Harjoitustehtävien ratkaisuja

Koko: px
Aloita esitys sivulta:

Download "Harjoitustehtävien ratkaisuja"

Transkriptio

1 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0, 6. c) 7, 9, 3,, Laske rekursiivise lukujoo viisi esimmäistä jäsetä, ku joo yleie jäse o: a) a 5 3 kaikilla ja a a b) a 5 a kaikilla ja a c) a ( ) 5a a), 7, 3, 57, 78. kaikilla ja a b),, 63, 39, 600. c),, 57, 8, Laske lukujoo viisi esimmäistä jäsetä: a 3 +, ku., jolla o toki valta ,,,, 0. Samat pisteet löytyvät myös paraabelilta va paljo muitaki pisteitä. y x 3 x Muodosta sellaise lukujoo laskulauseke alkae : arvosta, joka kuvaa lija-autoje lähtemistä 0 miuuti välei alkae kello Joo esimmäie jäse o kelloaika a Joo yleie jäse voidaa ilmaista kirjoittamalla esimerkiksi a +0 a mi, ku,, 3... Toie vaihtoehto o kirjoittaa mi, ku 0,,, 3... Ei vaivata päätämme illa viimeisellä vuorolla. a 3.5 Muodosta sellaise lukujoo laskulauseke alkae : arvosta, joka kuvaa lija-autoje lähtemistä 5 miuuti välei alkae kello Kuika mota kertaa ämä lija-autot lähtevät samaa aikaa tehtävä 4 lija-autoje kassa kello 6 ja 8 välillä? (0)

2 3. Mallitamie lukujooje avulla Joo esimmäie jäse o kelloaika a Joo yleie jäse voidaa ilmaista kirjoittamalla esimerkiksi a +5 a mi, ku,, 3... Toie vaihtoehto o kirjoittaa a mi, ku 0,,, 3... Ei vaivata päätämme illa viimeisellä vuorolla. Kello 6 ja 8 välillä o viisi lähtöä, jotka sattuvat samaa aikaa eli äitte kahde joo yhteiset jäseet kyseisellä välillä ovat: kello 6:00, 6:30, 7:00, 7:30 ja kello 8: Määrittele parittomat luoolliset luvut lukujoo avulla käyttämällä kaikkia kolmea määrittelytapaa. I tapa:, ku,, 3, a II tapa: a, a +, ku, 3, 4, a III tapa:, 3, 5, 7, 9,, 3, 3.7 Määrittele kolmella jaolliset luoolliset luvut lukujoo avulla käyttämällä kaikkia kolmea määrittelytapaa. I tapa: a 3, ku,, 3, II tapa: a 3, a + 3, ku, 3, 4, a III tapa: 3, 6, 9,, 5, 8, 3.8 Etsi sellaise lukujoo jäsee yleie laskukaava, joka viisi esimmäistä jäsetä ovat 7, a 9, 3,, 3. Aloita ideksoiti ykkösestä. 8, ku,, 3, 3 Aritmeettise lukujoo harjoituksia 3.9 Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja. Mikä o tämä joo differessi? b) a 6 ja 3. Mikä o tämä joo differessi? a) 6,, 8, 4, 30. Lukujoo differessi o b) 8,, 6, 0, 6. Differessi Aritmeettise lukujoo ( a ),,, 3,, differessi o ja a 5 0. Laske joo. jäse., ii a a + ( 5 ) ( ), josta 0 ( 5 ) ( ) 4 Koska a a + ( )d 5 a. (0)

3 3. Mallitamie lukujooje avulla Joo. jäse o Aritmeettise lukujoo ( a ),,, 3,, differessi o ja a 5 7. Laske joo 0. jäse. ii + ( 5 ) d 7 Koska, a a + ( )d Joo 0. jäse o 7. a, josta joo 0. jäse o Aritmeettise lukujoo ( a ),,, 3,, differessi o 3 ja a 4. Mikä joo piei jäse, joka o suurempi kui 00? Piei jäse, joka o suurempi kui 00 o 35. jäse eli Laske lukujoo, 3, 5, 7, yleie jäse ja 50. jäse. Koska kaikkie aettuje joo peräkkäiste jäsete erotus o vakio, päätellää, että kyseessä o aritmeettie joo, joka esimmäie jäse o ja differessi o. Kaavasta: ja a ( ) +, ku,, 3, ( 50 ) 99 a 50 + Joo yleie jäse o + ( ) a, ku,, 3, ja 50. jäse o Aritmeettise lukujoo. jäse o 5 ja 00. jäse o 30. Laske se differessi. Kaavasta: 5 + ( 00 ) d 30 a, jote d Differessi o Oko joo a), 4, 7, 0, b), 4, 0,, aritmeettie? a) Koska kaikki laskettavissa olevat, peräkkäiste jäsete erotukset ovat samat, ii joo o aritmeettie. O. b) Koska , ii joo o ei ole aritmeettie. Ei. 3.6 Käytä seuraavissa kohdissa aritmeettise summa kaavaa S ( a + a ). a) b) (0)

4 3. Mallitamie lukujooje avulla c) a) Koska jokaie peräkkäise yhteelaskettava erotus o sama 6, ii kyseessä o aritmeettie summa. Se esimmäie yhteelaskettava o 6, erotusvakio o 6 ja viimeie yhteelaskettava o 60. Siksi summa o S b) S c) S a) Summa o 330 b) Summa o 07 c) Summa o Porraspyramidi alimmaisessa kerroksessa o 4777 kiveä. Jokaisessa kerroksessa o 48 kiveä vähemmä kui heti se alla olevassa kerroksessa. Kuika mota kiveä pyramidissa o? Tämä tehtävä voi tietysti ratkaista edellise sarja viimeise harjoitukse avulla suoraa, mutta koska itse kivie määrä ei kuitekaa ole kiiostava, vaa meetelmä jolla se saadaa, ii käytetää mieluummi aritmeettise summa teoriaa. Käytetää maiittua aiempaa tehtävää kuiteki se verra, että todetaa, että pyramidissa o 99 täysilukuista kerrosta ja iitte lisäksi kerros, jossa o 5 kiveä. Kivie kokoaismäärä S o siis ( a + a ) S kappaletta. Pyramidissa o kiveä. 3.8 Yrjäällä o eliömuotoisilla kivillä laatoitettu alue. Laattoja o kahta väriä, siisiä ja valkoisia. Häe aapurisa Teppaa pyytää saada ostaa kivet. Yrjää suostuu, sillä hä päättää muokata kyseise aluee ryytimaaksi. Yrjää ja Teppaa sopivat, että Teppaa maksaa siisistä laatoista,5 euroa kappaleelta ja valkoisista euroa kappaleelta. Kahdesta laata puolikkaasta Teppaa maksaa yhde koko laata hia. Laatoitettu alue o eliömuotoie ja se sivu pituus o kymmee metriä. Siiset laatat muodostavat tasakylkise kolmio, joka kyljet ovat ymmärrettävistä syistä sahalaitaiset ja joka kata muodostaa kivety aluee yhde sivu. Kolmio seuraavassa, kaa suutaisessa siisessä rivissä o yksi laatta vähemmä kui kataa olevassa rivissä. Samoi seuraavassa rivissä ja sitä seuraavassa ja ii edellee o yksi siie kivi vähemmä kui edellisessä rivissä. Vähimmillää siisiä laattoja o rivissä yksi. Kuika paljo Teppaa maksaa Yrjäälle laatoista yhteesä? Ratkaise tämä tehtävä aritmeettise summa teoria avulla. Porraspyramidi alimmaisessa kerroksessa o 4777 kiveä. Jokaisessa kerroksessa o 48 kiveä vähemmä kui heti se alla olevassa kerroksessa. Kuika mota kerrosta pyramidissa o ja kuika mota kiveä o se ylimmässä kerroksessa? Aetuista tiedoista seuraa, että siisiä laattoja o riveissä 0 kappaletta yhde välei. Niitä o + 0 siis yhteesä 0 55 kappaletta. Koska mitää muuta ei saota, o lupa olettaa yksikertaisi mahdollie tilae eli puolikkaita laattoja lukuu ottamatta kaikki laatat ovat yhtä suuria ja eliö muotoisia. Laattoja o kaikkiaa 00 kappaletta, jote valkoisia laattoja o 45 kappaletta, 4(0)

5 3. Mallitamie lukujooje avulla ku kaksi puolikasta lasketaa yhdeksi koko laataksi. Teppaa maksaa siis Yrjäälle 55,5 + 45,00 3,75 euroa. Mahtavatko pyöristää summa johoki suutaa? Teppaa maksaa laatoista 3,75 euroa. 3.9 Nisse huomaa tarvitsevasa portaat, joita pitki hä pääsee kulkemaa kahde taso välillä, joide pystysuoraa mitattu ero o 4,8 metriä. Molemmat tasot ovat tarkallee vaakasuorat ja ii isot, että tila ei portailta lopu. Nisse päättää, että yhdellä askeleella 6 seti ousu sekä 0 seti vaakasuutaie eteemä ovat sopivat. Kuika mota porrasaskelmaa Nisse tekee? Nisse portaitte jokaie askel koostuu yhdestä, kulkusuutaa ähde poikittai olevasta tiilestä, joka leveys käytetää hyväksi portaa askelee syvyyteä kulkusuuassa. Kuika kaukaa ee ylemmä taso reuaa portaat alkavat, jos e eteevät kohtisuorassa tuota reuaa vastaa ja jos Nisse muuraa portaat tiilistä, joide leveys o juuri uo 0 cm? Kuika mota tiiltä hä tarvitsee, jos oletetaa että hä muuraa portaa jokaise kerrokse täytee tiiliä alkae esimmäisestä, jolle astutaa, aia ylemmä kerrokse reua alle alhaalta ylös saakka? Portaiko leveys o sama kui tiile pituus, mutta emme välitä siitä yt. Esimmäisessä kerroksessa o 30 tiiltä, ylimmässä tiili. Jokaisessa kerroksessa o yksi tiili vähemmä kui se alla olevassa kerroksessa tietysti alita lukuu ottamatta, yhteesä Portaat alkavat kuude metri päästä ja askelia tulee 30. Tiiliä tarvitaa 465 kappaletta. 3.0 Kauppias pioaa peltiset kurkkutölkit sääölliseksi pyramidiksi, joka pohjaa o eliö. Jokaise kerrokse sivussa o yksi tölkki vähemmä kui välittömästi se alla oleva kerrokse sivussa. Kuika mota tölkkiä piossa voi korkeitaa olla, jos alimmassa kerroksessa o 44 tölkkiä? 44. Tölkkejä o yhteesä 650 kappaletta. 3. Kuika paljo o säästettävä kuukaudessa, jos tavoitteea o, että tilillä o kuukausi viimeise säästöerä jälkee korkoiee 050 euroa, ku säästöeriä o 8? Tilille maksetaa,4 proseti vuotuie korko ja talletus tehdää aia kuukaude. päivää, josta alkae kuki 5(0)

6 3. Mallitamie lukujooje avulla talletus myös alkaa kasvaa korkoa. Vihje: Korkoa maksetaa joka kuukaude viimeiseä,4% päivää koko kuukaude saldosta. 8 0,04 + x 050, josta x 57,0. 57,0 euroa. 3. Teippirulla ulkoläpimitta o 0 cm ja teipi paksuus o 0,0 mm. Kuika mota metriä teippiä rullassa o, jos teippirulla hylsy eli tyhjä ytime halkaisija o 3cm? 0cm,5cm Teippiä o 45 kerrosta. Kuki kerros o π 0,mm lyhyempi kui ylempää 0,mm oleva, ylimmässä kerroksessa o teippiä π 0cm ja alimmassa π ( 3 cm + 0, mm). Teippirulla teipi määrä voi laskea aritmeettise summa sovelluksea, missä o 45 yhteelaskettavaa, piei yhteelaskettava o π ( 3 cm + 0, mm) ja suuri π 0cm. Teippiä o siis π ( 3cm + 0,mm) + 0πcm 45 54m. Rullassa o teippiä oi 54 metriä. Geometrise lukujoo harjoituksia 3.3 Mitkä seuraavista jooista ovat geometriset? Jos joo o geometrie, ilmoita se suhdeluku. a), 3, 9, 7, 8... b), 4, 9, 64, 8... c),,, , 0000,, d),,,,,, e) 00, 99, 98, 97, 96, 95, 94 O: a (q 3), c (q 0 ), ei: b, d ja e. 3.4 Geometrise joo esimmäie jäse o 9 ja se suhdeluku o. Laske joo 5. jäse Mikä o seuraava geometrise joo suhdeluku:,,,,,? (0)

7 3. Mallitamie lukujooje avulla Kuika suureksi kasvaa 0 euro talletus sadassa vuodessa, jos tilille hyvitetää vuotuista korkoa,5 prosettia koko tuo sada vuode aja, korko liitetää pääomaa eikä tililtä osteta mitää? (Todellisuudessa tili ei ilma muuta kasva korkoa loputtomii.) 8,4 euroa Kuika moes joo,,,,,, jäse o piei, joka o suurempi kui ? 8. jäse. 3.8 Mikä o pitkäaikaistili vuotuise koro oltava, jos halutaa, että kertatalletus kaksikertaistuu kuudessa vuodessa? Korko liitetää taas pääomaa eikä tililtä osteta mitää. Noi, prosettia. Geometrise summa harjoituksia 3.9 Laske geometrise lukujoo, 4, 8, 6, 3, 64 kahdetoista esimmäise jäsee summa Laske geometrie summa Kuika mota geometrise joo a, jäsetä o laskettava yhtee, jotta summa ylittää 000? Mikä o piei summa, joka o suurempi kui 000? 48 jäsetä. Summa o tällöi oi 056,9. 47 jäsee summa olisi oi 959,7. suuri arvo (: fuktioa), joka o pieem Kuika suuri o geometrise summa i 7 pi kui miljooa? i Yhtälöstä saadaa 87 ja summa o oi ,763; : arvolla i 88 8 summa o ,05 ja siis suurempi kui i 7 Noi ,763. Geometrista summaa soveltavia harjoituksia 3.33 Hitsa Kaapi tallettaa vuode aja pakkii rahaa aia vuode alussa 000 euroa. Kuika paljo häellä o rahaa tilillää. vuode lopussa, ku Hitsa ei osta rahaa koko aikaa yhtää ja ku tilille maksetaa korkoa,5 prosettia vuodessa ja ku korko lisätää pääomaa? 4 40,44 euroa. 7(0)

8 3. Mallitamie lukujooje avulla 3.34 Jösse Sakko poimi masikoita. Helle oli kova. Häe esimmäise päivä ettosaaliisa oli 6,00 kiloa marjoja. Kuumuus kävi päälle ja iipä häe päivä ettotuloksesa oli toisesta päivästä alkae joka päivä viisi prosettia pieempi kui edelliseä päivää. a) Kuika paljo hä sai kasaa kahde työviiko aikaa? b) Kuika kaua hä joutuisi tekemää töitä samoje ehtoje vallitessa jotta hä saisi kasaa 00 kiloa puhtaita marjoja? c) Mikä olisi häe esimmäise työpäivä ettosaaliisa, jos häe kahde työviiko ettotuloksesa olisi 60 kiloa ja edellee jokaie päivä olisi viisi prosettia edellistä huoompi alkae toisesta työpäivästä kute aluperiki oli asialaita? d) 63,94 kg e) 9, pv eli 0 päivää f) 5,6 kiloa Esimerkistä 8: Erico lähettää avaruutee kohti α Cetauria laittee, joka tehtävä o seuraava. Ku se o saapuut perille, se tekee itsestää heti kaksi kopiota ja lähettää e kahdelle muulle tähdelle, mutta ei Aurigo luo. Ku ämä kaksi laitetta saapuvat määräpäähäsä, e tekevät puolestaa itsestää kaksi kopiota ja lähettävät e kohti kahta sellaista tähteä, joille laitetta ei ole vielä lähetetty. Mikää laite ei koskaa lähetä kopiotaa kohti Aurikoa.. Kuika mota sukupolvea riittää kattamaa Liurada kaikki 00 miljardia tähteä? 38 sukupolvea Valpuri Iamaalla o 300 -litraie sadevesityyri. Kuo sateella tyyrii tulee vettä 0 litraa tuissa, mutta samaa aikaa pohjassa oleva reikä päästää hukkaa kolme prosettia edellise tui aikaa sataeesta vedestä. Täyttyykö tyyri ollekaa ja jos täyttyy, kuika kaua täyttymie kestää? Täyttyy alle 76 tuissa Keväällä, toukokuu alussa Valpuri istuttaa puutarhaasa 3000 uutta kukataita. Valitettavasti joka viikko kukista kuihtuu 4 prosettia. Tilalle Valpuri istuttaa uskollisesti joka viikko 360 uutta taita. Kuika paljo Valpurilla o eläviä kukkia syyskuu lopulla eli viikkoa myöhemmi? 589 kpl Ralliauto saavuttaa edellää ajavaa autoa ii, että autoje välimatka lyheee joka sekuti kolmee eljäsosaa jäljellä olevasta. Kuika kaua kestää, että autot ovat metri päässä toisistaa, jos lähestymie alkaa 350 metri päästä? Noi sekuissa. Rekursiivise lukujoo harjoituksia 3.39 Laske vähitää 30 Fiboacci joo esimmäistä jäsetä taulukkolasketaohjelmalla käyttämällä joo rekursiivista määritelmää. 8(0)

9 3. Mallitamie lukujooje avulla Solu B sisältö: Solu B3 sisältö: Solu B4 sisältö: B3+B 3.40 Laske rekursiivise lukujoo viisi esimmäistä jäsetä, ku joo määritellää seuraavalla tavalla: a, ku, 3, 4, ja a. a Nii saotut Lucasi luvut määritellää rekursiivise lukujoo sääö avulla seuraavasti: a a a, ku 3, 4, 5, ja a, a 3. Laske joo kuusi esimmäistä jäsetä Nii saotut Pelli-Lucasi luvut määritellää rekursiivise lukujoo sääö avulla seuraavasti: a + a a, ku 3, 4, 5, ja a, a. Laske joo kuusi esimmäistä jäsetä. 5 9 ( + ) ( ) [Aalyyttie säätö: a,,, 3, ] 3.43 Sovella harjoitukse 4 säätöä tapauksee, missä a, a 3 ja laske tämä uude joo kuusi jäsetä Sovella Fiboacci joo säätöä sellaisee tapauksee, missä a a ja laske se 0 jäsetä Laadi kertoma - fuktio luvut tuottava joo rekursiivie säätö. a a, a a a +, ku 3, 4, 5,... a 9(0)

10 3. Mallitamie lukujooje avulla 3.46 Laadi lukujoo joki rekursiivie ja joki aalyyttie säätö, ku se esimmäiset jäseet ovat,, 3,, 5. Rekursiivie säätö: a, a a +, ku,3,4,.... Aalyyttie säätö : a, ku,3,4, Laadi lukujoo joki rekursiivie ja joki aalyyttie säätö, ku se esimmäiset jäseet ovat 458, 486, 6, 54, 8. Laske joo 6. jäse. a Rekursiivie säätö: a 458, a, ku,3,4, Aalyyttie säätö : a, ku,,3, Laadi Esimerkkii 37 liittyvä taulukko Laadi lukujoo joki rekursiivie ja joki aalyyttie säätö, 4 ku ( 0 3) se esimmäiset jäseet 5 ovat, ( ) 4, 0, 8, 8, 44, 730, 88. a Aalyyttie säätö Rekursiivie säätö 4 ( ) ( a ) Rekursiivie säätö: a, a 3 +, ku,3,4,.... Aalyyttie säätö : a 3 +, ku,,3,... 0(0)

3.9. Mallintaminen lukujonojen avulla harjoituksia

3.9. Mallintaminen lukujonojen avulla harjoituksia 3.9 Mallitamie lukujooje avulla harjoituksia 3.9. Mallitamie lukujooje avulla harjoituksia Lukujoo määritelmä harjoituksia 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3

Lisätiedot

Harjoitustehtävien ratkaisuja

Harjoitustehtävien ratkaisuja 3. Mallitamie lukujooje avulla Lukujoo määritelmä harjoituksia Harjoitustehtävie ratkaisuja 3. Laske lukujoo viisi esimmäistä jäsetä, ku a) a 6 ja b) a 6 ja 3 8 c) a ja 3 a) 6,, 8, 4, 30. b) 8,, 6, 0,

Lisätiedot

3.6. Geometrisen summan sovelluksia

3.6. Geometrisen summan sovelluksia Tyypillie geometrise summa sovellusalue o taloude rahoituslaskut mutta vai tyypillie. Tammikuu alussa 988 vahemmat avaavat pitkäaikaistili Esikoisellee. Tiliehdot ovat seuraavat. Korko kiiteä 3,85 % pa

Lisätiedot

2.3.1. Aritmeettinen jono

2.3.1. Aritmeettinen jono .3.1. Aritmeettie joo -joo, jossa seuraava termi saadaa edellisestä lisäämällä sama luku a, a + d, a+d, a +3d, Aritmeettisessa joossa kahde peräkkäise termi erotus o aia vakio: Siis a +1 a d (vakio Joo

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai

MATP153 Approbatur 1B Harjoitus 1, ratkaisut Maanantai MATP53 Approbatur B Harjoitus, ratkaisut Maaatai..05. (Lämmittelytehtävä.) Oletetaa, että op = 7 tutia työtä. Kuika mota tutia Oili Opiskelija työsketelee itseäisesti kurssilla, joka laajuus o 4 op, ku

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Differentiaali- ja integraalilaskennan jatkokurssi Calculus Lukio 8 MAA Differetiaali- ja itegraalilaskea jatkokurssi Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Differetiaali- ja itegraalilaskea jatkokurssi

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k =

Diskreetin Matematiikan Paja Ratkaisuja viikolle 4. ( ) Jeremias Berg. n(n + 1) 2. k = Diskreeti Matematiika Paja Ratkaisuja viikolle 4. (7.4-8.4) Jeremias Berg. Osoita iduktiolla että k = ( + ) Ratkaisu: Kute kaikissa iduktiotodistuksissa meidä täytyy siis osoittaa asiaa. Ns. perustapaus,

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2008 108,3 2012 116,7. a) Jakamalla 1,07756 7,76 %. c) Jakamalla 0,92802 Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2007 104,1 2009 108,3 108,3 a) Jakamalla 1,040345 104,1 saadaa iflaatioprosetiksi 4,03 %. 104,1 b) Jakamalla 0,96121 saadaa, että raha

Lisätiedot

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin

Päähakemisto Tehtävien ratkaisut -hakemisto. 203. Vuosi Indeksi 2003 105,1 2007 110,8. a) Jakamalla 110,8 1,05423 saadaan inflaatioprosentiksi noin Päähakemisto Tehtävie ratkaisut -hakemisto 2 Raha 202. Vuosi Ideksi 2002 104,2 2004 106,2 a) Jakamalla 106,2 1,01919 saadaa iflaatioprosetiksi 1,92 %. 104,2 b) Jakamalla 104,2 0,98116 saadaa, että raha

Lisätiedot

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin

Epäyhtälöoppia matematiikkaolympialaisten tehtäviin Epäyhtälöoppia matematiikkaolympialaiste tehtävii Jari Lappalaie ja Ae-Maria Ervall-Hytöe 0 Johdato Epäyhtälöitä reaaliluvuille Cauchy epäyhtälö Kaikille reaaliluvuille a, a,, a ja b, b,, b pätee Cauchy

Lisätiedot

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut:

Lasketaan kullekin a euron maksuerälle erikseen, kuinka suureksi erä on n vuodessa kasvanut: Varsi arkiäiväisiä, geometrise joo teoriaa liittyviä käytäö sovellutuksia ovat jaksottaisii maksuihi ja kuoletuslaiaa (auiteettilaiaa) liittyvät robleemat. Tällaisii joutuu lähes jokaie yhteiskutakeloie

Lisätiedot

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p

3 b) Määritä paljonko on cos. Ilmoita tarkka arvo ja perustele vastauksesi! c) Muunna asteiksi 2,5 radiaania. 6p MAA9 Koe.5.0 Jussi Tyi Tee koseptii pisteytysruudukko! Muista kirjata imesi ja ryhmäsi. Valitse kuusi tehtävää!. a) Ratkaise yhtälö si x. Ilmoita vastaus radiaaeia! b) Määritä paljoko o cos. Ilmoita tarkka

Lisätiedot

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla.

( ) k 1 = a b. b 1) Binomikertoimen määritelmän mukaan yhtälön vasen puoli kertoo kuinka monta erilaista b-osajoukkoa on a-joukolla. Kombiatoriikka, kesä 2010 Harjoitus 2 Ratkaisuehdotuksia (RT) (5 sivua) Käytä tehtävissä 1-3 kombiatorista päättelyä. 1. Osoita, että kaikilla 0 b a pätee ( ) a a ( ) k 1 b b 1 kb Biomikertoime määritelmä

Lisätiedot

3 10 ei ole rationaaliluku.

3 10 ei ole rationaaliluku. Harjoitukset / 011 RATKAISUT Lukuteoria 1. Etsi Eratostheee seulalla samatie kaikki lukua 400 pieemmät alkuluvut. (Tai ohjelmoi tietokoeesi etsimää paljo lisää.) Kirjoita rivii kaikki luvut 1-00. Poista

Lisätiedot

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus:

n = 100 x = 0.6 99%:n luottamusväli µ:lle Vastaus: 1. Tietyllä koeella valmistettavie tiivisterekaide halkaisija keskihajoa tiedetää oleva 0.04 tuumaa. Kyseisellä koeella valmistettuje 100 rekaa halkaisijoide keskiarvo oli 0.60 tuumaa. Määrää 95%: ja 99%:

Lisätiedot

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims

Äärettämän sarjan (tai vain sarjan) sanotaan suppenevan eli konvergoivan, jos raja-arvo lims 75 4 POTENSSISARJOJA 4.1 ÄÄRETTÖMÄT SARJAT Lukujoo { a k } summaa S a a a a a k 0 1 k k0 saotaa äärettömäksi sarjaksi. Summa o s. osasumma. S a a a a a k 0 1 k0 Äärettämä sarja (tai vai sarja) saotaa suppeeva

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

2.5. Eksponenttifunktio ja eksponenttiyhtälöt

2.5. Eksponenttifunktio ja eksponenttiyhtälöt Eksoettifuktio ja -htälöt Eksoettifuktio ja eksoettihtälöt Ku otessi käsitettä laajeetaa sallimalla eksoetille muitaki arvoja kui kokoaislukuja, tämä taahtuu ii, että ii saotut otessikaavat ovat voimassa,

Lisätiedot

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.

määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio. Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kurssikerta 1 Iduktiotodistus Iduktiotodistukse logiikka Tutkitaa tapausta, jossa haluamme todistaa joki väittee P() site, että se pätee kaikilla luoollisissa luvuilla. Eli halutaa

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiika tukikurssi Kertauslueto. välikokeesee Algebraa Tämäkertaie kurssimoiste sisältää rusaasti harjoitustehtäviä. Syyä tähä o se, että matematiikkaa oppii parhaite itse tekemällä ja laskemalla.

Lisätiedot

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla:

ja läpäisyaika lasketaan (esim) integraalilla (5.3.1), missä nyt reitti s on z-akselilla: 10 a) Valo opeus levyssä o vakio v 0 = c / 0, jote ajaksi matkalla L laskemme L t0 = = 0 L. v0 c b) Valo opeus levyssä riippuu z:sta: c c v ( z) = = ( z ) 0 (1 + 3az 3 ) ja läpäisyaika lasketaa (esim)

Lisätiedot

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan

RATKAISUT x 2 3 = x 2 + 2x + 1, eli 2x 2 2x 4 = 0, joka on yhtäpitävä yhtälön x 2 x 2 = 0. Toisen asteen yhtälön ratkaisukaavalla saadaan RATKAISUT 8 17 8 a) Paraabelie y x ja y x + x + 1 leikkauspisteet saadaa määritettyä, ku esi ratkaistaa yhtälö x x + x + 1, eli x x, joka o yhtäpitävä yhtälö x x. Toise astee yhtälö ratkaisukaavalla saadaa

Lisätiedot

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja.

Tehtävä 1. Etsi Neperin luvulle e vaihtoehtoisia esitysmuotoja joko suppenevia lukujonoja tai päättymättömiä summia eli sarjamuotoja. POHDIN rojekti Jatkuva korko ja e Eksoettifuktioille voidaa johtaa omiaisuus f ( x) f (0) f( x). Riittää ku oletetaa, että f (0) o olemassa. Nyt eksoettifuktioide f( x) 2 x ja gx ( ) 3 x välistä yritää

Lisätiedot

4.7 Todennäköisyysjakaumia

4.7 Todennäköisyysjakaumia MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma

Lisätiedot

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015

Stokastiikan perusteet Harjoitukset 1 (Todennäköisyysavaruus, -mitta ja -funktio) 2.11.2015 Stokastiika perusteet Harjoitukset (Todeäköisyysavaruus, -mitta ja -fuktio) 2..205. Määritä potessijoukko 2,ku (a) {0, } (b) {(0, ]} ja ku (c) (0, ]. Ratkaisu: (a) 2 {;, {0}, {}, {0, }} (b) 2 {;, {(0,

Lisätiedot

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa.

Todennäköisyys, että yhden minuutin aikana saapuu 2 4 autoa. Testimuuttuja kriittie arvo 5 %: merkitsevyystasolla katsotaa taulukosta. Kriittie arvo o 9,488. Koska laskettu arvo 4,35 o pieempi kui taulukosta saatu kriittie arvo 9,488, ii ollahypoteesi jää voimaa.

Lisätiedot

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi

SMG-4200 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 6 ratkaisuiksi SMG-400 Sähkömageettiste järjestelmie lämmösiirto Ehdotukset harjoitukse 6 ratkaisuiksi Tarkastellaa suljetu järjestelmä tehotasaaioa joka o P + P P = P i g out st Oletetaa että verkotetussa alueessa jossa

Lisätiedot

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S 3.3. Aritmeettie summ 3.3. Aritmeettie summ Mikä olisi helpoi tp lske 0 esimmäistä luoollist luku yhtee? Olisiko r voim käyttö 0 + + + 3 + + 00 hyvä jtus? Tekiik vull se iki toimii. Fiksumpiki tp kuiteki

Lisätiedot

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat:

Mat-2.091 Sovellettu todennäköisyyslasku. Tilastolliset testit. Avainsanat: Mat-.090 Sovellettu todeäköiyylaku A 0. harjoituket Mat-.09 Sovellettu todeäköiyylaku 0. harjoituket / Ratkaiut Aiheet: Avaiaat: Tilatolliet tetit Aritmeettie kekiarvo, Beroulli-jakauma, F-jakauma, F-teti,

Lisätiedot

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät

Matematiikan tukikurssi. Kertausta 1. välikokeeseen. Tehtävät Matematiika tukikurssi Kertausta. välikokeesee Tehtävät Algebraa Tämä kappale sisältää rusaasti harjoitustehtäviä. Suurimpaa osaa tehtävistä löytyy ratkaisut lopusta. Syyä rusaasee tehtävämäärää o, että

Lisätiedot

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu

811312A Tietorakenteet ja algoritmit, , Harjoitus 3, Ratkaisu 111A Tietoraketeet ja algoritmit, 016-017, Harjoitus, Ratkaisu Harjoitukse aiheita ovat algoritmie aikakompleksisuus ja lajittelualgoritmit Tehtävä.1 Selvitä seuraavie rekursioyhtälöide ratkaisuje kompleksisuusluokat

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita

Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita Turun seitsemäsluokkalaisten matematiikkakilpailu 22.1.2014 Ratkaisuita 1. Laske 3 21 12 3. a) 27 b) 28 c) 29 d) 30 e) 31 Ratkaisu. 3 21 12 3 = 63 36 = 27. 2. Peräkylän matematiikkakerholla on kaksi tapaa

Lisätiedot

Sormenjälkimenetelmät

Sormenjälkimenetelmät Sormejälkimeetelmät Matti Risteli mristeli@iksula.hut.fi Semiaariesitelmä 23.4.2008 T-106.5800 Satuaisalgoritmit Tietotekiika laitos Tekillie korkeakoulu Tiivistelmä Sormejälkimeetelmät ovat satuaisuutta

Lisätiedot

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231

Talousmatematiikka (3 op) Sisältö. Tero Vedenjuoksu. Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Talousmatematiikka (3 op) Tero Vedejuoksu Oulu yliopisto Matemaattiste tieteide laitos 2010 Sisältö Yhteystiedot: Tero Vedejuoksu tero.vedejuoksu@oulu.fi Työhuoe M231 Kurssi kotisivu http://cc.oulu.fi/~tvedeju/talousmatematiikka/

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

Testaa taitosi 1. 2. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on Testaa taitosi. Laske lausekkeen 60 cos80 sin arvo. Päättele sinin ja kosinin arvot yksikköympyrästä. y x. Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on y y. x x. Määritä

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen.

10 Kertolaskusääntö. Kahta tapahtumaa tai satunnaisilmiötä sanotaan riippumattomiksi, jos toisen tulos ei millään tavalla vaikuta toiseen. 10 Kertolaskusäätö Kahta tapahtumaa tai satuaisilmiötä saotaa riippumattomiksi, jos toise tulos ei millää tavalla vaikuta toisee. Esim. 1 A = (Heitetää oppaa kerra) ja B = (vedetää yksi kortti pakasta).

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a)

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a) Kertusos Kertusos ). ) : j 7 0 7 ) 0 :( ) c) :( ). Merkitää merirosvorht (kg) sukltrffelit (kg) ) 7, 0 hit: /kg hit: 7 /kg ) 00 g 0,kg 7 0,,0,,0, 0, (kg) :. ) Vstus: ) 7, 0 ( ) ) 00 g. ) 0 7 9 7 0 0 Kertusos

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

[MATEMATIIKKA, KURSSI 8]

[MATEMATIIKKA, KURSSI 8] 2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...

Lisätiedot

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

R S T R S. Yhdeksäs termi a. Vastaus: Yhdeksäs termi on 99.

R S T R S. Yhdeksäs termi a. Vastaus: Yhdeksäs termi on 99. 9. Aritmeettise lukujoo yleie termi a = a + ( ) d Erotusluku a = a + ( ) d a = 7, a = 7, = 7 = 7 + ( ) d 0d = 90 :0 d = 9 Yhdeksäs termi a 9 = 7 + (9 ) 9 = 99 Vastaus: Yhdeksäs termi o 99. 0. Lukujoo rekursiivie

Lisätiedot

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAB Jussi Tyni. Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAB6. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1

1. osa, ks. Solmu 2/ Kahden positiivisen luvun harmoninen, geometrinen, aritmeettinen ja + 1 u v 2 1 Epäyhtälötehtävie ratkaisuja. osa, ks. Solmu 2/200. Kahde positiivise luvu harmoie, geometrie, aritmeettie ja kotraharmoie keskiarvo määritellää yhtälöillä H = 2 +, G = uv, A = u + v 2 u v ja C = u2 +

Lisätiedot

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n.

Eräs matematiikassa paljon hyödynnetty summa on ns. luonnollisten lukujen neliöiden summa n. POHDIN projekti Neliöide summa Lukujoo : esimmäise jäsee summa kirjoitetaa tavallisesti muotoo S ai i 1. Aritmeettisesta lukujoosta ja geometrisesta lukujoosta muodostetut summat voidaa johtaa varsi helposti.

Lisätiedot

5. Lineaarisen optimoinnin perusprobleemat

5. Lineaarisen optimoinnin perusprobleemat 2 5. Lieaarise optimoii perusprobleemat Optimoitiprobleema o lieaarise optimoii tehtävä, jos kohdefuktio o lieaarie fuktio ja rajoitusehdot ovat lieaarisia yhtälöitä tai lieaarisia epäyhtälöitä. Yleisessä

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot

2 arvo muuttujan arvolla

2 arvo muuttujan arvolla Mb Mallikoe Määritä funktion f ( ) arvo muuttujan arvolla a) b) c) k 6 a) Määritä suorien y 0 ja y leikkauspiste b) Määritä suoran yhtälö, kun se kulkee pisteen (, ) kautta ja on yhdensuuntainen suoran

Lisätiedot

Mat-2.090 Sovellettu todennäköisyyslasku A

Mat-2.090 Sovellettu todennäköisyyslasku A Mat-.090 Sovellettu todeäköiyylaku A Mat-.090 Sovellettu todeäköiyylaku A / Ratkaiut Aiheet: Avaiaat: Tilatollite aieito keräämie ja mittaamie Tilatollite aieitoje kuvaamie Oto ja otojakaumat Aritmeettie

Lisätiedot

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla

Kantobiomassan määrän mallintaminen leimikoissa hakkuukonemittausten avulla Metsätietee päivä, 6.0.0 Katobiomassa määrä mallitamie leimikoissa hakkuukoemittauste avulla Heikki Ovaskaie, Itä Suome yliopisto Pirkko Pihlaja, UPM Kymmee Teijo Palader, Itä Suome yliopisto Johdato Suomessa

Lisätiedot

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen

T Datasta tietoon, syksy 2005 Laskuharjoitus 8.12., ratkaisuja Jouni Seppänen T-1.1 Datasta tietoo, syksy 5 Laskuharjoitus.1., ratkaisuja Joui Seppäe 1. Simuloidaa tasoittaista algoritmia. Esimmäisessä vaiheessa ehdokkaia ovat kaikki yhde muuttuja joukot {a}, {b}, {c} ja {d}. Aaltosulkeide

Lisätiedot

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut

Lisätiedot

Ruletti ja Martingaalistrategia

Ruletti ja Martingaalistrategia POHDIN projekti Ruletti ja Martigaalistrategia Ruletti o uhkapeli, jossa pelaaja pyrkii veikkaamaa kuula pysähtymiskohda pyörivältä kehältä. Euroopassa käytettävässä ruletissa o käytössä 37 umeroa (0-36)

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti

235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti 8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.

Lisätiedot

Kombinatoriikka. Iiro Honkala 2015

Kombinatoriikka. Iiro Honkala 2015 Kombiatoriikka Iiro Hokala 2015 Sisällysluettelo 1. Haoi torit 1 2. Lokeroperiaate 3 3. Tuloperiaate 3 4. Permutaatioista ja kombiaatioista 4 5. Toistokombiaatioista 5 6. Biomikertoimista 5 7. Multiomikertoimista

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Luennot, osa II Otokset MS-A050 Todeäköisyyslaskea ja tilastotietee peruskurssi Lueot, osa II Kaksi hyödyllista jakaumaa 3 Estimoiti G. Gripeberg 4 Luottamusvälit Aalto-yliopisto. helmikuuta 05 5 Hypoteesie testaus 6

Lisätiedot

yleisessä muodossa x y ax by c 0. 6p

yleisessä muodossa x y ax by c 0. 6p MAA..0 Muista kirjoittaa jokaiseen paperiin nimesi! Tee vastauspaperin yläreunaan pisteytysruudukko! Valitse kuusi tehtävää! Perustele vastauksesi välivaiheilla! Jussi Tyni Ratkaise: a) x x b) xy x 6y

Lisätiedot

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Yhden selittäjän lineaarinen regressiomalli. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteesee Yhde selittää lieaarie regressiomalli TKK (c) Ilkka Melli (2005) Yhde selittää lieaarie regressiomalli Yhde selittää lieaarie regressiomalli a sitä koskevat oletukset Yhde selittää

Lisätiedot

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut

Kaksiulotteinen normaalijakauma Mitta-asteikot Havaintoaineiston kuvaaminen ja otostunnusluvut Mat-2.09 Sovellettu todeäköisyyslasku /Ratkaisut Aiheet: Kaksiulotteie ormaalijakauma Mitta-asteikot Havaitoaieisto kuvaamie ja otostuusluvut Avaisaat: Ehdollie jakauma, Ehdollie odotusarvo, Ehdollie variassi,

Lisätiedot

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola

797 E. matematiikka. Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola 797 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava 24 Ongelmanratkaisu yhtälön avulla Yhtälön

Lisätiedot

Markov-ketjun hetkittäinen käyttäytyminen

Markov-ketjun hetkittäinen käyttäytyminen Matematiika ja systeemiaalyysi laitos B Markov-ketju hetkittäie käyttäytymie Tämä harjoitukse tavoitteea o oppia muodostamaa Markov-malleja satuaisilmiöille, piirtämää tiettyä siirtymämatriisia vastaava

Lisätiedot

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.

TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1. TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.

Lisätiedot

Tehtäviä neliöiden ei-negatiivisuudesta

Tehtäviä neliöiden ei-negatiivisuudesta Tehtäviä epäyhtälöistä Tehtäviä eliöide ei-egatiivisuudesta. Olkoo a R. Osoita, että 4a 4a. Ratkaisu. 4a 4a a) a 0 a ) 0.. Olkoot a,, R. Osoita, että a a a. Ratkaisu. Kerrotaa molemmat puolet kahdella:

Lisätiedot

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI

OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Mitkä kuutiot on taiteltu kuvassa

Lisätiedot

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x)

xe y = ye x e y + xe y y = y e x + e x y xe y y y e x = ye x e y y (xe y e x ) = ye x e y y = yex e y xe y e x = x 3 + x 2 16x + 64 = D(x) BM20A580 Differetiaalilasketa ja sovellukset Harjoitus 3, Syksy 206. Laske seuraavat itegraalit si(4t + )dt (b) x(x 2 + 00) 000 dx (c) x exp(ix )dx 2. Mitä o y, ku (x ) 2 + y 2 = 2 2, etäpä y? Vastaukset

Lisätiedot

3 Eksponentiaalinen malli

3 Eksponentiaalinen malli Eksponentiaalinen malli Eksponentiaalinen kasvaminen ja väheneminen 6. Kulunut aika (h) Bakteerien määrä 0 80 0 60 0 0 7 7 0 0 0 6. 90 % 0,90 Pienennöksiä (kpl) Piirroksen korkeus (cm) 0,90 6,0, 0,90 6,0,06,

Lisätiedot

Pelivaihtoehtoja. Enemmän vaihtelua peliin saa käyttämällä erikoislaattoja. Jännittävimmillään Alfapet on, kun miinusruudut ovat mukana pelissä!

Pelivaihtoehtoja. Enemmän vaihtelua peliin saa käyttämällä erikoislaattoja. Jännittävimmillään Alfapet on, kun miinusruudut ovat mukana pelissä! Pelivaihtoehtoja Yksinkertaisin vaihtoehto: lfapetia voi pelata monella eri tavalla. Yksinkertaisimmassa vaihtoehdossa käytetään ainoastaan kirjainlaattoja. Pelilaudan miinusruudut ovat tavallisia ruutuja,

Lisätiedot

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu

811312A Tietorakenteet ja algoritmit , Harjoitus 1 ratkaisu 83A Tietoraketeet ja algoritmit 06-07, Harjoitus ratkaisu Harjoitukse aiheea o algoritmie oikeellisuus. Tehtävä. Kahvipurkkiogelma. Kahvipurkissa P o valkoisia ja mustia kahvipapuja, yhteesä vähitää kaksi

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut Helsingin seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Laske 6 5 4 5 4 3 + 4 3 2 3 2 1. a) 88 b) 66 c) 78 d) 76 Ratkaisu. Suoralla laskulla: 6 5 4 5 4 3 + 4 3 2 3 2 1

Lisätiedot

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää

Todennäköisyyslaskenta sivuaineopiskelijoille. Heikki Ruskeepää Todeäköisyyslasketa sivuaieopiskelijoille Heikki Ruskeepää 2012 Sisällys 2 1 Todeäköisyys 3 1.1 Klassie todeäköisyys 3 1.2 Kombiatoriikkaa 5 1.3 Aksiomaattie todeäköisyys 7 1.4 Ehdollie todeäköisyys 12

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

Kenguru 2014 Cadet (8. ja 9. luokka)

Kenguru 2014 Cadet (8. ja 9. luokka) sivu 1 / 8 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta saat miinuspisteitä

Lisätiedot

Tunnuslukuja 27 III TUNNUSLUKUJA

Tunnuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 27 III TUNNUSLUKUJA Tuuslukuja 28 Tuuslukuja käytetää, ku tilastoaieistoa havaiollistetaa tiivistetysti yksittäisillä luvuilla. Tuusluvut lasketaa muuttujie arvoje perusteella ja e kuvaavat

Lisätiedot

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo?

3. Kuvio taitetaan kuutioksi. Mikä on suurin samaa kärkeä ympäröivillä kolmella sivutahkolla olevien lukujen tulo? Peruskoulun matematiikkakilpailu Loppukilpailu perjantaina 4.2.2011 OSA 1 Ratkaisuaika 30 min Pistemäärä 20 Tässä osassa ei käytetä laskinta. Esitä myös lasku, kuvio, päätelmä tai muu lyhyt perustelu.

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä

Otantajakauma. Otantajakauman käyttö päättelyssä. Otantajakauman käyttö päättelyssä Otatajakauma kuvaa tarkasteltava parametri jakauma eri otoksista laskettua parametria o joki yleesä tuusluku, esim. keskiarvo, suhteellie osuus, riskisuhde, korrelaatiokerroi, regressiokerroi, je. parametria

Lisätiedot

3 x < < 3 x < < x < < x < 9 2.

3 x < < 3 x < < x < < x < 9 2. Matematiika johdatokurssi Kertaustehtävie ratkaisuja 1. Ratkaise epäyhtälöt: a) 3 x < 3, b) 5x + 1. Ratkaisu. a) Ratkaistaa epäyhtälö poistamalla esi itseisarvot: 3 x < 3 3 < 3 x < 3 9 < x < 3 3 < x

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Mite opit parhaite? Valmistaudu pitkä- tai lyhye matematiika kirjoituksii ilmaiseksi Mafyetti-ohjelmalla! Harjoittelu tehdää aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa tarvittavat

Lisätiedot

1.1 Luvut ja lukujoukot

1.1 Luvut ja lukujoukot Vahimmat tuetut todisteet lukuje käytöstä ovat vähitää 30 000 vuotta vahoja [Joh D Barrow: Lukuje taivas, Art House 1999]. Lukuja o tarvittu aiaki ilmaisemaa karjalauma koko. Siksi luvut ovat mahdollisesti

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:... MATEMATIIKAN KOE Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu Nimi: Oppilaitos:.. Koulutusala:... Luokka:.. Sarjat: LAITA MERKKI OMAAN SARJAASI. Tekniikka ja liikenne:..

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6

Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Arkkitehtimatematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Arkkitehtimatematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Arkkitehtimatematiikan koe..017, Ratkaisut (Sarja A) 1. a) Mitkä reaaliluvut x toteuttavat yhtälön x =? (1 p.) b) Mitkä reaaliluvut x toteuttavat

Lisätiedot