a) (1, 0735) , 68. b) Korkojaksoa vastaava nettokorkokanta on

Koko: px
Aloita esitys sivulta:

Download "a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on"

Transkriptio

1 Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c) neljä kertaa vuodessa d) jatkuvasti. Ratkaisu: Aloitetaan laskemalla nettokorkokanta, sillä se on juuri se korkokanta joka oikeasti määrää koron suuruutta. Nettokorkokanta on 10, 5% 0, 7 = 7, 35%. a) (1, 0735) , 68. b) Korkojaksoa vastaava nettokorkokanta on Vastaus on 7, 35% 12 = 0, 6125% (1, ) , 26. c) Korkojaksoa vastaava nettokorkokanta on Vastaus on 7, 35% 4 = 1, 8375% (1, ) , 72. d) Jatkuva korko lasketaan kaavalla K = k e mi, missä k = , m = 8 ja i = 7, 35% = 0, Sijoittamalla saadaan loppuarvoksi K = e 8 0, , 15. Huomaa, että jatkuva korko tosiaankin antaa suurimman loppuarvon. 1

2 2. Auton arvo vähenee 10% vuodessa. Mikä oli auton arvo 4 vuotta sitten, jos se on nyt euroa? Ratkaisu: Olkoon x auton arvo neljä vuotta sitten. Kolmen vuotta sitten sen arvo oli 0, 9x, kahden vuoden päästä 0, 9 0, 9x jne. Neljän vuoden päästä auton arvo on siis 0, 9 4 x. Saadaan yhtälö 0, 9 4 x = 15000, josta x = , , euron talletus tuotti kolmessa vuodessa 33, 10AC:n verran korkoa. Korko liitetään pääomaan aina kaksi kertaa vuodessa. Mikä oli vuotuinen korkokanta? Ratkaisu: Merkitään vuotuinen korkokanta (desimaalilukuna ilmaistuna!) i:llä. Koska korkojakso on puolen vuoden pituinen, kolmen vuoden päästä tilillä on oltava rahaa Pelkät korot tällöin ovat 100 (1 + i 2 )3 2 = 1000 (1 + i 2 ) (1 + i 2 ) Saadaan yhtälö 100 (1 + i 2 )6 100 = 33, 10, josta ratkaistaan i: 100 (1 + i 2 )6 = 133, 10 jaetaan 100:llä, (1 + i 2 )6 = 1, 331 otetaan kuudes juuri, 1 + i 2 = 6 1, 331 vähennetään 1, 2

3 (Vuotuinen) korkokanta on 9, 8%. i/2 = 6 1, 331 1, i = 2( 6 1, 331 1) 0, Tilin bruttokorkokanta on 2, 15% ja inflaatio keskimäärin 0, 8% vuodessa. Mikä on talletuksen reaalinen vuotuinen nettokorkokanta, kun lähdevero on 30%? Ratkaisu: Oletetaan, että tilille talletetaan pääoma k ja lasketaan ensin sen nimellinen loppuarvo. (Nimellinen) nettokorkokanta on 2, 15% 0, 7 = 1, 505%, joten vuoden päästä tilillä on a 1, (oletetaan, että korko liitetään kerran vuodessa). Kuitenkin inflaation takia tämän rahasumman todellinen arvo (alkutilanteen rahassa) on a 1, , 008 Näin ollen reaalinen korko on 0, 699%. 1, 00699a. 5. Ostajalle tarjotaan myytävästä teollisuushallista kahta eri maksutapaa: Tapa 1 - maksetaan euroa heti ja kahden vuoden kuluttua Tapa 2 - maksetaan euroa heti ja sen jälkeen kaksi kertaa euroa vuoden välein. Kumpi maksutapa on ostajalle edullisempi, kun korkokanta on 9%? Ratkaisu: Lasketaan molemman tarjouksen nykyarvo diskonttaamalla ja verrataan kumpi on edullisempi. Nykyarvo tavassa 1: Nykyarvo tavassa 2: , 24. 1, , , 11. 1, 092 Tapa 1 on edullisempi ostajalle. 3

4 6. Alkoholin kulutusta halutaan vähentää 30% 10 vuodessa. Mikä tulee asettaa vuotuiseksi prosentuaaliseksi vähentämistavoitteeksi? Ratkaisu: Olkoon a kulutuksen muutos per vuosi (oletetaan pysyvän vakiona). Tällöin 10 vuoden päästä kulutus on a 10 -kertainen. Saadaan joten a 10 = 1 0, 3 = 0, 7, a = 10 0, 7 0, 965. Koska 1 0, 965 = 0, 035, tästä seuraa, että riittää vähentää alkoholin kulutusta noin 3, 5% vuodessa. 7. Missä ajassa 500 euron talletus kasvaa 561, 80 suuruiseksi, jos vuotuinen korkokanta on 6% ja korko liitetään pääomaan kuukausittain? Ratkaisu: Sijoittamalla koronkoron perusyhtälöön K = k(1 + i) n arvot K = 561, 80, k = 500, i = 6%/12 = 0, 5%, saadaan yhtälö 561, 80 = 500 1, 005 n josta ratkaistavaa n. Koska tuntematon esiintyy potenssina, otetaan logaritmi molemmasta puolesta, jolloin saadaan n = ln(561, 80/500) ln 1, , 4. Käytännössä siis menee 24 kuukautta eli tasan 2 vuotta. 8. Määritä 2% vuotuista korkokantaa vastaava neljännesvuoden konforminen korkokanta. Ilmoita tämä korkokanta myös vastaavana relatiivisena vuotuisena korkokantana. 4

5 Ratkaisu: Olkoon i sellainen korkokanta per vuoden neljännes joka tuottaa vuodessa samaa korkoa kuin 2% vuotuinen korko, joka maksetaan kerran vuodessa. Talletaan pääoma a, koska molempien tapojen mukaan tulee samaa korkoa, saadaan tästä yhtälö mistä 1 + i = 4 1, 02 joten (1 + i) 4 a = 1, 02a, i = 4 1, , Näin ollen 0, 496% kerran neljännesvuodessa tuottaa samaa korkoa kuin 2% maksettuna kerran vuodessa. Relatiivisesti 0, 496% kerran neljännesvuodessa on sama asia kuin vuodessa. 0, 496% 4 0, 1985% 9. Yksilön hinta oli euroa ja kolme vuotta myöhemmin euroa. Inflaatio on ollut keskimäärin 1, 5% vuodessa. Kuinka monta prosenttia on reaalinen keskimääräinen vuotuinen hinnan nousu? Ratkaisu: Deflatoidaan euroa alkutilanteeseen, jolloin saadaan , 85. 1, 0153 Tämä on hinnan loppuarvon todellinen arvo alkutilanteen rahassa mitattuna. Seuraavaksi pitää laskea millä keskimääräisellä vuotuisella korkoprosentilla euron kokoinen pääoma kasvaa kolmessa vuodessa arvoon 47815, 85. Merkitään tämä prosentti i:llä (tulkitaan desimaalilukuna), jolloin saadaan ehto Tästä ratkaistaan i, (1 + i) 3 = 47815, 85. (1 + i) 3 = 47815, , 47815, 85 i = 3 1 0, Reaalinen keskimääräinen vuotuinen nousu on ollut 6, 1%. 5

6 10. Perintönä saatu euroa talletettiin kasvutilille Tilin korkokanta on 1, 7% ja lähdevero 30%. Korko lisätään pääomaan aina vuoden viimeisenä päivänä tai silloin kun tili lopetetaan. Laskin tilin saldo tiliä lopetettaessa Laskutapa 30/360. Ratkaisu: Aloitetaan laskemalla kuinka paljon tilillä on rahaa vuoden 2008 lopussa. Koska kyseessä on vaaja korkojakso, tämä lasketaan yksinkertaisen koron periaatteella. Laskutapa on 30/360, joten kesäkuussa 2008 korkopäiviä kertyy 30 5 = 25 ja jäljellä olevista kuudesta kuukaudesta 6 30 = 180 korkopäiviä. Korkopäiviä on = 205, joten vuoden 2008 lopussa tilillä on ( , 017 0, 7) = 60406, Tämä pääoma kasvattaa vuosina koronkorkoa, koska nämä ovat kokonaisia korkojaksoja. Näitä vuosia on 4 (ei kolme!) - 9, 10, 11, 12, joten vuoden 2012 lopussa tilillä on 60406, 583 (1 + 0, 017 0, 7) , 67. Lopuksi tämä pääoma kasvattaa vielä vaajalta korkojaksolta yksinkertaista korkoa. Korkopäiviä on = 103, joten loppuarvo on 63333, 67 ( , 017 0, 7) = 63549,

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

diskonttaus ja summamerkintä, L6

diskonttaus ja summamerkintä, L6 diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson

Lisätiedot

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson

Lisätiedot

Jaksolliset suoritukset, L13

Jaksolliset suoritukset, L13 , L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto

Ekspontentiaalinen kasvu. Eksponenttifunktio. Logaritmifunktio. Yleinen juurenotto Ekspontentiaalinen kasvu Eksponenttifunktio Logaritmifunktio Yleinen juurenotto Missä on eksponenttimuotoista kasvua tai vähentymistä? Väestönkasvu Bakteerien kasvu Koronkorko (useampivuotinen talletus)

Lisätiedot

Korkolasku ja diskonttaus, L6

Korkolasku ja diskonttaus, L6 Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

Jaksolliset ja toistuvat suoritukset

Jaksolliset ja toistuvat suoritukset Jaksollset ja tostuvat suortukset Korkojakson välen tostuva suortuksa kutsutaan jaksollsks suortuksks. Tarkastelemme tässä myös ylesempä tlanteta jossa samansuurunen talletus tehdään tasavälen mutta e

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

(1) Katetuottolaskelma

(1) Katetuottolaskelma (1) Katetuottolaskelma Katetuottolaskelmalla tarkastellaan yrityksen kannattavuutta myyntituotto - muuttuvat kustannukset (mukut) = katetuotto katetuotto - kiinteät kustannukset (kikut) = tulos (voitto

Lisätiedot

Kansantaloudessa tuotetaan vehnää, jauhoja ja leipää. Leipä on talouden ainoa lopputuote, ja sen valmistuksessa käytetään välituotteena jauhoja.

Kansantaloudessa tuotetaan vehnää, jauhoja ja leipää. Leipä on talouden ainoa lopputuote, ja sen valmistuksessa käytetään välituotteena jauhoja. Taloustieteen perusteet Kesä 2014 Harjoitus 4: MALLIRATKAISUT Juho Nyholm (juho.nyholm@helsinki.fi Tehtävä 1 Kansantaloudessa tuotetaan vehnää, jauhoja ja leipää. Leipä on talouden ainoa lopputuote, ja

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

Talousmatematiikka (4 op)

Talousmatematiikka (4 op) Talousmatematiikka (4 op) M. Nuortio, T. Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2012 Talousmatematiikka 2012 Yhteystiedot: Matti Nuortio mnuortio@paju.oulu.fi Työhuone M225 Kurssin

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

1,085 64,5 12,00 = 839,79 (mk) Vastaus: 839,79 mk

1,085 64,5 12,00 = 839,79 (mk) Vastaus: 839,79 mk K00 1. Asunto-osakeyhtiö nosti asuntojen yhtiövastikkeita 8,5 %. Kuinka suureksi muodostui 64,5 neliömetrin suuruisen asunnon kuukauden yhtiövastike, kun neliömetriltä oli aiemmin maksettu 12,00 mk kuukaudessa?

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

Tämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä.

Tämä. Tili-ja kulutusluotot. -aineisto on tarkoitettu täydentämään. Liiketalouden matematiikka 2. kirjan sisältöä. Tämä Tili-ja kulutusluotot -aineisto on tarkoitettu täydentämään Liiketalouden matematiikka 2 kirjan sisältöä. 1 Sisällysluettelo TILI- JA KULUTUSLUOTOT...3 Esim. 1... 4 Esim. 2... 6 Esim. 3... 7 Esim.

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia

Lisätiedot

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään

Lisätiedot

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t ) Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän

Lisätiedot

3. Laske osittaisintegroinnin avulla seuraavat integraalit

3. Laske osittaisintegroinnin avulla seuraavat integraalit Harjoitus 1 / syksy 2001 1. Laske seuraavat derivaatat 2 a) D ( 5x + 5) x, b) D (-e 2x ), c) D (-ln x) ja d) D (sin 2x + cos x). 2. Laske seuraavat integraalit 2 x 5x 5 dx, a) ( + ) x b) ( e 2 ) dx, c)

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Nykyarvo ja investoinnit, L7

Nykyarvo ja investoinnit, L7 Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto

Lisätiedot

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA Aki Taanila EXCELIN RAHOITUSFUNKTIOITA 4.12.2012 Sisällys Johdanto... 1 Aikaan liittyviä laskelmia... 1 Excelin rahoitusfunktioita... 2 Koronkorkolaskenta... 2 Jaksolliset suoritukset... 4 Luotot... 7

Lisätiedot

Investoinnin takaisinmaksuaika

Investoinnin takaisinmaksuaika Investoinnin takaisinmaksuaika Takaisinmaksuaika on aika, jona investointi maksaa hintansa takaisin eli nettotuottoja kertyy perushankintamenon verran Investointi voidaan tehdä, jos takaisinmaksuaika

Lisätiedot

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Investoinnin käsite Investointeina pidetään menoja, jotka ovat rahamäärältään suuria ja joissa tulon kertymisaika on pitkä (> 1 vuosi) Vaikutukset ulottuvat pitkälle

Lisätiedot

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta.

Vastaus: Aikuistenlippuja myytiin 61 kappaletta ja lastenlippuja 117 kappaletta. Seuraava esimerkki on yhtälöparin sovellus tyypillisimmillään Lukion ekaluokat suunnittelevat luokkaretkeä Sitä varten tarvitaan tietysti rahaa ja siksi oppilaat järjestävät koko perheen hipat Hippoihin

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

1.3 Prosenttilaskuja. pa b = 100

1.3 Prosenttilaskuja. pa b = 100 1.3 Prosenttilaskuja Yksi prosentti jostakin luvusta tai suureesta on tämän sadasosa ja saadaan siis jakamalla ao. luku tai suure luvulla. Jos luku b on p % luvusta a, toisin sanoen jos luku b on p kpl

Lisätiedot

16145 0, 19 = 3067, 55 euroa. Kirkkoon henkilö ei kuulu, joten kirkollisveroa ei makseta. Sairausvaikutusmaksu

16145 0, 19 = 3067, 55 euroa. Kirkkoon henkilö ei kuulu, joten kirkollisveroa ei makseta. Sairausvaikutusmaksu Talousmatematiikka Kotitehtävät 2 - Pakollisten tehtävien ratkaisut 1. Laske valtion tulovero, kunnallisvero, kirkollisvero ja sairausvakuutusmaksu taulukon jokaisen rivin tilanteessa. Laske myös kuinka

Lisätiedot

Nykyarvo ja investoinnit, L14

Nykyarvo ja investoinnit, L14 Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...

Lisätiedot

3Eksponentiaalinen malli

3Eksponentiaalinen malli 3Eksponentiaalinen malli Bakteerien määrä lihassa lisääntyy 250 % jokaisen vuorokauden aikana. Epilepsialääkkeen määrän puoliintuminen elimistössä vie aina yhtä pitkän ajan, 12 tuntia. Tällaisia suhteellisia

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää

Lisätiedot

Vaihdettavat valuutat klo 15.30

Vaihdettavat valuutat klo 15.30 HAAGA-HELIA HARJOITUS 4/Ratkaisut s. / 6 Liike-elämän matematiikka Syksy 20 Käytä tehtävissä tarvittaessa alla olevia valuuttakursseja. Kurssit ilmaisevat yhden euron arvon kyseisessä valuuttayksikössä.

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

HZZ10100 Liiketoimintaosaamisen lähtökohdat: Kauppamatematiikka Versio 1.2 / 16.8.2009

HZZ10100 Liiketoimintaosaamisen lähtökohdat: Kauppamatematiikka Versio 1.2 / 16.8.2009 HZZ10100 Liiketoimintaosaamisen lähtökohdat: Kauppamatematiikka Versio 1.2 / 16.8.2009 Vesa Korhonen vesa.korhonen@jamk.fi 0400 451 752 Sisältö 0. Johdanto... 2 1. Prosenttilaskun soveltamista... 3 1.1

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802 Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha

Lisätiedot

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? PERUSPROSENTTILASKUT Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g? Kuinka paljon 12 % on 350 grammasta? 350 g 12 % % g 12 x 100 350 12 x 100 350 100

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha

Lisätiedot

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14). Auiteettiperiaate Huom 4 Jaksolliste suorituste periaate soveltuu luoollisesti laia- ja luottolaskelmii. Lähtökohtaisea yhtälöä o yhtälö (14). Auiteetti Nimellisarvoltaa K 0 suuruise laia maksuerä k, joka

Lisätiedot

DANSKE BANK OYJ:N OSAKETALLETUS 2/2014

DANSKE BANK OYJ:N OSAKETALLETUS 2/2014 Danske Bank Oyj, www.danskebank.fi DANSKE BANK OYJ:N OSAKETALLETUS 2/2014 Tietoa Osaketalletuksesta: Talletuksen vastaanottaja: Danske Bank Oyj OSAKETALLETUS 2/2014 Osaketalletus 2/2014 kohde-etuudeksi

Lisätiedot

Sijoitustodistuksen nykyinen markkinahinta: euroa. Jos viitekorko laskee 0,5 %-yksikköä, uusi markkinahinta: euroa

Sijoitustodistuksen nykyinen markkinahinta: euroa. Jos viitekorko laskee 0,5 %-yksikköä, uusi markkinahinta: euroa AB30A0101 Finanssi-investoinnit 4. harjoitukset 7.4.015 Tehtävä 4.1 45 päivän kuluttua erääntyvälle, nimellisarvoltaan 100 000 euron sijoitustodistukselle maksettava vuosikorko on 3,0 %. Jos viitekorko

Lisätiedot

OKON KERTYVÄ KORKO V/2005 LAINAKOHTAISET EHDOT

OKON KERTYVÄ KORKO V/2005 LAINAKOHTAISET EHDOT OKON KERTYVÄ KORKO V/2005 LAINAKOHTAISET EHDOT Nämä Lainakohtaiset ehdot muodostavat yhdessä :n 24.5.2005 päivätyn ja 6.9.2005 päivitetyn joukkovelkakirjaohjelman (Ohjelmaesite) Yleisten lainaehtojen kanssa

Lisätiedot

14. toukokuuta 2014 1

14. toukokuuta 2014 1 14. toukokuuta 2014 1 Sisältö 1 Suhde 2 1.1 Prosenttikerroin.......................... 4 1.2 Prosentuaalinen määrä...................... 6 1.3 Muutosprosentti.......................... 7 1.4 Prosenttiyksikkö.........................

Lisätiedot

Indekseistä, L12. Reaalikorko. Aiheet. Aritmeettinen ja geometrinen keskiarvo. Yhden tuotteen hintaindeksi. Reaalikorko. Pääoman deatoitu arvo

Indekseistä, L12. Reaalikorko. Aiheet. Aritmeettinen ja geometrinen keskiarvo. Yhden tuotteen hintaindeksi. Reaalikorko. Pääoman deatoitu arvo Indekseistä, L12 1 Lukujoukon {a 1, a 2,..., a n } aritmeettinen lasketaan kaavalla a aka = a 1 + a 2 + + a n n = 1 n n a j. j=1 Lukujoukon {a 1, a 2,..., a n }, eli keskiverto, lasketaan kaavalla n a

Lisätiedot

DANSKE BANK OYJ:N OSAKETALLETUS 1/2014

DANSKE BANK OYJ:N OSAKETALLETUS 1/2014 Danske Bank Oyj, www.danskebank.fi DANSKE BANK OYJ:N OSAKETALLETUS 1/2014 Tietoa Osaketalletuksesta: Talletuksen vastaanottaja: Danske Bank Oyj OSAKETALLETUS 1/2014 Osaketalletus 1/2014 kohde-etuudeksi

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

1 Prosenttilaskua 3. 2 Yksinkertainen korkolasku 4. 3 Diskonttaus 6. 4 Koronkorko 8. 5 Korkokannat 9. 6 Jatkuva korko 10. 7 Jaksolliset suoritukset 11

1 Prosenttilaskua 3. 2 Yksinkertainen korkolasku 4. 3 Diskonttaus 6. 4 Koronkorko 8. 5 Korkokannat 9. 6 Jatkuva korko 10. 7 Jaksolliset suoritukset 11 Sisältö Prosenttilaskua 3 2 Yksinkertainen korkolasku 4 3 Diskonttaus 6 4 Koronkorko 8 5 Korkokannat 9 6 Jatkuva korko 0 7 Jaksolliset suoritukset 8 Luotot ja korkolasku 2 8. Annuiteettiperiaate........................

Lisätiedot

Nykyarvo ja investoinnit, L9

Nykyarvo ja investoinnit, L9 Nykyarvo ja investoinnit, L9 netto netto netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n 0 1 2 3 4 5

Lisätiedot

MAB yo-tehtäviä prosenttilaskennasta ja talousmatematiikasta

MAB yo-tehtäviä prosenttilaskennasta ja talousmatematiikasta MAB yo-tehtäviä prosenttilaskennasta ja talousmatematiikasta (https://matta.hut.fi/matta/yoteht/index.html) (http://oppiminen.yle.fi/abitreenit/) (http://www.mafyvalmennus.fi/abikurssit.htm) (k2015/3)

Lisätiedot

MATEMATIIKKAKILPAILU

MATEMATIIKKAKILPAILU Tekniikan Opettajat TOP ry Teknologiateollisuuden Kustannusosakeyhtiö Opetushallitus 100-vuotissäätiö Otava AMMATIKKA top 14.11.2013 Toisen asteen ammattillisen koulutuksen kaikkien alojen yhteinen MATEMATIIKKAKILPAILU

Lisätiedot

MAB7 Loppukoe 25.9.2014

MAB7 Loppukoe 25.9.2014 MAB7 Loppukoe 25.9.2014 Jussi Tyni Lue tehtävänannot huolellisesti. Tee pisteytysruudukko konseptin ekalle sivulle yläreunaan! Valitse kuusi tehtävää, joihin vastaat. Muista että välivaiheet perustelevat

Lisätiedot

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN:

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: 6 LIITE PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: K m K 1 A K t K m A K K t K ' K 1 Kirjainten ja merkkien selitykset: ' ' K luoton numero K lyhennyksen

Lisätiedot

INTUSIN TALLETUSTILIEN SOPIMUSEHDOT

INTUSIN TALLETUSTILIEN SOPIMUSEHDOT INTUSIN TALLETUSTILIEN SOPIMUSEHDOT 1. SOPIMUKSEN SISÄLTÖ Määräaikaistalletus on sopimuksessa määriteltyjen ehtojen mukaisesti avattu talletustili. Yhdistys maksaa talletustilille korkoa talletusajan päättyessä,

Lisätiedot

1.1 Suhteisjako 8. Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18. Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23

1.1 Suhteisjako 8. Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18. Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23 SISÄLTÖ 1 KAUPALLISIA SOVELLUKSIA 7 1.1 Suhteisjako 8 1.2 Valuutat 14 Euro 14 Valuuttakurssit 15 Kurssimuutokset ja rahan arvo 18 1.3 Verotus 21 Tulovero 21 Ansiotulon vero 21 Pääomatulon vero 23 Varallisuusvero

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2011 1 / 34 Luentopalaute kännykällä käynnissä! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää Rahoitusriskit ja johdannaiset Matti Estola luento 7 Swap sopimuksista lisää 1. Pankki swapin välittäjänä Yleensä 2 eri-rahoitusalan yritystä eivät tee swap sopimusta keskenään vaan pankin tai yleensäkin

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 6.6.2013: MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 6.6.013: MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja, 01] sivuihin. (1) (a) igou -verot: Jos markkinoilla

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10

Voidaan laskea siis ensin keskimääräiset kiinteät kustannukset AFC: 100 000 /10000=10 Harjoitukset 3 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. a) Autonrenkaita valmistavalla yhtiöllä on 100 000 :n kiinteät kustannukset vuodessa. Kun yritys tuottaa 10 000 rengasta,

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

Toimitettaessa verotusta vuodelta 2004 voidaan todeta, että yhtiön kirjanpidon mukainen voitto on 250 000 i. Lisäksi todetaan seuraavaa:

Toimitettaessa verotusta vuodelta 2004 voidaan todeta, että yhtiön kirjanpidon mukainen voitto on 250 000 i. Lisäksi todetaan seuraavaa: OIKEUSTIETEELLINEN TIEDEKUNTA FINANSSIOIKEUS Julkisoikeuden laitos Aineopinnot OTK, ON täydennystentti 2.12.2004 Vastaukset kysymyksiin 1, 2, 3a ja 3b eri arkeille. Kysymykseen 4 vastataan erilliselle

Lisätiedot

Millaisia ovat finanssipolitiikan kertoimet

Millaisia ovat finanssipolitiikan kertoimet Millaisia ovat finanssipolitiikan kertoimet Antti Ripatti Helsingin yliopisto, HECER, Suomen Pankki 20.3.2013 Antti Ripatti (HECER) fipon kerroin 20.3.2013 1 / 1 Johdanto Taustaa Finanssipolitiikkaa ei

Lisätiedot

OKON KORKO 13 III/2005 LAINAKOHTAISET EHDOT

OKON KORKO 13 III/2005 LAINAKOHTAISET EHDOT OKON KORKO 13 III/2005 LAINAKOHTAISET EHDOT Nämä Lainakohtaiset ehdot muodostavat yhdessä :n 24.5.2005 päivätyn joukkovelkakirjaohjelman (Ohjelmaesite) Yleisten lainaehtojen kanssa tämän Lainan ehdot.

Lisätiedot

Y55 Kansantaloustieteen perusteet sl 2010

Y55 Kansantaloustieteen perusteet sl 2010 Y55 Kansantaloustieteen perusteet sl 2010 1 Ole hyvä ja vastaa kysymyksiin tähän paperiin. Tehtävät on palautettava joko luennolla tai kurssilaatikkoon (Latokartanonkaari 9., 3 krs.) ehdottomasti niitattuina

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Makrotaloustiede 31C00200

Makrotaloustiede 31C00200 Makrotaloustiede 31C00200 Kevät 2016 Harjoitus 5 1.4.2016 Arttu Kahelin arttu.kahelin@aalto.fi Tehtävä 1 a) Käytetään kaavaa: B t Y t = 1+r g B t 1 Y t 1 + G t T t Y t, g r = 0,02 B 2 Y 2 = 1 + r g B 1

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 27.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 27.1.2010 1 / 37 If-käsky toistokäskyn sisällä def main(): HELLERAJA = 25.0 print "Anna lampotiloja, lopeta -300:lla."

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

10.5 Jaksolliset suoritukset

10.5 Jaksolliset suoritukset 4.5 Jaksollset suortukset Tarkastellaa tlaetta, jossa asakas tallettaa pakktllle tostuvast yhtäsuure rahasumma k aa korkojakso lopussa. Asakas suorttaa talletukse kertaa. Lasketaa tlllä oleva pääoma :e

Lisätiedot

OmaTuottoTalletus 1 / 2016

OmaTuottoTalletus 1 / 2016 OmaTuottoTalletus 1 / 2016 OmaTuottoTalletus on kolmen vuoden määräaikainen talletus. Siinä yhdistyvät tilin turvallisuus ja osakkeiden tuottomahdollisuus. Olemme lähellä ja läsnä. 1 OmaTuottoTalletus

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Tamprn ksäyliopisto, 2015-2016 Talousmatmatiikan prustt, ORMS1030 1. väliko, (ti 15.12.2015) Ratkais 3 thtävää. Kokssa saa olla mukana laskin (myös graafinn laskin on sallittu) ja taulukkokirja (MAOL tai

Lisätiedot

I I K UL U UT U T T A T JANTE T O E R O I R A

I I K UL U UT U T T A T JANTE T O E R O I R A II KULUTTAJANTEORIA.. Budjettirajoite * Ihmisten kaikkea toimintaa rajoittavat erilaiset rajoitteet. * Mikrotalouden kurssilla tärkein rajoite on raha. * Kuluttaja maksimoi hyötyään, mutta ei kykene toteuttamaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/

Lisätiedot

Taloyhtiölaina ja AsuntoJousto

Taloyhtiölaina ja AsuntoJousto Taloyhtiölaina ja AsuntoJousto rahoittamisen ratkaisuina Suomen Asunto-osakkeenomistajien ajankohtaiskatsaus 21.11.2011 Mikko Knuutila Johtaja, yritysasiakkaat 1745 Kanta-Helsingin Yrityskonttori Nordea

Lisätiedot

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY

Lyhyt yhteenvetokertaus nodaalimallista SÄTEILYTURVAKESKUS STRÅLSÄKERHETSCENTRALEN RADIATION AND NUCLEAR SAFETY AUTHORITY Lyhyt yhteenvetokertaus nodaalimallista SÄTELYTUVAKESKUS STÅLSÄKEHETSCENTALEN ADATON AND NUCLEA SAFETY AUTHOTY Ei enää tarkastella neutronien kulkua, vaan työn alla on simppeli tuntemattoman differentiaaliyhtälöryhmä

Lisätiedot

OmaTuottoTalletus 3 / 2015

OmaTuottoTalletus 3 / 2015 OmaTuottoTalletus 3 / 2015 OmaTuottoTalletus on kolmen vuoden määräaikainen talletus. Siinä yhdistyvät tilin turvallisuus ja osakkeiden tuottomahdollisuus. Olemme lähellä ja läsnä. 1 OmaTuottoTalletus

Lisätiedot

HUOM! Sinisellä taustavärillä on merkitty tarjoajan täytettäväksi tarkoitetut sarakkeet/kohdat/solut.

HUOM! Sinisellä taustavärillä on merkitty tarjoajan täytettäväksi tarkoitetut sarakkeet/kohdat/solut. 1 (6) Hankinta- ja kilpailuttamisyksikkö TARJOUS- JA HINNOITTELULOMAKE 2012 Vakuutusten kilpailuttamisprosessin hoitaminen Tarjoaja tekee tarjouksen täyttämällä ja allekirjoittamalla tämän tarjous- ja

Lisätiedot

Prosentti- ja korkolaskut 1

Prosentti- ja korkolaskut 1 Prosentti- ja korkolaskut 1 Prosentti on sadasosa jostakin, kuten sentti eurosta ja senttimetri metristä. Yksi ruutu on 1 prosentti koko neliöstä, eli 1% Kuinka monta prosenttia on vihreitä ruutuja neliöstä?

Lisätiedot

YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET. Kokonaisperuste vahvistettu 20.12.2006. Voimassa 1.1.2007 alkaen.

YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET. Kokonaisperuste vahvistettu 20.12.2006. Voimassa 1.1.2007 alkaen. YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET Kokonaisperuste vahvistettu 20.12.2006. Voimassa 1.1.2007 alkaen. YRITTÄJÄN ELÄKELAIN (YEL) MUKAISEN ELÄKEVAKUUTUKSEN LASKUPERUSTEET 1

Lisätiedot

Mat-2.3114 Investointiteoria - Kotitehtävät

Mat-2.3114 Investointiteoria - Kotitehtävät Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea

Lisätiedot

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10 Sisäinen ja investoinnin, L10 1 Määritelmä: i sis on se laskentakorko, jolla nettonykyarvo on nolla. Jos projekti on normaali siinä mielessä, että alun negatiivisia nettoeriä seuraa lopun positiiviset

Lisätiedot

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Funktiot ja yhtälöt. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Funktiot ja yhtälöt Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Funktiot ja yhtälöt (MAA) Pikatesti ja kertauskokeet Pikatesti

Lisätiedot