Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Koko: px
Aloita esitys sivulta:

Download "Epäyhtälöoppia matematiikkaolympialaisten tehtäviin"

Transkriptio

1 Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0

2 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy epäyhtälö (a b + a b + + a b ) (a + a + + a )(b + b + + b ) Epäyhtälö seuraa idetiteetistä (k CauchyLagrage-idetiteetti) (a + a + + a )(b + b + + b ) (a b + a b + + a b ) = (a b a b ) + (a b a b ) + + (a b a b ) 0 Tästä huomataa, että yhtäsuuruus pätee vai jos a /b = a /b = = a /b tai b = b = = b = 0 Esimerkkiä Cauchy epäyhtälö käytöstä todistetaa aritmeettise ja harmoise keskiarvo välie epäyhtälö: positiivisille reaaliluvuille a, a,, a pätee a + a + + a a + a + + a () Vasemmapuoleie lauseke o lukuje a, a,, a aritmeettie keskiarvo ja oikeapuoleie lauseke harmoie keskiarvo Väite seuraa kirjoittamalla Cauchy epäyhtälö luvuille a, a,, a ja /a, /a,, /a eli (a + a + + a )( a + a + + a ) Tämä tarkoittaa myös sitä, että aiaki toie luvuista a +a + +a ja a + a + + a o vähitää luvu suuruie Tehtävä Kaattaa huomata, että ylläolevassa esimerkissä o täysi mahdollista, että molemmat luvuista ovat suurempia kui, ku > Keksi esimerkki! Aritmeettisgeometrie epäyhtälö Kaikille eiegatiivisille luvuille a, a,, a pätee a + a + + a a a a, missä yhtäsuuruus pätee ku a = a = = a Todistetaa tulos iduktiolla Esimmäisessä vaiheessa edetää iduktiolla luvusta m lukuu m+ ja toisessa vaiheessa todistetaa yleie tapaus ku ei ole kakkose potessi

3 Todistus Huomataa aluksi, että a = a, jote epäyhtälö pätee, ku = Lisäksi ( a b) 0 + b ab, a + b ab () Tehdää yt iduktio-oletus, että aritmeettis-geometrie epäyhtälö pätee, ku = m, eli a + a + + a m m a a m a m Osoitetaa, että se pätee myös, ku = m+ Käyttäe epäyhtälöä, saadaa a + a + + a m+ m+ m (a + a + + a m) (a m + + a m a m+) Käyttämällä epäyhtälö oikeaa puolee iduktio-oletusta saadaa m+ (a + a m + + a m) (a m + + a m a m+) a a a m+ Todistukse esimmäie osa o yt valmis Seuraavaksi todistetaa yleie tapaus Merkitää lukuje a, a,, a aritmeettista keskiarvoa â ja valitaa m site, että m > Nyt edellise kohda perusteella a + a + + a = a + a + + a + ( m )â m a m a a â m Jakamalla epäyhtälö lausekkella â m m päädytää epäyhtälöö ( a + a + + a ) m m a a a, joka o yhtäpitävä aritmeettisgeometrise epäyhtälö kassa Aritmeettis-geometrie epäyhtälö todistetaa vielä uudestaa Jesei epäyhtälöllä edempää Epäyhtälö oikeapuoleista lauseketta kutsutaa lukuje a, a,, a geometriseksi keskiarvoksi Todistetaa () uudestaa aritmeettisgeometrisella epäyhtälöllä Voidaa kirjoittaa a + a + + a a a a = ( = a a a ) ( ) a a a Tämä o yhtäpitävää väittee kassa Aritmeettisgeometrista epäyhtälöä sovellettii esi lukuihi a, a,, a ja sitte lukuihi /a, /a,, /a

4 Toisea esimerkkiä osoitetaa, että aiaki toie epäyhtälöistä a a a ( a )( a ) ( a ) pätee, jos a i [0, ] kaikilla i =,,, Vastaoletus o, ettei kumpikaa päde eli a a a > ja ( a )( a ) ( a ) > Kertomalla ämä keskeää päädytää ristiriitaa, sillä aritmeettisgeometrise epäyhtälö ojalla a a a ( a )( a ) ( a ) ( ) a + a + + a + a + a + + a = eli alkuperäie väite pitää paikkasa Tehtävä Todista, että jos a o positiivie reaaliluku, ii a + a Tehtävä Todista, että jos a, b ja c ovat positiivisia reaalilukuja, ii a + b b + c a + c abc Jesei epäyhtälö Fuktiota f saotaa koveksiksi välillä [a, b] jos αf(x) + βf(y) f (αx + βy) kaikilla x, y [a, b] sekä epäegatiivisilla α ja β, joilla pätee α + β = Käytäössä tämä siis tarkoittaa, että jos fuktio kuvaajalta yhdistetää jaalla kaksi pistettä (sekatti), ii jaa kulkee koko aja kuvaaja yläpuolella (ks kuva alla) Jesei epäyhtälöksi kutsutaa lausetta, joka mukaa epäyhtälö ( ) x + x + + x f f(x ) + f(x ) + + f(x ) pätee kaikilla x i [a, b] ku f o koveksi Todistus o suhteellise yksikertaie iduktiolla koveksisuude määritelmästä liikkeelle lähtie: Iduktio esimmäie askel o triviaali: Jos =, ii epäyhtälö kertoo aioastaa, että f(x ) f(x ), mikä o ilmeisesti totta

5 f(y) αf(x)+βf(y) f(x) x αx+βy y Toie askel lähtee oletuksesta, että epäyhtälö ( ) x + x + + x k f f(x ) + f(x ) + + f(x k ) k k pätee Käytetää aluksi koveksisuude määritelmää valioilla x = x k+, y = x +x + +x k, α = k k+ ja β = k k+ Nyt ( ) x + x + + x k+ f k + k + f(x k + ) + k ( ) k + f x + x + + x k k Käytetää vielä iduktio-oletusta oikeaa puolee ja saadaa: k + f(x k + ) + k ( ) k + f x + x + + x k f(x ) + f(x ) + + f(x k+ ) k k + Tämä todistaaki väittee Helppo tapa tarkistaa koveksisuus, o tarkistaa, että fuktio toie derivaatta o positiivie f (x) 0 kaikilla x [a, b] (Fuktio esimmäie derivaatta kertoo fuktio kuvaaja tageti kulmakertoime suuruude ja toie derivaatta kertoo kulmakertoime suuruude muutoksesta) Jos toie derivaatta o olla tai egatiivie koko välillä, ii jesei epäyhtälöä voi toki käyttää, mutta silloi epäyhtälömerkki pitää käätää (Mieti miksi tämä toimii äi!) Esimerkki Jesei epäyhtälöllä voi todistaa esimerkiksi aritmeettisgeometrise epäyhtälö Valitaa f(x) = log x Fuktio f o koveksi, sillä f (x) = /x > 0 Kirjoitetaa yt log( x + x + + x ) log x + log x + + log x 4 =

6 = log x x x Aritmeettisgeometrie epäyhtälö seuraa tästä käyttämällä ekspoettifuktiota molempii puolii Tehtävä 4 Olkoot 0 α, β, γ π 4 ja α + β + γ = π Osoita, että si α + si β + si γ 4 Tehtävä 5 Olkoot α, α,, α 0 ja α + α + + α = Olkoo fuktio f(x) koveksi Todista paiotettu Jesei epäyhtälö: f (α x + α x + + α x ) α f(x ) + α f(x ) + α f(x ) Tehtävä 6 Olkoot α, α,, α 0 ja α +α + +α = α Olkoo lisäksi x, x,, x 0 Osoita, että Symmetria α x + α x + α x α α x α x α x α Lauseketta kutsutaa täydellisesti symmetriseksi, ku lausekkee arvo ei muutu, vaikka mikä tahasa kahde muuttuja arvot vaihdetaa keskeää Esimerkkiä täydellisestä symmetriasta (a ja b vaihdettu) ab + bc + ca ba + ac + cb ja esimerkkiä lausekkeesta, jossa ei vallitse täydellie symmetria (taas a ja b vaihdettu) a b + b c + c a b a + a c + c b Jälkimmäisessäki lausekkeessa o tiettyä sääöllisyyttä Sitä kutsutaa kiertosymmetriseksi, sillä jos muuttujie arvot vaihdetaa kiertäe (esimerkiksi a b c a) lausekkee arvo ei muutu Symmetriatarkasteluje idea o, että jos lausekkeessa vallitsee täydellie symmetria, saa vapaasti olettaa muuttujie suuruusjärjestykse Esimerkiksi Schuri epäyhtälö a (a b)(a c) + b (b c)(b a) + c (c a)(c b) 0 kaikille a, b, c, 0 o täydellisesti symmetrie a:, b: ja c: suhtee Siispä voidaa olettaa a b c, mikä riittääki epäyhtälö osoittamiseksi Esimmäie ja kolmas yhteelaskettava ovat positiivisia ja a > b eli vase puoli o positiivie Jos lauseke o kiertosymmetrie, voidaa valita joku muuttujista ja olettaa, että se o arvoltaa suuri (tai piei) Muide muuttujie suuruusjärjestuksestä ei yt voi saoa mitää 5

7 Epäyhtälö a + b + c a b + b c + c a, ku a, b, c 0 () ei ole täydellisesti symmetrie, vaa kiertosymmetrie Voidaa olettaa, että a o suuri luvuista ja kirjoittaa epäyhtälö yhtäpitävästi joka o idettisesti tosi (a c )(a b) + (c b) (c + b) 0, Suuruusjärjestysepäyhtälö Kolmee laatikkoo o laitettu eriarvoisia seteleitä Yhdessä laatikossa o kymmee euro seteleitä, yhdessä viisikymppisiä ja yhdessä satasia Laatikoista tulee valita seteleitä site, että yhdestä laatikosta otetaa kymmee seteliä, toisesta seitsemä ja kolmaesta viisi seteliä Mite valita kaattaa suorittaa, jotta saisi mahdollisimma paljo rahaa? O selvää, että sada euro seteleitä kaattaa ottaa ii paljo kui suiki (kymmee seteliä), sitte viisikymppisiä (seitsemä) ja piei määrä (viisi seteliä) kaattaa jättää pieimmille seteleille Vastaavasti jos o atamassa rahaa samoje säätöje mukaa, kaattaa ataa eite kymmee euro seteleitä ja vähite sada euro seteleitä Kirjoitetaa tämä periaate epäyhtälöide avulla Otetaa käyttöö merkitä lukuje a, a, a ja b, b, b tuloje summalle [ ] a a a = a b b b b + a b + a b (4) Sovitaa, että alarivi lukuje keskiäistä järjestystä voi vaihdella Mite alarivi luvut kaattaa järjestää, jotta lausekkee 4 arvo o mahdollisimma suuri? Suuruusjärjestysepäyhtälö saoo, että lausekkee 4 arvo o mahdollisimma suuri silloi, ku ylä- ja alarivi suuruusjärjestys o sama Toisi saoe, jos b, b, b ovat luvut b, b, b samassa järjestyksessä kui luvut a, a, a, pätee [ ] [ a a a a a a b b b b b b Esimerkiksi euroseteleide tapauksessa [ ] = = o suurempi kui mikää muu järjestykse tulos, ja [ ] = = o pieempi kui mikää muu järjestykse tulos ] 6

8 Suuruusjärjestysepäyhtälö todistamie ei ole vaikeaa Esiäki, jos kaikki luvut ylärivillä tai alarivillä ovat yhtäsuuria, lukuje järjestyksellä ei ole merkitystä Oletetaa siis, että ylä- ja alarivillä o erisuuria lukuja, ja tehdää vastaoletus: lauseke jossa rivie suuruusjärjestys ei ole sama [ ] a a S = a b b b o suurempi kui lauseke, jossa suuruusjärjestystä "korjataa"jostai kohtaa [ ] a a S = a b b b Nyt o siis valittu joko a > a ja b > b tai a < a ja b < b Ristiriitä seuraa helposti siitä, että S S = a b + a b a b a b = (a a )(b b ) < 0 Esimerkki Todistetaa esimerkkiä suuruusjärjestysepäyhtälö käytöstä epäyhtälö () Ratkaisu meee äi Koska luvuilla a, b, c ja a, b, c o sama suuruusjärjestys (jos a b ii a b ) voidaa kirjoittaa [ ] [ ] a b c a b c a b c b c a Tämä o yhtäpitävästi a + b + c a b + b c + c a, ja todistus o valmis Tehtävä 7 Olkoot a, b ja c positiivisia reaalilukuja Todista, että a 4 b + b 4 c + c 4 a a b c + b c a + c a b Tehtävä 8 Olkoot a, b ja c positiivisia reaalilukuja, joilla abc = Todista, että a b + b c + c a Tehtävä 9 Olkoot a, b ja c positiivisia reaalilukuja Todista, että a bc + b ca + c ab a b + b c + c a Tehtävä 0 Olkoot a, b, c > Todista, että a a b b c c a b b c c a 7

9 Toiselaie suuruusjärjestysepäyhtälö Tässä luvussa esiteltävä epäyhtälö o eräälaie suuruusjärjestysepäyhtälö, jota ei pidä kuitekaa suuruusjärjestysepäyhtälöksi kutsua, jottei se sekaau ormaalii suuruusjärjestysepäyhtälöö Olkoo 0 a a a ja 0 b b b Olkoot lisäksi luvut c, c, c luvut b i jossaki järjestyksessä Nyt (a + b )(a + b ) (a + b ) (a + c )(a + c ) (a + c ) Tämä voidaa todistaa hyvi samalla tavalla kui ormaaliki suuruusjärjestysepäyhtälö: Todistus Osoitetaa, että tuloa (a + c )(a + c ) (a + c ) saadaa kasvatettua vaihtamalla lukuje c i ja c j paikkaa, mikäli c i c j ja i j joillaki i ja j Tämä o helpoita tehdä tarkastelemalla tuloje erotusta: (a + c )(a + c ) (a + i + c i ) (a +j + c j ) (a + c ) (a + c )(a + c ) (a + i + c j ) (a + j + c i ) (a + c ) = (a +c )(a +c ) (a i +c i )(a + i +c i+ ) (a j +c j )(a j+ +c j+ ) (a +c ) Koska ((a + i + c i )(a + j + c j ) (a + i + c j )(a + j + c i )) (a +c )(a +c ) (a i +c i )(a + i +c i+ ) (a j +c j )(a j+ +c j+ ) (a +c ) 0, riittää tarkastella erotusta (a + i + c i )(a + j + c j ) (a + i + c j )(a + j + c i ), jotta saadaa osoitettua, että alkuperäie tulo o pieempi kui muokkaukse jälkeie tulo Tämä erotukse tarkastelu o kuiteki hyvi helppoa: (a + i +c i )(a + j +c j ) (a + i +c j )(a + j +c i ) = a + i c j +a + j c i a + i c i a + j c j = (a + i a + j )(c j c i ) 0, ja aito erisuuruus vallitsee, ku c i c j ja a + i a + j Nesbitti epäyhtälö Olkoo ab, b ja c positiivisia Nesbitti epäyhtälö mukaa a b + c + b a + c + 8 c a + b

10 Tämä o helppo todistaa suuruusjärjestysepäyhtälö avulla Vertaillaa lukuja a, b, c ja b+c, a+c ja Huomataa, että b+c [ ] [ ] a b c a b c b+c a+c ja [ a b c Näistä saadaa b+c a b + c + b a + c + c a + b a+c a+b a+b a a + b + a+b b+c c+a ] [ a b c a+c b b + c + b+a c c + a + c+b ] a a + c + b b + a + c c + b =, mikä todistaaki väittee Nesbitt ei ehkä ole tarpeellisi mahdollie epäyhtälö tehtäviä ratkaistaessa Toisiaa kuiteki epäyhtälöstä o iloa Se sijaa meetelmä, jolla Nesbitti epäyhtälö todistetaa o erittäi hyödyllie periaate epäyhtälötehtävissä Tehtävä (Pohjoismaie 005) Olkoot a, b, c positiivisia reaalilukuja Todista, että Tsebysevi epäyhtälö a b + c + b a + c + c a + b a + b + c Kaikille reaaliluvuille a a a ja b b b pätee a + a + + a Epäyhtälö seuraa idetiteetistä b + b + + b a b + a b + + a b [ (a b + a b + + a b ) (a + a + + a )(b + b + + b )] = (a a )(b b ) + (a a )(b b ) + + (a a )(b b )+ (a a )(b b ) + (a a )(b b ) + + (a a )(b b ) + + (a a )(b b ) + (a a )(b b ) + + (a a )(b b ) 0 Ituitiivisesti Tsebytsevissä o kyse suuruusjärjestysepäyhtälöstä, ja todistuski oistuu myös käyttämällä suuruusjärjestysepäyhtälöä kertaa, kirjoittamalla yksi yhtälö ja summaamalla kaikki yhtee Esimerkki Esimerkkiä kirjoitetaa Tsebysevi epäyhtälö lukujoukoille {a, b, c} ja {a, b, c } Kute edellä todettii, o äillä joukoilla sama suuruusjärjestys, jos a, b, c 0 Siispä a + b + c a + b + c a + b + c eli (a + b + c ) (a + b + c)(a + b + c ) 9

11 Tehtävä Olkoot x,, x reaalilukuja Todista, että x + + x ( x + x ) Tehtävä (Pohjoismaie 999) Olkoot a, a,, a positiivisia reaalilukuja Osoita, että ) ( a + a + + a Milloi yhtäsuuruus vallitsee? ( ) ) ( + a + a + + a + a + a + a Geometrisia epäyhtälöitä Suuri kolmio Olkoo aettu kolmio piiri p, ja kysytää kuika suuri voi olla pita-ala Etä millaisella kolmiolla tämä maksimi saavutetaa (jos saavutetaa)? Tapa Käytetää Heroi kaavaa (0) ja aritmeettis-geometrista epäyhtälöä Merkitää kolmio alaa T ja sivuja pituuksia a, b, c T = ( ) p p p(p a)(p b)(p c) p = p (5) Yhtäsuuruus pätee jos p a = p b = p c eli tasasivuise kolmio tapauksessa O syytä huomioida, että aritmeettis-geometrie epäyhtälö o kirjoitettu vai luvuille p a, p b ja p c, eikä mukaa ole lukua p Jos tämä olisi otettu mukaa, ei epäyhtälö olisi eää ollut tarkka (yhtäsuuruus vallitsee vai, ku kaikki luvut ovat yhtä suuria) Voidaa huomata tämä vaikka seuraavasti: T = p(p a)(p b)(p c) = 4 ( ) p(p a)(p b)(p c) p = p 4 4, mikä o huomattavasti suurempi kui p, mikä o siis suuri koskaa oikeasti saavutettava arvo Jos välttämättä halutaa kirjoittaa epäyhtälö kaikille luvuista p, p a, p b ja p c, ii tämäki o mahdollista, mutta vaatii hiema harkitaa: Tapa Tehdää esi oekas arvaus, että suuri arvo saavutetaa, ku a = b = c, eli p = a Nyt p = (p a), jote luvut voidaa pakottaa yhtäsuuriksi sopivalla kertoimella 0

12 Luvut p, p a, p b ja p c ovat suurimma arvo tapauksessa yhtäsuuria, jote tämä o hyvä lähtökohta epäyhtälölle Nyt T = T = p(p a)(p b)(p c) = p = p 4 (p a)(p b)(p c) ( p mikä tosiaa saavutetaa tasasivuisella kolmiolla (p a)(p b)(p c) ) + (p a) + (p b) + (p c) = p 4, Ylläkuvattu tapa soveltuu tilateisii, joissa yhtäsuuruus ei vallitse kaikkie iide alkioide ollessa yhtäsuuria, joista o tarkoitus ottaa keskiarvo Tällöi voi miettiä, voisiko termie etee laittaa kertoimia (geometrise keskiarvo puolella) tai voisiko termejä hakata pieemmiksi palasiksi, jotka oekkaasti olisivat yhtäsuuria, ja lopulta vai summata kaikkie yli (aritmeettise keskiarvo puolella) Kolmio sivuje pituuksii liittyvät epäyhtälöt Olkoot a, b, c kolmio sivuje pituudet Osoita Kirjoitetaa epäyhtälö muotoo a + b + c < (ab + bc + ca) a(b + c a) + b(c + a b) + c(a + b c) > 0, joka riittää, ku muistetaa kolmio sivuje pituuksille pätevät ehdot: a + b c > 0, b + c a > 0 ja c + a b > 0 Joskus voi olla vaikea keksiä mihi muotoo epäyhtälö tulisi kirjoittaa, jotta äitä ehtoja voisi käyttää Silloi saattaa olla apua muuoksesta ja se kääteismuuoksesta a = u + v b = v + t c = t + u t = a + b + c u = a b + c v = a + b c Kolmio sivuje pituuksille asetetut ehdot muutuvat helppokäytöisee muotoo t, u, v > 0

13 Esimerkiksi todistetaa, että kolmio sivuje pituuksille a, b, c pätee Sijoitetaa edelliste muuoste mukaa (a + b c)(b + c a)(c + a b) abc tuv (u + v)(v + t)(t + u) Tämä seuraa kertomalla keskeää epäyhtälöt uv u+v, vt v+t ja tu t+u, jotka ovat voimassa kaikille t, u, v 0 aritmeettis-geometrise epäyhtälö mukaa Kolmio kulmii liittyvät epäyhtälöt Merkitää kolmio kulmia α, β ja γ Tuetusti kolmio kulmie summa o 80, ja tätä tietoa voi käyttää hyväksi esimerkiksi Jesei epäyhtälö avulla Osoitetaa cos α + cos β + cos γ Käytetää Jesei epäyhtälöä ja valitaa f(x) = cos(x/) (Fuktio f o koveksi, sillä f (x) = cos(x/)/4 0 kaikilla x [0, 80 ]) cos α cos β cos γ cos α + β + γ = cos 0 =, mistä väite seuraa Tehtävä 4 Olkoot α, β ja γ teräväkulmaise kolmio kulmat Osoita, että ta α + ta β + ta γ Muuta Olkoo a, b, c kute edellä, R kolmio ympäripiirrety ympyrä säde ja T kolmio pitaala Osoita, että 4 T a + b + c 9R (6) Epäyhtälö vase puoli o itse asiassa olympiatehtävä vuodelta 96 ja uudestaa sitä tarvittii olympiatehtävässä vuoa 99 Todistus meee helposti aiemmi todistetu epäyhtälö (5) ja Cauchy epäyhtälö avulla T p = (a + b + c) (a + b + c )( + + ) = 4 (a + b + c )

14 Aloitetaa epäyhtälö (6) oikea puole todistamie tylppäkulmaise kolmio tapauksesta Olkoo C 90 ja c tätä vastaava sivu Nyt pätee c = a +b ab cos C a +b eli a + b + c c 8R Jos sitte kolmio o teräväkulmaie, pätee jokaiselle kolmio kulmalle α, β, γ 90 Kirjoitetaa epäyhtälö siilausee (5) avulla (esim a /R = 4 si α) muotoo Trigoometrise idetiteeti () perusteella si α + si β + si γ 9 4 si α + si β + si γ = + cos α cos β cos γ Fuktio l cos x o koveksi välillä [0, 90 ], jote Jesei epäyhtälöstä ( ) l cos α l cos β l cos γ α + β + γ l cos = l cos 60 = l, eli cos α cos β cos γ 8, mistä väite seuraa Ratkaisuja ja vihjeitä Ratkaisu Mahdollisia ratkaisuja o äärettömä paljo, mutta eräs sellaie o a =, a = Jos =, ii muuta ei tarvita Jos taas >, ii a = = a = Ratkaisu Aritmeettis-geometrise epäyhtälö mukaa a + a a a = =, mikä o yhtäpitävää väittee kassa Ratkaisu Aritmeettis-geometrise epäyhtälö mukaa a + b ab b + c bc a + c ac Kertomalla ämä epäyhtälöt puolittai keskeää saadaa mikä oli todistettava a + b b + c a + c ja ab bc ac = abc,

15 Ratkaisu 4 Olkoo f(x) = si x Nyt f (x) = cos x si x ja f (x) = cos x si x 0, eli fuktio o koveksi Nyt eli si α + si β + si γ ( ) α + β + γ ( π ) si = si = 6 4, si α + si β + si γ 4 Vihje 5 Lähde liikkeelle koveksisuude määritelmästä, etee kute tavallise Jesei epäyhtälö todistuksessa, mutta pidä paiotukset mukaa Vihje 6 Käytä paiotettua Jesei epäyhtälöä sopivilla paioilla Etee muute kute tavallisessa aritmeettis-geometrise epäyhtälö todistuksessa Vihje 7 Vasemma puole luvut ovat eliöitä, oikea puole ei Ratkaisu 8 Huomataa, että lukuje a, b ja c sekä bc, ac ja ab suuruusjärjestys o kääteie (Jos esim a o suuri, ii luvut b ja c ovat pieimmät, jolloi iide tulo o piei mahdollie tulo Vastaavasti esimerkiksi pieitä lukua vastaa suuri tulo, ja keskikokoista keskikokoie Epäyhtälö vasemma puole summaa voidaa siis arvioida äi alaspäi: [ ] [ ] a b c a b c, ab bc ca bc ca ab eli a b + b c + c a abc = Ratkaisu 9 Huomataa, että lukuje a, b, c ja bc, ac, ab suuruusjärjestys o kääteie Voidaa siis kirjoittaa [ ] [ ] a b c a b c, bc ac ab ab bc ac eli a bc + b ac + c ab a b + b c + c a Vihje 0 Logaritmi o iloie asia Vihje Jäljittele Nesbitti epäyhtälö todistusta Vihje Kirjoita Tsebysevi epäyhtälö luvuille x, x,, x ja x, x,, x Ratkaisu Huomataa aluksi, että = + a + + a a a a a a a a 4

16 Lisäksi lukuje +a i ja +a i a i = + a i o sama Voidaa siis kirjoittaa Tsebysevi epäyhtälö: eli +a a + +a +a a a + + a +a + +a, ( + + ) ( + + ) ) ( + a + + a, a a + a + a jote väite o todistettu Vihje 4 Tagetti saattaisi hyviki olla koveksi fuktio vaaditulla välillä 5

17 Hyödyllisiä kaavoja Trigoometrisia kaavoja: si(x ± y) = si x cos y ± si y cos x (7) cos(x ± y) = cos x cos y si x si y (8) ta x ± ta y ta(x ± y) = ta x ta y (9) si(x + y + z) = cos x cos y cos z(ta x + ta y + ta z ta x ta y ta z) (0) cos(x + y + z) = cos x cos y cos z( ta x ta y ta y ta z ta z ta x) () si x + si y + si z si (x + y + z) = 4 si(x + y) si(y + z) si(z + x) () cos x + cos y + cos z + cos (x + y + z) = 4 cos(x + y) cos(y + z) cos(z + x) () Kolmioo liittyviä kaavoja; seuraavassa o käytetty merkitöjä a, b, c kolmio sivuje pituuksille, α, β, γ vastaisille kulmille, T kolmio pita-alalle, p = (a + b + c)/, R ympäripiirrety ympyrä säteelle, r sisää piirrety ympyrä säteelle ja ρ a, ρ b, ρ c kolmiota ulkopuolisesti sivuavie ympyröide säteille Kosiilause c = a + b ab cos γ (4) Siilause R = a si α = b si β = c si γ (5) R + r = cos α + cos β + cos γ (6) R p = si α + si β + si γ (7) R T = si α si β si γ (8) R Pitaalakaavoja T = ab si γ (9) Heroi kaava T = p(p a)(p b)(p c) (0) abc = 4T R () T = rp = ρ a (p a) = ρ b (p b) = ρ c (p c) () r = ρ a + ρ b + ρ c () 4R + r = ρ a + ρ b + ρ c (4) 6

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

Harjoitustehtävät, syys lokakuu 2010. Helpommat

Harjoitustehtävät, syys lokakuu 2010. Helpommat Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.

Lisätiedot

YKSIULOTTEINEN JÄNNITYSTILA

YKSIULOTTEINEN JÄNNITYSTILA YKSIULOTTEINEN JÄNNITYSTILA Normaalijäits N N Leikkausjäits Q Q KAKSIULOTTEINEN JÄNNITYSTILA Lerakee STRE SS CONTOURS OF SE 4.4483 8.8966 4.345 65.793 7.4 48.69 9.38 33.586 373.35 Ma 45.4 At Node 438 Mi.9

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

Kombinatoriikka. Iiro Honkala 2015

Kombinatoriikka. Iiro Honkala 2015 Kombiatoriikka Iiro Hokala 2015 Sisällysluettelo 1. Haoi torit 1 2. Lokeroperiaate 3 3. Tuloperiaate 3 4. Permutaatioista ja kombiaatioista 4 5. Toistokombiaatioista 5 6. Biomikertoimista 5 7. Multiomikertoimista

Lisätiedot

Matemaattisten menetelmien hallinnan tason testi.

Matemaattisten menetelmien hallinnan tason testi. Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4 Koe 5.5.01 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Kompleksiluvut. Johdanto

Kompleksiluvut. Johdanto Kompleksiluvut Johdato Tuomo Pirie tuomo.pirie@tut.fi Aikoje kuluessa o matematiikassa kohdattu tilateita, jolloi käytetyt määrittelyt ja rajoitukset (esimerkiksi käytetyt lukujoukot) eivät ole olleet

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 14.4.2013

Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 14.4.2013 Solmu 3/03 Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 4.4.03 Esa V. Vesalainen Matematiikan ja tilastotieteen laitos, Helsingin yliopisto Luxemburgissa järjestettiin

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f

Vastaus: Kertymäfunktio on F( x) = x, kun 0 x 20. Todennäköisyydet ovat molemmat 1. Frekvenssi f 0, ku x < 0 Vastaus: Kertymäfuktio o F( x) = x, ku 0 x 0 0, ku x > 0 Todeäköisyydet ovat molemmat 0. Laudatur MAA ratkaisut kertausharjoituksii Tilastoje esittämie 3. a) Tietty kasvi b) Kukkie lukumäärä

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

a b c d + + + + + + +

a b c d + + + + + + + 11. 11. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÖ Ø ÙØ 014 È ÖÙ Ö ÒÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d 1. +. 3. 4. 5. 6. + + + + + + + + P1. Junan nopeus (liikkeellä) on aluksi v 0 ja matka-aika T 0. Matkan pituus s on

Lisätiedot

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja.

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja. POHDIN rojekti Jatkuva korko ja e Eksoettifuktioille voidaa johtaa omiaisuus f ( x) f (0) f( x). Riittää ku oletetaa, että f (0) o olemassa. Nyt eksoettifuktioide f( x) 2 x ja gx ( ) 3 x välistä yritää

Lisätiedot

Esimerkki 2 (Kaupparatsuongelma eli TSP)

Esimerkki 2 (Kaupparatsuongelma eli TSP) 10 Esimerkki 2 (Kaupparatsuogelma eli TSP) Kauppamatkustaja o kierrettävä kaupukia site, että hä lähtee kaupugista 1 ja palaa sie sekä käy jokaisessa muussa kaupugissa täsmällee kerra. Matka kaupugista

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802 Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha

Lisätiedot

Muodonmuutostila hum 30.8.13

Muodonmuutostila hum 30.8.13 Muodonmuutostila Tarkastellaan kuvan 1 kappaletta Ω, jonka pisteet siirtvät ulkoisen kuormituksen johdosta siten, että siirtmien tapahduttua ne muodostavat kappaleen Ω'. Esimerkiksi piste A siirt asemaan

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

1 Logiikkaa. 1.1 Logiikan symbolit

1 Logiikkaa. 1.1 Logiikan symbolit 1 Logiikkaa Tieteessä ja jokapäiväisessä elämässä joudutaan tekemään päätelmiä. Logiikassa tutkimuskohteena on juuri päättelyt. Sen sijaan päätelmien sisältöön ei niinkäään kiinnitetä huomiota. Päätelmät

Lisätiedot

LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000

LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 LASKENNALLISEN TIETEEN ERIKOISKURSSI kl 2000 Laskuharjoitus Detaljibalassi Osoita, että siirtymätodeäköisyydet π m α m ; ρ, m ρ α m ----- ; ρ < ρ, m m π m, m m ja π m ρ α m ------------------ ρ +, m π

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali:

F {f(t)} ˆf(ω) = 1. F { f (n)} = (iω) n F {f}. (11) BM20A5700 - INTEGRAALIMUUNNOKSET Harjoitus 10, viikko 46/2015. Fourier-integraali: BMA57 - INTEGRAALIMUUNNOKSET Harjoitus, viikko 46/5 Fourier-integraali: f(x) A() π B() π [A() cos x + B() sin x]d, () Fourier-muunnos ja käänteismuunnos: f(t) cos tdt, () f(t) sin tdt. (3) F {f(t)} ˆf()

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Työ 55, Säteilysuojelu

Työ 55, Säteilysuojelu Työ 55, Säteilysuojelu Ryhmä: 18 Pari: 1 Joas Alam Atti Tehiälä Selostukse laati: Joas Alam Mittaukset tehty: 7.4.000 Selostus jätetty: 1.5.000 1. Johdato Tutkimme työssämme kolmea eri säteilylajia:, ja

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?

Lisätiedot

Trigonometriaa: kolmioita ja kaavoja

Trigonometriaa: kolmioita ja kaavoja Trigonometriaa: kolmioita ja kaavoja Trigonometriset funktiot voidaan määritellä eri tavoin Yksikköympyrään x + y 1 perustuva määritelmä on yleensä selkeä Jos A 1, 0) ja t 0 on reaaliluku, on olemassa

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli

Yhden selittäjän lineaarinen regressiomalli Ilkka Melli Tilastolliset meetelmät Osa 4: Lieaarie regressioaalyysi Yhde selittäjä lieaarie regressiomalli TKK (c) Ilkka Melli (007) Yhde selittäjä lieaarie regressiomalli >> Yhde selittäjä lieaarie regressiomalli

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää Todeäköisyyslasketa sivuaieopiskelijoille Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 5 1.3 Aksiomaattie todeäköisyys 7 1.4 Ehdollie todeäköisyys 12

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut: Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie

Lisätiedot

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut

Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet (Mikkola/Ärölä) 4. harjoituksen ratkaisut Teknillinen korkeakoulu Mat-5.187 Epälineaarisen elementtimenetelmän perusteet Mikkola/Ärölä 4. harjoituksen ratkaisut Teht. 1 Jacobin determinantin J det F materiaalisen aikaderivaatan laskemiseksi lasketaan

Lisätiedot

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju.

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15 JosAjaA B ovat tosia, niin välttämättä myösb on tosi (A (A B)) B on tautologia eli (A (A B)) B. 1 / 15 JosAjaA B ovat tosia, niin välttämättä

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

tilavuudessa dr dk hetkellä t olevien elektronien

tilavuudessa dr dk hetkellä t olevien elektronien Semiklassie johtavuusmalli Metalleissa vastus aiheutuu virrakuljettajie törmäyksistä, joita karakterisoi relaksaatioaika τ Oletetaa, että ifiitesimaalisella aikavälillä dt elektroi törmäystodeäköisyys

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

SMG-2100: SÄHKÖTEKNIIKKA

SMG-2100: SÄHKÖTEKNIIKKA SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset

Lisätiedot

1 Euklidiset avaruudet R n

1 Euklidiset avaruudet R n 1 Euklidiset avaruudet R n Tässä osiossa käymme läpi Euklidisten avaruuksien R n perusominaisuuksia. Olkoon n N + positiivinen kokonaisluku. Euklidinen avaruus R n on joukko R n = {(x 1, x 2,..., x n )

Lisätiedot

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

C (4) 1 x + C (4) 2 x 2 + C (4)

C (4) 1 x + C (4) 2 x 2 + C (4) http://matematiialehtisolmu.fi/ Kombiaatio-oppia Kuia mota erilaista lottoriviä ja poeriättä o olemassa? Lotossa arvotaa 7 palloa 39 pallo jouosta. Poeriäsi o viide orti osajouo 52 orttia äsittävästä paasta.

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Todennäköisyyslaskenta I. Heikki Ruskeepää

Todennäköisyyslaskenta I. Heikki Ruskeepää Todeäköisyyslasketa I Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 4 1.3 Aksiomaattie todeäköisyys 8 1.4 Ehdollie todeäköisyys 13 1.5 Riippumattomuus

Lisätiedot

Integraalilaskenta. Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka

Integraalilaskenta. Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka Integraalilaskenta 9 Markus Hähkiöniemi Satu Juhala Petri Juutinen Sari Louhikallio-Fomin Erkki Luoma-aho Terhi Raittila Tommi Tikka Helsingissä Kustannusosakeyhtiö Otava Kirjan rakenne Aiemmin opiskeltua

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

Kenguru 2016 Student lukiosarjan ratkaisut

Kenguru 2016 Student lukiosarjan ratkaisut sivu 1 / 22 Ratkaisut TEHTÄVÄ 1 2 3 4 5 6 7 8 9 10 VASTAUS A C E C A A B A D A TEHTÄVÄ 11 12 13 14 15 16 17 18 19 20 VASTAUS A C B C B C D B E B TEHTÄVÄ 21 22 23 24 25 26 27 28 29 30 VASTAUS D C C E E

Lisätiedot

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa.

Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. Laskuharjoitus 1A Mallit Tässä dokumentissa on ensimmäisten harjoitusten malliratkaisut MATLABskripteinä. Voit kokeilla itse niiden ajamista ja toimintaa MATLABissa. 1. tehtävä %% 1. % (i) % Vektorit luodaan

Lisätiedot

TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998.

TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET. Kokooma 23.1.2008. Viimeisin perustemuutos on vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Kokooma 23.1.2008. Viimeisi perustemuutos o vahvistettu 3.2.1998. TYÖNTEKIJÄIN ELÄKELAIN MUKAISEN VAKUUTUKSEN YLEISET LASKUPERUSTEET Sisällysluettelo

Lisätiedot

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa

Miehitysluvuille voidaan kirjoittaa Maxwell Boltzmann jakauman mukaan. saamme miehityslukujen summan muodossa S-4.7 Fysiia III (EST) Tetti..6. Tarastellaa systeemiä, jossa ullai hiuasella o olme mahdollista eergiatasoa, ε ja ε, missä ε o eräs vaio. Oletetaa, että systeemi oudattaa Maxwell-Boltzma jaaumaa ja, että

Lisätiedot

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009

Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Peruskoulun matematiikkakilpailun alkukilpailun tulosten ja tehtävien analysointi vuodelta 2009 Anastasia Vlasova Peruskoulun matematiikkakilpailutyöryhmä Tämän työn tarkoituksena oli saada käsitys siitä,

Lisätiedot

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit

2. Mittaus ja data 2.1. Johdanto. 2.2. Mittaustyypit 2. Mittaus ja data 2.. Johdato Voidaksemme keksiä tosimaailma relaatioita tarkastelemme sitä kuvaavaa dataa, jote esiksi selvitämme, mitä data perimmiltää o. Data kerätää kuvaamalla mielekiitoaluee oliot

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot Trigonometriset funktiot 1/7 Sisältö Trigonometriset funktiot suorakulmaisessa kolmiossa a c b Olkoon suorakulmaisen kolmion terävä kulma, a tämän vastainen kateetti, b viereinen kateetti ja c kolmion

Lisätiedot

3.6. Geometrisen summan sovelluksia

3.6. Geometrisen summan sovelluksia Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa

Lisätiedot

Funktion määrittely (1/2)

Funktion määrittely (1/2) Funktion määrittely (1/2) Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon a täsmälleen yhden B:n alkion b. Merkitään b = f (a). Tässä A = M f on f :n määrittelyjoukko, B on f :n maalijoukko.

Lisätiedot

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot