3K20 0 Havainnoija 2753 Ahola Markus Viime laskenta 08.6.2015 klo 4.25-9.47 Lähtöpiste 0500 m koillisnurkasta 500 500 450. 450 400. K3K25 400 350. 350 300. 300 250. 250 200. 200 150. M2K15 150 100. 100 50. HHA2

Lisätiedot

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET

AINEIDEN OMINAISUUKSIIN PERUSTUVA SEOSTEN LUOKITUS JA VAARAA OSOITTAVAT LAUSEKKEET N:o 979 3731 te 2 AINEIDEN OMINAISUUKSIIN ERUSTUVA SEOSTEN UOKITUS JA VAARAA OSOITTAVAT AUSEKKEET JOHDANTO Vaarallsa aneta ssältävä seoksa luokteltaessa ja merkntöjä valttaessa aneden ptosuuksen perusteella

Lisätiedot

2. laskuharjoituskierros, vko 5, ratkaisut

2. laskuharjoituskierros, vko 5, ratkaisut 2. laskuharjoituskierros, vko, ratkaisut Aiheet: Klassinen todennäköisyys, kombinatoriikka, kokonaistodennäköisyys ja Bayesin kaava D1. Eräässä maassa autojen rekisterikilpien tunnukset ovat muotoa XXXXNN,

Lisätiedot

Pankkitalletukset ja rahamarkkinasijoitukset. Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry

Pankkitalletukset ja rahamarkkinasijoitukset. Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry Pankkitalletukset ja rahamarkkinasijoitukset Henri Huovinen, analyytikko Osakesäästäjien Keskusliitto ry Korkosijoitukset Korkosijoituksiin luokitellaan mm. pankkitalletukset, rahamarkkinasijoitukset,

Lisätiedot

Tilastolliset menetelmät: Lineaarinen regressioanalyysi

Tilastolliset menetelmät: Lineaarinen regressioanalyysi Tlastollset meetelmät Leaare regressoaalyys Tlastollset meetelmät: Leaare regressoaalyys 3. Tlastolle rppuvuus ja korrelaato 4. Johdatus regressoaalyys 5. Yhde selttäjä leaare regressomall 6. Ylee leaare

Lisätiedot

Sähköiset tuloveroilmoitukset 2014. Ohjelmistotalopäivä 23.5.2014 Seija Karevaara

Sähköiset tuloveroilmoitukset 2014. Ohjelmistotalopäivä 23.5.2014 Seija Karevaara Sähköiset tuloveroilmoitukset 2014 Ohjelmistotalopäivä 23.5.2014 Seija Karevaara Yhteisöjen ilmoitukset 6, 6C, 6B, 4 Ilmoittaminen on jo käynnissä hiljalleen 6B 1117, 6C 13, 4 16, 62 824 Kevään esitäytöstä

Lisätiedot

Galerkin in menetelmä

Galerkin in menetelmä hum.9.3 Galerkn n menetelmä Galerknn menetelmän soveltamnen e ole rajottunut van ongelmn, jotka vodaan pukea sellaseen varaatomuotoon, joka on seurauksena funktonaaln mnmomsesta, kuten potentaalenergan

Lisätiedot

Kauppa kulutuskäyttäytymisen murroksessa. Talous- ja rahoitusjohtaja Jukka Erlund 11/2014

Kauppa kulutuskäyttäytymisen murroksessa. Talous- ja rahoitusjohtaja Jukka Erlund 11/2014 Kauppa kulutuskäyttäytymisen murroksessa Talous- ja rahoitusjohtaja 11/2014 Kesko Liikevaihto 9,2 mrd - K-ryhmän myynti 11,4 mrd 2 000 kauppaa kahdeksassa maassa Yli 1,3 milj. asiakaskäyntiä joka päivä

Lisätiedot

4 Kysyntä, tarjonta ja markkinatasapaino

4 Kysyntä, tarjonta ja markkinatasapaino 4 Kysyntä, tarjonta ja markkinatasapaino (Taloustieteen oppikirja, luku 4) Opimme tässä ja seuraavissa luennoissa että markkinat ovat hyvä tapa koordinoida taloudellista toimintaa (mikä on yksi taloustieteen

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

Verotusmenettelyjen uudistus laajenee ennakonkantoon

Verotusmenettelyjen uudistus laajenee ennakonkantoon Verotusmenettelyjen uudistus laajenee ennakonkantoon Ennakonkanto Uusia säännöksiä sovellettaisiin ensimmäisen kerran yhteisön verovuodelta 2017 toimitettavassa verotuksessa, ja ennakon määräämistä koskevia

Lisätiedot

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus

Kulutus. Kulutus. Antti Ripatti. Helsingin yliopisto, HECER, Suomen Pankki Antti Ripatti (HECER) Kulutus Kulutus Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 13.11.2013 Antti Ripatti (HECER) Kulutus 13.11.2013 1 / 11 Indifferenssikäyrät ja kuluttajan teoria Tarkastellaan edustavaa kotitaloutta.

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

8. laskuharjoituskierros, vko 11, ratkaisut

8. laskuharjoituskierros, vko 11, ratkaisut Mat-2.091 Sovellettu todeäköisyyslasku, kevät -05 Heliövaara, Palo, Melli 8. laskuharjoituskierros, vko 11, ratkaisut D1. Oletetaa, että havaiot X i, i = 1, 2,..., 100 muodostavat yksikertaise satuaisotokse

Lisätiedot

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen

Rahastoonsiirtovelvoitteeseen ja perustekorkoon liittyvät laskentakaavat. Soveltaminen SU/Vakuutusmatemaattnen ykskkö 0.4.05 Rahastoonsrtovelvotteeseen ja perustekorkoon lttyvät laskentakaavat Soveltamnen. Rahastosrtovelvote RSV. Täydennyskerron b 6 Nätä perusteta sovelletaan täydennyskertomen,

Lisätiedot

Ikäihmisten perhehoidosta maksettavat hoitopalkkiot Varsinais-Suomen kunnissa: 1063,46 /kk 1276,16 /kk. 53,18 /vrk 63,80 /vrk. 26,59 /vrk 31,90 /vrk

Ikäihmisten perhehoidosta maksettavat hoitopalkkiot Varsinais-Suomen kunnissa: 1063,46 /kk 1276,16 /kk. 53,18 /vrk 63,80 /vrk. 26,59 /vrk 31,90 /vrk NYT VOIMASSA OLEVAT HOITOPALKKIOT: Ikäihmisten perhehoidosta maksettavat hoitopalkkiot Varsinais-Suomen kunnissa: Palkkioluokka 1 * ikäihmiset: RAVA 16 Palkkioluokka 2 * 1063,46 /kk 1276,16

Lisätiedot

SIJOITUSRAHASTO SELIGSON & CO EURO OBLIGAATIOINDEKSIRAHASTO TILINPÄÄTÖS JA TOIMINTAKERTOMUS

SIJOITUSRAHASTO SELIGSON & CO EURO OBLIGAATIOINDEKSIRAHASTO TILINPÄÄTÖS JA TOIMINTAKERTOMUS SIJOITUSRAHASTO SELIGSON & CO EURO OBLIGAATIOINDEKSIRAHASTO TILINPÄÄTÖS JA TOIMINTAKERTOMUS 1.1. - 31.12.2006 SIJOITUSRAHASTO SELIGSON & CO EURO OBLIGAATIOINDEKSIRAHASTO 1 (8) SISÄLLYSLUETTELO Sivu Toimintakertomus

Lisätiedot

TASEKIRJA VIRPINIEMI GOLF OY

TASEKIRJA VIRPINIEMI GOLF OY TASEKIRJA 31.12.2015 VIRPINIEMI GOLF OY Virpiniemi Golf Oy Y-tunnus 1892969-4 kotipaikka OULU TILINPÄÄTÖS TILIKAUDELTA 01.01.2015 31.12.2015 Sisällys: Sivu Toimintakertomus 1 Tuloslaskelma 2 Tase 3-4 Liitetiedot

Lisätiedot

Yhtiön toiminimi on Nurmijärven Työterveys Oy ja ruotsiksi Arbetshälsan i Nurmijärvi Ab.

Yhtiön toiminimi on Nurmijärven Työterveys Oy ja ruotsiksi Arbetshälsan i Nurmijärvi Ab. YHTIÖJÄRJESTYS 1 Toiminimi Yhtiön toiminimi on Nurmijärven Työterveys Oy ja ruotsiksi Arbetshälsan i Nurmijärvi Ab. 2 Kotipaikka Yhtiön kotipaikka on Nurmijärven kunta. 3 Toimiala Yhtiön toimialana on

Lisätiedot

Kunnille pakolaisten vastaanotosta maksettavat korvaukset

Kunnille pakolaisten vastaanotosta maksettavat korvaukset Kunnille pakolaisten vastaanotosta maksettavat korvaukset 1. Laskennallinen korvaus Alle 7-vuotiaat 6 845 / hlö / vuosi 7 -vuotta täyttäneet 2 300 / hlö / vuosi Maksetaan kolmen vuoden ajan 2. Korvaus

Lisätiedot

Lahjaveroilmoituksen antaa lahjansaaja. Pääsääntöisesti lahjaveroilmoitusta varten ei tarvita liitteitä eikä niitä voi verkkolomakkeella lähettää.

Lahjaveroilmoituksen antaa lahjansaaja. Pääsääntöisesti lahjaveroilmoitusta varten ei tarvita liitteitä eikä niitä voi verkkolomakkeella lähettää. Lahjaveroilmoitus -verkkolomake Täyttöohjeet Lomaketta täyttäessäsi etene järjestyksessä täyttäen kaikki pakolliset valkoiset kentät (*) sekä muut ilmoitettavat tiedot. Harmaisiin kenttiin et voi ilmoittaa

Lisätiedot

Pienimmän neliösumman menetelmä (PNS)

Pienimmän neliösumman menetelmä (PNS) neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1

Lisätiedot

Tuplaa rahasi - ymmärrä 72-sääntö

Tuplaa rahasi - ymmärrä 72-sääntö Tuplaa rahasi - ymmärrä 72-sääntö Kuinka miljonäärin matematiikka toimii TUPLAUS Korkoa korolle ja 72 -sääntö Onko sinulle tuttu tuo 72 sääntö? Katsotaan tuota vähän tarkemmin. Tämän säännön tarkoitus

Lisätiedot

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä.

MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 2016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. MAY1 kokeeseen kertaavia tehtäviä: Jussi Tyni 016 A-osion tehtäviä: Laskinta ei saa käyttää. Taulukkokirja saa olla esillä. 3 1 3 ja 1. Laske lukujen 4 summa b. erotus c. tulo d. osamäärä e. käänteislukujen

Lisätiedot