10 Liiketaloudellisia algoritmeja

Koko: px
Aloita esitys sivulta:

Download "10 Liiketaloudellisia algoritmeja"

Transkriptio

1 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa Investointien kannattavuuden arviointimenetelmät Investointien tekeminen on yksi tärkeimpiä ja vaativimpia tehtäviä yrityksissä. Sen lisäksi, että esimerkiksi tulevien tuottojen arviointi ja jakaantuminen eri vuosille on vaikeaa, myös itse investointien kannattavuusmenetelmät voivat antaa toisistaan poikkeavia lopputuloksia. Katsomme seuraavaksi yleisimpiä menetelmiä ja esitämme niitä vastaavat algoritmit, jotka sinänsä ovat melko yksinkertaisia. Tietenkin kaikkien laskelmien tekeminen on vaivatonta esimerkiksi taulukkolaskentaohjelmalla, mutta laskelmia varten joudutaan kuitenkin laatimaan ohjelmat itsenäisissä yrityssovelluksissa Nykyarvomenetelmä Nykyarvomenetelmässä (NPV, Net Present Value) investointien kassavirrat diskontataan nykyhetkeen laskentakoron avulla. Kaavalla investoinnin nykyarvo NA saadaan seuraavasti: NA = S 1 /(1+k) 1 + S 2 /(1+k) S n /(1+k) n - I 0 + JA/(1+k) n, jossa S 1... S n ovat arvioituja tulevia tuottoja investoinnista ja k = laskentakorko (desimaalimuodossa) ja I 0 = perusinvestointi ja JA = jäännösarvo Investointi on kannattava, jos NA > 0.

2 Liiketaloudellisia algoritmeja 219 Investoinnin nykyarvo: Annetaan pitoaika vuosissa (N), laskentakorko (K) desimaalilukuna, perusinvestoinnin suuruus (I) ja jäännösarvo JA Annetaan silmukassa vuosien 1... N tuotot luetteloon A[N] Lasketaan nykyarvo NA silmukassa 1...N Tulostetaan kannattavuus: TRUE, jos NA > 0. Algoritmin arvoa lisää, jos sen avulla voidaan kätevästi hakea vastauksia esimerkiksi kysymyksiin: Millä laskentakorolla investointi olisi vielä kannattava? Kuinka paljon tuottoja tulisi saada halutulla laskentakorolla, jos laskentakorko on epävarma? Suhteellinen nykyarvomenetelmä SNA = (S 1 /(1+k) 1 + S 2 /(1+k) S n /(1+k) n + JA/(1+k) n )/ I 0 Investointi on kannattava, jos SNA > 1. Algoritmi on helppo laatia muuttamalla hieman edellistä algoritmia Sisäisen korkokannan menetelmä Sisäisen korkokannan menetelmässä (IRR, Internal rate of Return) lasketaan se korkokanta, jolla investoinnin nykyarvo on 0. Kaava on: n S t /(1+R) t + JA n /(1+R) n - I 0 = 0 t=1 Algoritmissa annetaan sisäiselle korkokannalle ensin pienehkö alkuarvo, jota kasvatetaan, kunnes yhtälön arvo on >0. Tämän jälkeen palataan yksi askel taaksepäin ja aletaan kasvattaa arvoa R aiempaa pienemmin askelin. Iterointia jatketaan, kunnes haluttu tarkkuus on saavutettu. Koska kannattavuuden laskennassa käytetään epävarmoja arvioita, riittänee koronkin tarkkuudeksi yksi desimaali.

3 220 Liiketaloudellisia algoritmeja Pääoman tuottoaste Pääoman tuottoasteesta (ROI, Return On Investment) on olemassa useita erilaisia versioita. Investointi on kannattava, jos ROI > laskentakorko. ROI saadaan kaavalla: ROI = nettotulos/keskimäärin sitoutunut pääoma * 100 (%) ROIn huonona puolena on se, ettei menetelmässä oteta huomioon rahan aika-arvoa Takaisinmaksuaika Takaisinmaksuaika (Pay-Back) on yksinkertaisin (ja samalla sekä epävarmin että yleisimmin käytetty) menetelmä investointien kannattavuuden laskennassa. Kaavana se lasketaan: Takaisinmaksuaika = odotetut tuotot eri vuosina yhteensä/investoinnin hinta Muita taloudellisia laskelmia Tässä luvussa kehittelemme algoritmeja, joiden avulla voi muodostaa itselleen nopeita työkaluja taloudellisten laskelmien tekemiseen Lainan takaisinmaksaminen Tarkastelemme ensin lainan maksua kahdella eri tavalla. Ensimmäisessä tavassa lyhennämme lainapääomaa tasaerin, jolloin siis koron osuus markoissa vaihtelee. Toisessa tavassa maksamme lainapääoman tasaerin siten, että lyhennyksen ja koron summa on vakio koko lainanmaksuajan. Lukija voi vertailla tuloksia eri suuruisilla lainapääomilla ja eri pituisia takaisinmaksuaikoja käyttäen. Myös lainan lyhennysvälit vaikuttavat noiden kahden eri tavan eroavaisuuksiin. Esittelemme molemmat lainanmaksutavat ensin esimerkkien valossa.

4 Liiketaloudellisia algoritmeja 221 Tapa 1: Lainapääoma P on mk ja vuosikorko R 10 %. Lainanmaksuaika on 24 kuukautta ja maksuväli 1 kuukausi. Haluamme lyhentää lainapääomaa tasaisin erin, jolloin koron osuus markoissa vaihtelee. Kuvaamme lainapääoman lyhennyserää muuttujalla Plyh ja koron osuutta muuttujalla Korkomk. Muuttuja Summa ilmaisee summan Plyh + Korkomk. Tässä on esimerkkilaskelma taulukkona: Kuukausi P Plyh Korkomk Summa ,00 833, , , lyhennys ,67 833, , , ,33 833, , , ,00 833, , , ,67 833, , , ,33 833, , , ,00 833, , , ,67 833, , , ,33 833, , , ,00 833, , , ,67 833, , , ,33 833, , , ,00 833, , , , , , , , , , , ,00 833, , , , , , , , , , , ,00 833, , , , , , , , , , , ,00 833, , , , , , , , ,3333 6, , , ,33 Tapa 2: Alkumuuttujat ovat samat kuin edellä: lainapääoma P on mk ja vuosikorko R 10 %. Lainanmaksuaika on 24 kuukautta ja maksuväli 1 kuukausi. Haluamme nyt maksaa lainan ja koron tasaerin (1000 mk/kk), jolloin sekä pääoman lyhennyksen että koron osuus (tasaerästä) muuttuvat ajan myötä. Kuvaamme lainapääoman lyhennyserää muuttujalla Plyh ja koron osuutta muuttujalla Korkomk. Muuttuja Tasaerä ilmaisee nyt summan Plyh + Korkomk.

5 222 Liiketaloudellisia algoritmeja Kuukausi P Tasaerä Plyh Korkomk , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,72 961,7920 8, , , , Näemme, että käytetyillä muuttujilla päästiin likimain samoihin tuloksiin, eli koron osuus markoissa on suunnilleen sama molemmilla tavoilla. Jälkimmäinen maksutapa oli hieman edullisempi lainanottajalle tässä tapauksessa, mutta näin ei suinkaan tarvitse olla. Useimmiten jälkimmäinen vaihtoehto on huonompi. Lukija voi koetella sekä isommilla pääomilla että pitemmillä maksuajoilla hakea olosuhteita, joissa ensimmäinen vaihtoehto alkaa näkyä selkeästi parempana. Menettelyn 1 algoritmi on seuraava: Lainan maksuerät (maksutapa 1): Esitellään muuttujat P = Lainapääoma R = Vuosikorko T_ma = Lainanmaksuaika (kuukausissa) T_mv = Maksuväli (kuukausissa, tässä vakiona 1 kuukausi) P_lyh = Lainapääoman lyhennyserä (mk) Korko_mk = Koron osuus (mk) Korko_kum = Koron osuuksien kumulatiivinen summa (mk)

6 Liiketaloudellisia algoritmeja 223 Summa = P_lyh + Korko_mk kk = indeksi, kokonaisluku (1..lainanmaksuaika) P_lyh = P/T_ma (koska maksuväli =1kk) Anna P, R, T_ma, T_mv = 1 Lasketaan ensimmäisen erän korko Summa = P_lyh + Korko_mk Tulosta P_lyh, Korko_mk, Summa P=P-P_lyh Summa = 0 Lasketaan muut erät kk=2tot_ma (koska T_mv = 1) Summa = P_lyh + Korko_mk Tulosta P_lyh, Korko_mk, Summa, Korko_kum P=P-P_lyh Summa = 0 next kk Tapa 2: Alkumuuttujat ovat samat kuin edellä: lainapääoma P on mk ja vuosikorko R 10 %. Lainanmaksuaika on 24 kuukautta ja maksuväli 1 kuukausi. Haluamme nyt maksaa lainan ja koron tasaerin (1000 mk/kk), jolloin sekä pääoman lyhennyksen että koron osuus (tasaerästä) muuttuvat ajan myötä. Kuvaamme lainapääoman lyhennyserää muuttujalla Plyh ja koron osuutta muuttujalla Korkomk. Muuttuja Tasaerä ilmaisee nyt summan Plyh + Korkomk. Menettelyn 2 algoritmi on seuraava: Lainan maksuerät (maksutapa 2): Esitellään muuttujat P = Lainapääoma R = Vuosikorko T_ma = Lainanmaksuaika (kuukausissa) T_mv = Maksuväli (kuukausissa, tässä vakiona 1 kuukausi) P_lyh = Lainapääoman lyhennyserä (mk) Korko_mk = Koron osuus (mk) Korko_kum = Koron osuuksien kumulatiivinen summa (mk) P_lyh = Tasaerä - Korko_mk kk = indeksi, kokonaisluku (1..lainanmaksuaika)

7 224 Liiketaloudellisia algoritmeja Anna P, R, T_mv = 1 Lainanmaksuaikaa T_ma ei ehkä tiedetä Anna Tasaerä Lasketaan ensimmäisen erän korko P_lyh = Tasaerä - Korko_mk Tulosta P_lyh, Korko_mk P=P-P_lyh T_ma = 1 Lasketaan muut erät while P >= P_lyh (Käy, koska P_lyh kasvaa joka kerta) P_lyh = Tasaerä - Korko_mk Tulosta T_ma, P_lyh, Korko_mk, Korko_kum P=P-P_lyh T_ma = T_ma +1 end while Viimeinen erä voi olla poikkeava, jos ei mene tasan. P < P_lyh P_lyh = P Tulosta T_ma, P_lyh, Korko_mk, Korko_kum Koron korko Laskemme vielä, mitä seuraa, jos hra Varovainen ei haluakaan maksaa lainaansa. Kuinka korko ja koron korko kehittyvät. Jos vuosikorko on R ja vuosia n, saadaan pääomalle P laskettua korko kertomalla pääoma lausekkeella (1 + R) n, jossa R on desimaalimuodossa. Ensimmäisen vuoden jälkeen koron osuus on siis (1 + R) 1 * P. Kertyneelle korolle joudutaan laskemaan korko seuraavina vuosina ja tämä nimenomaan sisältyy lausekkeeseen. Jos jätämme lainan maksamatta kahden vuoden ajalta, kertyy korkoa (1 + R) 2 * P. Algoritmi on seuraavanlainen:

8 Liiketaloudellisia algoritmeja 225 Koron korko: Anna pääoma P, korko R desimaalimuodossa Anna vuosien määrä n, jolta haluat laskea koron Vuosi kokonaisluku, Korkosumma reaaliluku Vuosi =1ton Korkosumma = (1+R)Vuosi * P Tulosta Vuosi, Korkosumma end;

Nykyarvo ja investoinnit, L7

Nykyarvo ja investoinnit, L7 Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto

Lisätiedot

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10

Sisäinen korkokanta ja investoinnin kannattavuuden mittareita, L10 Sisäinen ja investoinnin, L10 1 Määritelmä: i sis on se laskentakorko, jolla nettonykyarvo on nolla. Jos projekti on normaali siinä mielessä, että alun negatiivisia nettoeriä seuraa lopun positiiviset

Lisätiedot

Nykyarvo ja investoinnit, L14

Nykyarvo ja investoinnit, L14 Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...

Lisätiedot

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa

Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.

Lisätiedot

Nykyarvo ja investoinnit, L9

Nykyarvo ja investoinnit, L9 Nykyarvo ja investoinnit, L9 netto netto netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n 0 1 2 3 4 5

Lisätiedot

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%)

Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäisen korkokannan menetelmä Selvitetään korkokanta, jolla investoinnin nykyarvo on nolla eli tuottojen ja kustannusten nykyarvot ovat yhtä suuret (=investoinnin tuotto-%) Sisäinen korkokanta määritellään

Lisätiedot

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )

JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t ) Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän

Lisätiedot

Investointilaskentamenetelmiä

Investointilaskentamenetelmiä Investointilaskentamenetelmiä Laskentakorkokannan käyttöön perustuvat menetelmät (netto)nykyarvomenetelmä suhteellisen nykyarvon menetelmä eli nykyarvoindeksi annuiteettimenetelmä likimääräinen annuiteettimenetelmä

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

Investoinnin takaisinmaksuaika

Investoinnin takaisinmaksuaika Investoinnin takaisinmaksuaika Takaisinmaksuaika on aika, jona investointi maksaa hintansa takaisin eli nettotuottoja kertyy perushankintamenon verran Investointi voidaan tehdä, jos takaisinmaksuaika

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

Verkkokurssin tuotantoprosessi

Verkkokurssin tuotantoprosessi Verkkokurssin tuotantoprosessi Tietotekniikan perusteet Excel-osion sisältökäsikirjoitus Heini Puuska Sisältö 1 Aiheen esittely... 3 2 Aiheeseen liittyvien käsitteiden esittely... 3 2.1 Lainapääoma...

Lisätiedot

Rahavirtojen diskonttaamisen periaate

Rahavirtojen diskonttaamisen periaate Rahavirtojen diskonttaamisen periaate TU-C1030 Laskelmat liiketoiminnan päätösten tukena Luento 14.1.2016 I vaiheen luentokokonaisuus INVESTOINNIN KANNATTAVUUS YRITYKSEN KANNATTAVUUS 1. Vapaa rahavirta

Lisätiedot

BL20A0500 Sähkönjakelutekniikka

BL20A0500 Sähkönjakelutekniikka BL20A0500 Sähkönjakelutekniikka Talouslaskelmat Jarmo Partanen Taloudellisuuslaskelmat Jakeluverkon kustannuksista osa on luonteeltaan kiinteitä ja kertaluonteisia ja osa puolestaan jaksollisia ja mahdollisesti

Lisätiedot

Investointipäätöksenteko

Investointipäätöksenteko Investointipäätöksenteko Ekstralaskuesimerkkejä Laskentatoimen Perusteet, Syksy 2015 Katja Kolehmainen KTT, Apulaisprofessori Neppi Oy valmistaa neppejä ja nappeja. Käsityöpiireissä se on tunnettu laadukkaista

Lisätiedot

Algoritmit C++ Kauko Kolehmainen

Algoritmit C++ Kauko Kolehmainen Algoritmit C++ Kauko Kolehmainen Algoritmit - C++ Kirjoittanut Taitto Kansi Kustantaja Kauko Kolehmainen Kauko Kolehmainen Frank Chaumont Oy Edita Ab IT Press PL 760 00043 EDITA Sähköpostiosoite Internet

Lisätiedot

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2

Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2 Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku

Lisätiedot

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Menot (oikaistut) / Tulot (oikaistut) x 100 = Suorat rahamenot tuloista %

Menot (oikaistut) / Tulot (oikaistut) x 100 = Suorat rahamenot tuloista % Veroilmoituksesta laskettavat tunnusluvut Heikki Ollikainen, ProAgria Oulu Nopea tuloksen analysointi on mahdollista tehdä laskelmalla veroilmoituksesta muutamia yksinkertaisia tunnuslukuja, joiden perusteella

Lisätiedot

Osamaksukauppa, vakiotulovirran diskonttaus, L8

Osamaksukauppa, vakiotulovirran diskonttaus, L8 Osamaksukauppa, vakiotulovirran diskonttaus, L8 1 Kerrataan kaavoja s n;i = ((1 + i)n 1) i = prolongointitekijä a n;i = ((1 + i)n 1) i(1 + i) n = diskonttaustekijä c n;i = i(1 + i) n ((1 + i) n 1) = kuoletuskerroin

Lisätiedot

Näytesivut LAATIMINEN. 5.1 Lainaosuuslaskelmamalleja esimerkkien muodossa

Näytesivut LAATIMINEN. 5.1 Lainaosuuslaskelmamalleja esimerkkien muodossa 5 LAINAOSUUSLASKELMAN LAATIMINEN 5.1 Lainaosuuslaskelmamalleja esimerkkien muodossa Kuten edellä on todettu, lainaosuuslaskelmat ovat muokkautuneet kentällä nykymuotoonsa. Kirjanpitolautakunnan 7.12.2010

Lisätiedot

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.

MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan

Lisätiedot

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA

Aki Taanila EXCELIN RAHOITUSFUNKTIOITA Aki Taanila EXCELIN RAHOITUSFUNKTIOITA 4.12.2012 Sisällys Johdanto... 1 Aikaan liittyviä laskelmia... 1 Excelin rahoitusfunktioita... 2 Koronkorkolaskenta... 2 Jaksolliset suoritukset... 4 Luotot... 7

Lisätiedot

diskonttaus ja summamerkintä, L6

diskonttaus ja summamerkintä, L6 diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson

Lisätiedot

Jaksolliset suoritukset, L13

Jaksolliset suoritukset, L13 , L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan

Lisätiedot

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010

Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon 26.11.2010 » Vaasan Ekonomien hallituksen ehdotus yhdistyksen syyskokoukselle selvitystyön aloittamiseksi oman mökin tai lomaasunnon hankkimiseksi 26.11.2010 Lähtökohdat selvitystyölle 1/3 2 Hallitus esittää yhdistyksen

Lisätiedot

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta

BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta BL20A1200 Tuuli- ja aurinkoenergiateknologia ja liiketoiminta Tuulipuiston investointi ja rahoitus Tuulipuistoinvestoinnin tavoitteet ja perusteet Pitoajalta lasketun kassavirran pitää antaa sijoittajalle

Lisätiedot

Invest for Excel 3.5 uudet ominaisuudet

Invest for Excel 3.5 uudet ominaisuudet Invest for Excel 3.5 uudet ominaisuudet Excel 2007 -valikkorivi...2 Venäjän kieli...3 Lisää rivejä tunnuslukutaulukkoon...3 Suhteellisen nykyarvon määritelmä muuttunut...3 Kannattavuuslaskelma, joka perustuu

Lisätiedot

Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka

Investointien suunnittelu ja rahoitus. Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) Investointien suunnittelu ja rahoitus Kalevi Aaltonen Aalto-yliopisto Tuotantotekniikka Tehdasprojekti (Kon-15.4197) KURSSIN LUENNOT 11.09.2015 Johdanto (Kalevi Aaltonen) 18.09.2015

Lisätiedot

Uudet ominaisuudet: Invest for Excel 3.6

Uudet ominaisuudet: Invest for Excel 3.6 Uudet ominaisuudet: Invest for Excel 3.6 Microsoft Excel versiot... 2 Käyttöoppaat... 2 Sähköinen allekirjoitus... 2 Mallikansiot... 2 Liikearvon poisto ja tuloverotus... 4 Sisäinen korkokanta ennen veroja...

Lisätiedot

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia

Lisätiedot

Tasaerälaina ja osamaksukauppa

Tasaerälaina ja osamaksukauppa Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Vuosi jaetaan

Lisätiedot

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa

Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Kannattavuus tasaikäis- ja eriikäismetsätaloudessa Paula Horne ja Jyri Hietala Pellervon taloustutkimus PTT Metsäpäivät 2015 5.11.2015 Metsänomistajien tyytyväisyys hakkuu- ja hoitotapoihin Uudessa metsälaissa

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 21.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 21.9.2015 1 / 25 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset

Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset Rahoitusriskit ja johdannaiset Matti Estola Luento 6 Swap -sopimukset 1. Swapit eli vaihtosopimukset Swap -sopimus on kahden yrityksen välinen sopimus vaihtaa niiden saamat tai maksamat rahavirrat keskenään.

Lisätiedot

RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma

RAHOITUSOSA. Taloussuunnitelmakauden rahoituslaskelmat. Talousarvion 2004 rahoituslaskelma 151 RAHOITUSOSA 152 153 RAHOITUSOSA Talousarvion rahoitusosaan kootaan käyttötalous-, tuloslaskelma - ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien

Lisätiedot

Korkolasku ja diskonttaus, L6

Korkolasku ja diskonttaus, L6 Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti

Lisätiedot

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN:

PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: 6 LIITE PERUSYHTÄLÖ, JOKA OSOITTAA YHTÄÄLTÄ LUOTON JA TOISAALTA LYHENNYSTEN JA MAKSUJEN VASTAAVUUDEN: K m K 1 A K t K m A K K t K ' K 1 Kirjainten ja merkkien selitykset: ' ' K luoton numero K lyhennyksen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 27.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 27.1.2010 1 / 37 If-käsky toistokäskyn sisällä def main(): HELLERAJA = 25.0 print "Anna lampotiloja, lopeta -300:lla."

Lisätiedot

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet, ORMS1030 Vaasa yliopisto, kevät 206 Talousmatematiika perusteet, ORMS030 5. harjoitus, viikko 7 5. 9.2.206 R ma 0 2 F455 R5 ti 0 2 F9 R2 ma 4 6 F455 R6 to 2 4 F455 R3 ti 08 0 F455 R7 pe 08 0 F455 R4 ti 2 4 F455

Lisätiedot

SIJOITUSANALYYSI 2h+kk+ph, Kauppurienkatu 5, Oulu KOHDETIEDOT

SIJOITUSANALYYSI 2h+kk+ph, Kauppurienkatu 5, Oulu KOHDETIEDOT KOHDETIEDOT Sivu 1 PERUSTIEDOT VUOKRATIEDOT Sijainti Kauppurienkatu 5, Oulu Vuokra 610,00 /kk Kaupunginosa Keskusta Hoitovastike 110,00 /kk Yhtiö As Oy Kauppurienkatu 5 Rahoitusvastike - Rakennusvuosi

Lisätiedot

Taulukkolaskenta. Microsoft Excel 2007 SYVENTÄVÄ MATERIAALI. Kieliversio: suomi Materiaaliversio 1.0 päivitetty 30.9.2008

Taulukkolaskenta. Microsoft Excel 2007 SYVENTÄVÄ MATERIAALI. Kieliversio: suomi Materiaaliversio 1.0 päivitetty 30.9.2008 Taulukkolaskenta SYVENTÄVÄ MATERIAALI Microsoft Excel 2007 Kieliversio: suomi Materiaaliversio 1.0 päivitetty 30.9.2008 materiaalimyynti@piuha.fi Tämän materiaalin kopioiminen ilman tekijän lupaa kielletään

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää Rahoitusriskit ja johdannaiset Matti Estola luento 7 Swap sopimuksista lisää 1. Pankki swapin välittäjänä Yleensä 2 eri-rahoitusalan yritystä eivät tee swap sopimusta keskenään vaan pankin tai yleensäkin

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2011 1 / 34 Luentopalaute kännykällä käynnissä! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 16.9.2015 CSE-A1111 Ohjelmoinnin peruskurssi Y1 16.9.2015 1 / 26 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Energiakorjausinvestointien kannattavuus ja asumiskustannukset. Seinäjoki 26.11.2013 Jukka Penttilä

Energiakorjausinvestointien kannattavuus ja asumiskustannukset. Seinäjoki 26.11.2013 Jukka Penttilä Energiakorjausinvestointien kannattavuus ja asumiskustannukset Seinäjoki 26.11.2013 Jukka Penttilä Kiinteistöliitto Etelä-Pohjanmaa ry - Suomen Kiinteistöliitto Paikallinen vaikuttaja - Vahva valtakunnallinen

Lisätiedot

Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.2015

Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.2015 Yhteenveto kaukolämmön ja maalämmön lämmitysjärjestelmävertailusta ONE1 Oy 6.5.215 Sisällys 1. Johdanto... 1 2. Tyyppirakennukset... 1 3. Laskenta... 2 4.1 Uusi pientalo... 3 4.2 Vanha pientalo... 4 4.3

Lisätiedot

Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta. Arvokäsitteitä

Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta. Arvokäsitteitä Metsän arvostuskysymykset yhteismetsän laajentuessa liittymisten kautta MML 3.5.2010 Eero Autere (MH) Raito Paananen Metsävaratietoasiantuntija (MMM, LKV) 5.5.2010 1 5.5.2010 2 Arvokäsitteitä Käyttöarvo

Lisätiedot

Investointien rahoitus v. 2015-2025 18.9.2013

Investointien rahoitus v. 2015-2025 18.9.2013 Investointien rahoitus v. 2015-2025 18.9.2013 Investointien rahoitus v. 2015-2025 Tulevien vuosien välttämättömien investointien aiheuttamaan rahankäyttöön voidaan varautua kassan riittävyyden osalta ottamalla

Lisätiedot

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % 6 Kertausosa 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 % Osakkeen arvo vuoden lopussa 1,289 0,957 12,63 = 15,580... 15,58 b) Indeksin muutos: 6500 1,1304...

Lisätiedot

Johdatus f90/95 ohjelmointiin. H, R & R luvut 1-3

Johdatus f90/95 ohjelmointiin. H, R & R luvut 1-3 Johdatus f90/95 ohjelmointiin H, R & R luvut 1-3 Fortran-kieli ( 3.1-3) IBM 1954, FORmula TRANslator ISO/ANSI standardit f90, f95, f2003 tieteellinen & teknillinen laskenta rinnakkaislaskenta (HPF, openmp)

Lisätiedot

Raahen kaupunginhallitus teki 16.2.2015 äänestyspäätöksen myötä esityksen siitä, että lukion lisäsiipi rakennettaisiin.

Raahen kaupunginhallitus teki 16.2.2015 äänestyspäätöksen myötä esityksen siitä, että lukion lisäsiipi rakennettaisiin. Arvoisa kaupunginvaltuutettu, kun tarkastellaan kassamaksuja, investointikustannuksia sekä nykyarvomenettelyä on edullisin ratkaisu katettuputki sekä vuokraus. Merikadun hidasteet tai tienkatkaisu häviävät

Lisätiedot

Juuan kunta Vesihuoltolaitos JUUAN KUNNAN VESIHUOLTOLAITOKSEN LIIKETALOUDELLINEN ENNUSTE 2012-2030

Juuan kunta Vesihuoltolaitos JUUAN KUNNAN VESIHUOLTOLAITOKSEN LIIKETALOUDELLINEN ENNUSTE 2012-2030 Juuan kunta Vesihuoltolaitos JUUAN KUNNAN VESIHUOLTOLAITOKSEN LIIKETALOUDELLINEN ENNUSTE 212-23 Juuan kunnan vesihuoltolaitokselle on laadittu liiketaloudellinen analyysi ja kehitysennuste vuoteen 23 saakka.

Lisätiedot

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14).

Huom 4 Jaksollisten suoritusten periaate soveltuu luonnollisesti laina- ja luottolaskelmiin. Lähtökohtaisena yhtälönä on yhtälö (14). Auiteettiperiaate Huom 4 Jaksolliste suorituste periaate soveltuu luoollisesti laia- ja luottolaskelmii. Lähtökohtaisea yhtälöä o yhtälö (14). Auiteetti Nimellisarvoltaa K 0 suuruise laia maksuerä k, joka

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100

Lisätiedot

Määräykset ja ohjeet 4/2011

Määräykset ja ohjeet 4/2011 Määräykset ja ohjeet 4/2011 Asuntoluoton ennenaikaisesta takaisinmaksusta perittävän enimmäiskorvauksen laskentaan käytettävät Dnro FIVA 9/01.00/2011 Antopäivä 15.12.2011 Voimaantulopäivä 31.3.2012 FIASSIVALVOTA

Lisätiedot

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta

8.1 Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta 8. Murtoluvun määritelmä - murtoluvulla tarkoitetaan aina osaa (osia) jostakin kokonaisuudesta - oheisessa kuvassa ympyrä on jaettu kolmeen yhtä suureen osaan, joista kukin osa on yksi kolmasosa koko ympyrästä

Lisätiedot

Lämpöyrittäjyys Toiminnan ja kannattavuuden tarkastelua

Lämpöyrittäjyys Toiminnan ja kannattavuuden tarkastelua Lämpöyrittäjyys Toiminnan ja kannattavuuden tarkastelua Lämpöyrittäjyyden perusteet to 2.2.2012, Nurmes Lasse Okkonen FT, tuntiopettaja biotalouskoordinaattori Pohjois-Karjalan ammattikorkeakoulu, Biotalouden

Lisätiedot

Suomen Kotikylmiö Oy (Konserni) Kassakriisin tunnistaminen

Suomen Kotikylmiö Oy (Konserni) Kassakriisin tunnistaminen 17.4.215 P - Analyzer pana Luvut 1 euro Tilikausi/pituus 1-12/12 1-12/12 1-12/12 1-12/12 1-12/12 Kassakriisin tunnistaminen 29 21 211 212 213 1 2 3 4 5 Kumulatiivinen käyttökate 1 69 2 164 3 235 4 528

Lisätiedot

Rahoitusinnovaatiot kuntien teknisellä sektorilla

Rahoitusinnovaatiot kuntien teknisellä sektorilla Rahoitusinnovaatiot kuntien teknisellä sektorilla Oma ja vieras pääoma infrastruktuuri-investoinneissa 12.5.2010 Tampereen yliopisto Jari Kankaanpää 6/4/2010 Jari Kankaanpää 1 Mitä tiedetään investoinnin

Lisätiedot

Kauppakorkean pääsykoe 2015 / Ratkaisut

Kauppakorkean pääsykoe 2015 / Ratkaisut Kauppakorkean pääsykoe 2015 / Ratkaisut Johtaminen ja markkinointi: 1. / Ratk: Osiot 1, 2 ja 3 / Tosia (s.1 ja s. 1 sekä s. 2). Osio 4 / Epätosi; Ei, vaan klassisissa organisaatioteorioissa tutkimuksen

Lisätiedot

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO

INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Investoinnin käsite Investointeina pidetään menoja, jotka ovat rahamäärältään suuria ja joissa tulon kertymisaika on pitkä (> 1 vuosi) Vaikutukset ulottuvat pitkälle

Lisätiedot

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta

Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä. Memo-työryhmä 23.9.2010 Lauri Valsta Liiketaloudellisen kannattavuuden parantamisen mahdollisuudet metsien käsittelyssä Memo-työryhmä 23.9.2010 Lauri Valsta 4.11.2010 1 Metsänomistaja ja liiketaloudellinen kannattavuus Metsänomistajan välineet

Lisätiedot

Tunnetko asuntolainariskisi?

Tunnetko asuntolainariskisi? Tunnetko asuntolainariskisi? Studia Monetaria 12.10.2010 Peter Palmroos, tutkija Esityksen sisältö Asuntoluottojen riskit lainanottajalle Vakuuksien hinnan kehitys Maksukyvyn säilyminen Pankkien asuntoluottoriskit

Lisätiedot

Talousmatematiikka (3 op)

Talousmatematiikka (3 op) Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu

Lisätiedot

RAHOITUSOSA. Talousarvion 2005 rahoituslaskelma. Taloussuunnitelmakauden rahoituslaskelmat

RAHOITUSOSA. Talousarvion 2005 rahoituslaskelma. Taloussuunnitelmakauden rahoituslaskelmat RAHOITUSOSA RAHOITUSOSA n rahoitusosaan kootaan käyttötalous-tuloslaskelma- ja investointiosan tulojen ja menojen aiheuttama kassavirta (varsinaisen toiminnan ja investointien kassavirta). Lisäksi rahoitusosaan

Lisätiedot

Mat-2.3114 Investointiteoria - Kotitehtävät

Mat-2.3114 Investointiteoria - Kotitehtävät Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea

Lisätiedot

Paljonko metsäsijoitus tuottaa?

Paljonko metsäsijoitus tuottaa? Paljonko metsäsijoitus tuottaa? Metsä on yksi mahdollinen sijoituskohde. Metsäsijoituksen tuotto riippuu mm. siitä, kuinka halvalla tai kalliilla metsän ostaa, ja siitä, kuinka metsää käsittelee. Kuvan

Lisätiedot

1 Aritmeettiset ja geometriset jonot

1 Aritmeettiset ja geometriset jonot 1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään

Lisätiedot

ARVOMETSÄ METSÄN ARVO 15.3.2016

ARVOMETSÄ METSÄN ARVO 15.3.2016 SISÄLTÖ MAA JA PUUSTO NETTONYKYARVO NETTOTULOT JA HAKKUUKERTYMÄT ARVOMETSÄ METSÄN ARVO 15.3.2016 KUNTA TILA REK.NRO 1234567892 LAATIJA: Antti Ahokas, Metsäasiantuntija 2 KASVUPAIKKOJEN PINTAALA JA PUUSTO

Lisätiedot

KONE Oyj (Konserni) Kassakriisin tunnistaminen

KONE Oyj (Konserni) Kassakriisin tunnistaminen pana KONE Oyj (Konserni) 1.3.213 P - Analyzer Luvut 1 euro Tilikausi/pituus 1-12/12 1-12/12 1-12/12 1-12/12 1-12/12 Kassakriisin tunnistaminen 51151 1 2 3 4 5 Kumulatiivinen käyttökate 623 2 1 254 1 2

Lisätiedot

Korkeahyötysuhteisten sähkömoottorien hankintasuositus

Korkeahyötysuhteisten sähkömoottorien hankintasuositus Korkeahyötysuhteisten sähkömoottorien hankintasuositus Ei julkaista painotuotteena Copyright Motiva Oy, Helsinki, huhtikuu 2004 Korkeahyötysuhteisten sähkömoottorien hankintasuositus Tarkoitettu liitettäväksi

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta

Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta Kaapelin eristyslinjalle tehdyn investoinnin kannattavuuden jälkilaskenta Matti Hyppönen Tuotantotalouden koulutusohjelman opinnäytetyö Konetekniikka Insinööri (AMK) KEMI 2012 TIIVISTELMÄ KEMI-TORNION

Lisätiedot

Muuttujien roolit Kiintoarvo cin >> r;

Muuttujien roolit Kiintoarvo cin >> r; Muuttujien roolit Muuttujilla on ohjelmissa eräitä tyypillisiä käyttötapoja, joita kutsutaan muuttujien rooleiksi. Esimerkiksi muuttuja, jonka arvoa ei muuteta enää kertaakaan muuttujan alustamisen jälkeen,

Lisätiedot

Ohjausjärjestelmien jatkokurssi. Visual Basic vinkkejä ohjelmointiin

Ohjausjärjestelmien jatkokurssi. Visual Basic vinkkejä ohjelmointiin Ohjausjärjestelmien jatkokurssi Visual Basic vinkkejä ohjelmointiin http://www.techsoft.fi/oskillaattoripiirit.htm http://www.mol.fi/paikat/job.do?lang=fi&jobid=7852109&index=240&anchor=7852109 Yksiköt

Lisätiedot

Arvonlaskennan toiminta sijoitusten osalta

Arvonlaskennan toiminta sijoitusten osalta Sivu 1/5 HEDGEHOG OY Arvonlaskennan toiminta sijoitusten osalta 6.10.2014 Tässä on kuvailtu Hedgehog Oy:n käyttämän arvonlaskentajärjestelmän toimintaa sijoitusten merkinnän, tuottosidonnaisten palkkioiden,

Lisätiedot

Kaikkien aikojen Porvoo Alla tiders Borgå

Kaikkien aikojen Porvoo Alla tiders Borgå Kaikkien aikojen Porvoo Alla tiders Borgå ELINKAARISOPIMUKSEN RAHOITUSMALLIT 23.2.2015 ELINKAARIHANKKEEN PERUSTIEDOT Tolkis skola, Tolkkisten päiväkoti, Gammelbackan päiväkoti, Toukovuoren päiväkoti, Peippolan

Lisätiedot

Vuodeosasto- ja päivystysinvestointi Armilan toimintojen siirtyminen keskussairaalan huomioitu. Hallitus 14.1.2015

Vuodeosasto- ja päivystysinvestointi Armilan toimintojen siirtyminen keskussairaalan huomioitu. Hallitus 14.1.2015 Vuodeosasto- ja päivystysinvestointi Armilan toimintojen siirtyminen keskussairaalan huomioitu Hallitus 14.1.2015 Yhteenveto Armilan ja keskussairaalan toiminnan yhdistäminen näyttää kannattavalta sekä

Lisätiedot

MAKSUKYKY, MAKSUKYVYTTÖMYYS 08.05.2009 Ilpo Kähkönen YTM,KTT

MAKSUKYKY, MAKSUKYVYTTÖMYYS 08.05.2009 Ilpo Kähkönen YTM,KTT MAKSUKYKY, MAKSUKYVYTTÖMYYS 08.05.2009 Ilpo Kähkönen YTM,KTT KÄSITTEEN MITTAAMINEN 1. KÄSITTEEN MÄÄRITTELY 2. KÄSITTEEN KVANTIFIOINTI 3. SUORITETAAN MITTAUS Puhtaalla mittaamisella on kvantitatiivinen

Lisätiedot

Metropolia Ammattikorkeakoulu. INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste

Metropolia Ammattikorkeakoulu. INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste Metropolia Ammattikorkeakoulu INVESTOINTILASKENTA JA PÄÄTÖKSENTEKO Opetusmoniste Virpi Tevä-Helminen 28.8.2013 2 SISÄLTÖ: 1. JOHDANTO... 4 1.1 Investointilaskenta ja päätöksenteko kurssin esittely... 4

Lisätiedot

Millainen on Osuuspankin asuntopalvelu?

Millainen on Osuuspankin asuntopalvelu? Millainen on Osuuspankin asuntopalvelu? 1 Mistä asuntopalvelumme koostuu? Olitpa sitten hankkimassa ensimmäistä omaa kotia tai vaihtamassa nykyistä, saat meiltä juuri sinulle sopivan asuntolainan. Hoidamme

Lisätiedot

Euroryhmässä 3.10. sovittu Suomen vakuusjärjestely. Lähestymistapa Täytäntöönpano Vakuuksien määrä Suomen kustannus vakuuksista Arviointia

Euroryhmässä 3.10. sovittu Suomen vakuusjärjestely. Lähestymistapa Täytäntöönpano Vakuuksien määrä Suomen kustannus vakuuksista Arviointia Euroryhmässä 3.10. sovittu Suomen vakuusjärjestely Lähestymistapa Täytäntöönpano Vakuuksien määrä Suomen kustannus vakuuksista Arviointia Lähestysmistapa Kolme rajoitetta Panttaamattomuussitoumuslausekkeen

Lisätiedot

Velkojan tulee olla ammattitaitonsa puolesta ammattimainen sijoittaja.

Velkojan tulee olla ammattitaitonsa puolesta ammattimainen sijoittaja. 1. SOPIMUS MULTIFIRE PÄÄOMALAINAN EHDOISTA SOPIJAPUOLET Velkoja Sijoittaja X (123456 1234) ( Yritys X ) Kotipolku 1 a 2 12345 Rahala Velallinen Hedgehog Oy 1920825 8 Vesannontie 9 A 00510 Helsinki 040

Lisätiedot

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN

KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN 00 N:o 22 LIITE KAUPANKÄYNTIVARASTON POSITIORISKIN LASKEMINEN. Positioriskin laskemisessa käytettävät määritelmät Tässä liitteessä tarkoitetaan: arvopaperin nettopositiolla samanlajisen arvopaperin pitkien

Lisätiedot

Metsä Board Financial 2015 Tilinpäätöstiedote 2015

Metsä Board Financial 2015 Tilinpäätöstiedote 2015 Metsä Board Financial 215 Tilinpäätöstiedote statements review 215 Vuoden 215 kohokohdat Kartonkien toimitusmäärät kasvoivat 12 % verrattuna vuoteen 214 Liikevoitto parani 32 % Vahva liiketoiminnan kassavirta

Lisätiedot

INVESTOINNIN LASKENTA

INVESTOINNIN LASKENTA YT22 INVESTOINNIN LASKENTA Yrityssalo Oy www.yrityssalo.fi Sivu 2 (8) INVESTOINNIN LASKENTA SISÄLTÖ SIVU 1. INVESTOINNIN SUUNNITTELU 3 1.1 Investointien rahoitus 3 1.2 Investointien luokittelu 4 2. INVESTOINTIKUSTANNUSTEN

Lisätiedot

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut

Lämpöilta taloyhtiöille. Tarmo. 30.9. 2013 Wivi Lönn Sali. Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Lämpöilta taloyhtiöille Tarmo 30.9. 2013 Wivi Lönn Sali Lämmitysjärjestelmien ja energiaremonttien taloustarkastelut Juhani Heljo Tampereen teknillinen yliopisto Talon koon (energiankulutuksen määrän)

Lisätiedot

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö

Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä

Lisätiedot

MAB7 Loppukoe 25.9.2014

MAB7 Loppukoe 25.9.2014 MAB7 Loppukoe 25.9.2014 Jussi Tyni Lue tehtävänannot huolellisesti. Tee pisteytysruudukko konseptin ekalle sivulle yläreunaan! Valitse kuusi tehtävää, joihin vastaat. Muista että välivaiheet perustelevat

Lisätiedot

Roi Rules Mittaamisen sietämätön keveys

Roi Rules Mittaamisen sietämätön keveys Roi Rules Mittaamisen sietämätön keveys Karri Hautanen Racon Business Development Oy 1.2.2006, Sanomatalo Racon Business Development Sisältö ROI? Mittaaminen Huonot esimerkit ICT-hankkeiden mittaaminen

Lisätiedot

LAITEINVESTOINNIN KANNATTAVUUSLASKELMA

LAITEINVESTOINNIN KANNATTAVUUSLASKELMA Opinnäytetyö (AMK) Liiketalouden koulutusohjelma Taloushallinto 2011 Sanni Tuumanen LAITEINVESTOINNIN KANNATTAVUUSLASKELMA Case: pakkauskone OPINNÄYTETYÖ (AMK) TIIVISTELMÄ Turun ammattikorkeakoulu Liiketalouden

Lisätiedot