Talousmatematiikan perusteet: Luento 2. Lukujonot Sarjat Sovelluksia korkolaskentaan
|
|
- Ari Kähkönen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Talousmatematiikan perusteet: Luento 2 Lukujonot Sarjat Sovelluksia korkolaskentaan
2 Lukujonoista Miten jatkaisit seuraavia lukujonoja? 1, 3, 5, 7, 1, 2, 4, 8, 1, 3, 9, 27, 1, 1, 2, 3, 5, 8,
3 Lukujonoista Lukujonoilla voidaan kuvata monien taloudellisten ilmiöiden systemaattista kehittymistä. Esim sijoitus 5% vuosikorolla voidaan esittää lukujonona 1. v. alussa 2. v. alussa 3. v. alussa n. v. alussa , , ,, n1 Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Joskus lukujono voidaan esittää sääntönä (a n ) Esim. Edellä (a n ) = n1. 3
4 Aritmeettinen jono Jos lukujonon peräkkäisten termien absoluuttiset erot ovat yhtä suuria, jonoa kutsutaan aritmeettiseksi: a n+1 a n = d n = 1,2, Esim. Opiskelija HH saa kotoa muuttaessaan 2000 ja sen jälkeen kuukausittain 500. Kertynyttä rahamäärää kuvaa artimeettinen jono 1. kk alussa 2. kk alussa 3. kk alussa n. kk alussa 2000, , ,, 2000+(n-1) 500 a 1 a 2 a 3 a n Edellä a n+1 a n = n n = 500 = d Aritmeettinen jono voidaan esittää sääntönä (a n ) = a 1 + (n 1)d 4
5 Aritmeettinen jono: Esimerkki lainan vuosikorko on 16% ja sitä lyhennetään 500 puolivuosittain 20 kpl lyhennyksiä Puolen vuoden korko 16%/2=8% Maksettavan 1., 2., 3., ja n. koron suuruutta kuvaa jono Lyhennys n 20 Pääoma = = = (n-1) Korko 0.08 ( ) =800 = ( ) =760 = ( ) =720 = (n-1) =40 Jono on aritmeettinen: (a n ) = (n 1) a 1 = 800 ja d = 40. 5
6 Geometrinen jono Esim sijoitus 5% vuosikorolla voidaan esittää lukujonona 1. v. alussa 2. v. alussa 3. v. alussa n. v. alussa , , ,, n1 a 1 a 2 a 3 a n Lukujono ei ole aritmeettinen, sillä Sen sijaan a n+1 a n = (1.05 n 1.05 n1 ) vakio a n+1 a n = n n1 = 1.05 = vakio Jos lukujonon peräkkäisten termien suhteelliset erot ovat yhtä suuria, jonoa kutsutaan geometriseksi a n+1 a n = q n = 1,2, Geometrinen jono voidaan esittää sääntönä (a n ) = a 1 q n1 6
7 Geometrinen jono: Esimerkki hintaisen auton arvon arvellaan vähenevän aina 20% edellisen vuoden arvosta. Kunkin vuoden alussa jäljellä olevaa arvoa kuvaa jono: 1. v. alussa 2. v. alussa 3. v. alussa n. v. alussa , , ,, n1 a 1 a 2 a 3 a n Jono on geometrinen: a 1 = ja q =
8 Aritmeettinen vs. geometrinen jono Aritmeettinen jono kuvaa lineaarista muutosta Geometrinen jono kuvaa eksponentiaalista muutosta d> q> d< <q<
9 Presemo-kysymys Moottoriveneen hinta uutena on Arvo alenee 20% vuodessa. Mikä on moottoriveneen arvo 3 vuoden kuluttua (eli 4. vuoden alussa)?
10 Muita esimerkkejä lukujonoista a 1 = a 2 = 1, a n = a n2 + a n1 n 3 (Fibonaccin jono) a n = n n a 1 = 1, a 2 = 1, a n = a n2 n
11 Lukujonon suppeneminen Lukujono suppenee, jos sen termit a n lähestyvät jotakin äärellistä lukua a (, ), kun n. Esim. Geometrisen lukujonon termi a n = a 1 q n1 0, jos q < 1. Esim. Termi a n = n n e. Jos lukujono ei suppene, se hajaantuu Termi a n ei lähesty mitään arvoa (esim. Jono 1, -1, 1,-1 ) Termi a n lähestyy ääretöntä / miinus ääretöntä o Aritmeettinen jono, kun d 0 o Geometrinen jono, kun q > 1 o Fibonaccin jono 11
12 Lukujonon suppeneminen Opiskelijan HH kerryttämä rahamäärä n. kuussa on a n = n a n, kun n. Opiskelijan kerryttämä rahamäärä hajaantuu. Mitä tämä tarkoittaisi käytännössä? Alun perin arvoisen auton hinta vuoden n alussa on a n = n1 a n 0, kun n Auton arvo suppenee. Mitä tämä tarkoittaa käytännössä? 12
13 Yhteenveto lukujonoista Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia Aritmeettisen jonon peräkkäisten termien erotus on vakio: a n+1 a n = d Geometrisen jonon peräkkäisten termien suhde on vakio: a n+1 a n Joissakin erikoistapauksissa jonon kaikki termit voidaan esittää kompaktissa muodossa Aritmeettinen jono: (a n ) = a 1 + (n 1)d Geometrinen jono: (a n ) = a 1 q n1 = q Lukujono suppenee, jos sen termit lähestyvät jotakin äärellistä raja-arvoa 13
14 Sarjat Esim. Opiskelija X ottaa pankista puolivuosittain lainaksi 3000 vuosikorolla 4%. Lainaa ei lyhennetä opiskeluaikana, mutta kertyneen lainapääoman korko maksetaan puolivuosittain. Maksettavat korot muodostavat aritmeettisen jonon: , , , = 60,120,180, eli jonon a n = 60n (= (n 1)) Korkojen kokonaismäärä vuosipuoliskoon n mennessä: n n s n = a a n = a i = 60i i=1 i=1 Termit s 1 = 60, s 2 = ,, s n = n 60 muodostavat uuden lukujonon s n = σ n i=1 60i 14
15 Sarjat Uutta jonoa s n sarjaksi = σ n i=1 a i sanotaan lukujonosta a n muodostetuksi Lauseketta a 1 + a 2 + = σ i=1 a i sanotaan sarjan summaksi Jonon s n termi s n = σ n i=1 a i on sarjan n. osasumma Aritmeettisesta jonosta muodostettua sarjaa sanotaan aritmeettiseksi sarjaksi Geometrisesta jonosta muodostettua sarjaa sanotaan geometriseksi sarjaksi 15
16 Aritmeettinen sarja Esim. Opiskelija lainaa puolivuosittain % vuosikorolla ja maksaa aina samalla kertyneen lainan koron. Korot muodostavat aritmeettisen jonon (a n ) = 60n. Erä (n) Korko (60n) Erä (15-n) Korko (60(15-n)) Summa Korkoja maksetaan yhteensä: s 14 = Osasumma s 14 voidaan laskea helposti: Listataan korot uudelleen käänteisessä järjestyksessä Summataan saman rivin korot keskenään: 60n n = = 900 n Lasketaan osasumma kaavalla s 14 = s 14 = = Summa s Summa s s 14 16
17 Aritmeettinen sarja Yleisesti aritmeettisen sarjan n. osasumma saadaan kaavalla Perustelu: s n = n(a 1 + a n ) 2 = na 1 + n n 1 d 2 + s n = a 1 + a a n1 + a n s n = a n + a n1 + + a 2 + a 1 2s n = a 1 + a n + a 2 + a n1 + + a n1 + a 2 + (a n + a 1 ) 2s n = a 1 + a n + a 1 + d + a n d + + (a n d + a 1 + d) + (a n + a 1 ) 2s n = n a 1 + a n = n a 1 + a 1 + n 1 d = 2na 1 + n n 1 d 17
18 Artimeettinen sarja Esim. Ekonomisti E alkaa kuntoilla vuoden alussa. 1. viikolla hän harjoittelee 120 min ja lisää aikaa joka viikko 5 min. Paljonko E harjoittelee koko vuoden (52 viikkoa) aikana? s n = na 1 + n n 1 d min s 52 = min + 2 = min = h Harjoitusaika viikoittain Kumulatiivinen harjoitusaika viikoittain
19 Presemo-kysymys Erään koripallosarjan runkosarjassa on 82 peliä. Sentteri Sentunen pelaa runkosarjan ensimmäisessä pelissä 40 minuuttia, minkä jälkeen hänen peliaikansa vähenee 20 s / peli. Kuinka monta minuuttia Sentunen pelaa runkosarjapelissä keskimäärin?
20 Geometrinen sarja Esim. Yritys sitoutuu maksamaan aiheuttamastaan haitasta vuosittain korvauksen, joka on 1. vuonna 5000 ja sitä seuraavina vuosina % vuosittaisella inflaatiokorjauksella. 1. Kuinka suuri tulee olemaan korvauksen vuosittainen (nimellis-)arvo 1., 2., 3., ja n. vuonna? 2. Entä maksettujen korvausten yhteenlaskettu määrä? Korvauksen arvo vuosittain Vuosittaiset korvaukset muodostavat geometrisen jonon: 5000, , ,, n1 Kumulatiiviset korvausmäärät muodostavat geometrisen sarjan: s 1 = 5000 s 2 = s 3 = s n = n Kumulatiivinen korvausmäärä vuosittain
21 Geometrinen sarja Osasummien laskemiseksi voidaan johtaa kätevä kaava: s n = n1 = ( n2 ) = s n1 s n = s n1 = (s n n1 ) (Koska s n = s n1 + a n = s n n1 ) (1.04 1)s n = (1.04 n 1)5000 s n = (1.04n 1)5000 (1.04 1) Esim. 15 vuodessa yritys maksaa yhteensä ( )5000 (1.041) = korvauksia. 21
22 Geometrinen sarja Yleisesti geometrisen sarjan n. osasumma saadaan kaavalla Perustelu kuten edellä: s n = a 1 + a 1 q + a 1 q a 1 q n1 = a 1 + q(a 1 + a 1 q + + a 1 q n2 ) = s n1 s n = (qn 1)a 1 (q 1) = (1 qn )a 1 (1 q) s n = a 1 + qs n1 = a 1 + q(s n a 1 q n1 ) (Koska s n = s n1 + a n = s n1 + a 1 q n1 ) (q 1)s n = (q n 1)a 1 s n = (qn 1)a 1 (q 1) 22
23 Presemo-kysymys Pirjo ja Pena osallistuvat tammikuun vegaanihaasteeseen. Lisämotivaation aikaansaamiseksi he sopivat, että ensin eläinkunnan tuotteisiin sortunut joutuu maksamaan toiselle ensin 100 ja seuraavan 9 vuoden ajan aina 80% edellisvuoden summasta. Kuinka paljon maksettavaa kertyisi yhteensä?
24 Sarjan suppeneminen Sarja suppenee, jos sen osasummien jono (s n ) lähestyy jotain äärellistä rajaarvoa s: lim s n = s. n Raja-arvoa s kutsutaan sarjan summaksi. Esim. Henkilö vuokraa tontin. Vuorkasopimus on ikuinen ja vuokrasta sovitaan, että se on 1. vuonna 2000 ja pienenee sen jälkeen vuosittain 10%. Kuinka suuri on maksettavien vuokrien kokonaismäärä 5, 10, 50, 100, 200 vuoden kuluttua? Ratkaisu: Vuosivuokrat muodostavat geometrisen jonon a n = n1. Vuokrakertymä vuonna n: s n = (1qn )a 1 (1q) = (10.9n ) Osasummien jono lähestyy euroa sarja suppenee ja sen summa on Vuosi Vuokra Kertymä E
25 Sarjan suppeneminen a n = 1 n Jos sarja ei suppene, se hajaantuu. Jotta sarja a 1 + a 2 + suppenisi, on termeistä a n tultava merkityksettömän pieniä, kun n kasvaa. Välttämätön ehto suppenemiselle onkin lim a n = 0. n Esim. Edellä lim n1 = 0. n Tämä ehto ei kuitenkaan ole riittävä! Esim. Lukujonosta a n = 1 n muodostettu 1 harmoninen sarja hajaantuu, vaikka lim = 0. n n Syy: termit a n eivät mene nollaan tarpeeksi nopeasti s n n 1 = i=1 i
26 Geometrisen sarjan suppeneminen Voidaan osoittaa, että geometrinen sarja suppenee täsmälleen silloin, kun q < 1. Tällöin sarjan summa s = lim s n = lim (1qn )a 1 n n (1q) = a 1 (1q) Vuokra vuosittain (Jatkoa ikuisen vuokrasopimuksen esimerkkiin.) Vuosivuokrat muodostavat geometrisen jonon a n = n1. Koska 0.9 < 1, vuokrakertymää kuvaava sarja suppenee. Ikuisen vuokrasopimuksen aikana vuokrakertymä on 2000 = (10.9) Vuokrakertymä vuosittain
27 Presemo-kysymys Pirjo ja Pena korottavat tammikuun vegaanihaasteen panoksia ja sopivat, että ensin eläinkunnan tuotteisiin sortunut joutuu maksamaan toiselle 100 ja seuraavina vuosina aina 80% edellisvuoden summasta jatkuen ikuisesti. Kuinka paljon maksettavaa kertyisi yhteensä? , , 3. Äärettömästi. 27
28 Yhteenveto sarjoista Lukujonosta a n muodostettujen osasummien s n = σ n i=1 a i jonoa s n sanotaan sarjaksi. Aritmeettinen sarja: s n = n(a 1+a n ) 2 Geometrinen sarja: s n = (qn 1)a 1 (q1) = na 1 + = (1qn )a 1. (1q) n n1 d 2, Sarja suppenee, jos sen termit lähestyvät jotain äärellistä raja-arvoa s: lim s n = s. n Raja-arvoa s sanotaan sarjan summaksi. Geometrinen sarja suppenee jos ja vain jos q < 1, jolloin sarjan summa s = a 1 (1q). 28
29 Sovelluksia korkolaskentaan Esimerkki 1: Opiskelija lainaa puolivuosittain % vuosikorolla ja maksaa aina samalla kertyneen lainan koron. Lainatun pääoman hän maksaa takaisin seitsemän vuoden opintojen päätyttyä. Kuinka paljon maksettavaa kertyy kaikkiaan? Maksettava lainapääoma: = Korot muodostavat aritmeettisen jonon a n = n 1 s 14 = Maksettavaa yhteensä: = = Vuosipuolikas Laina Korot = = = = 840 Summa =
30 Sovelluksia korkolaskentaan Esimerkki 2: Entä jos opiskelija maksaa koko summan (lainan ja korot) vasta opintojen päätyttyä? n. vuosipuolikasta ennen opintojen päättymistä otetun lainan arvo opintojen päättymishetkellä: n Maksettava summa on tällöin geometrisen sarjan osasumma s 14 = σ 14 i= i = σ 14 i= i1 = ( ) = Korkojen osuus: = Vuosipuolikas Laina + korkokertymä Summa
31 Annuiteettimenetelmä Joissakin tapauksissa lainan hoitomaksu (sisältäen lyhennyksen ja korot) suoritetaan tasaerinä Tätä tasaerää kutsutaan annuiteetiksi Esim. Opiskelija X:llä on velkaa (=K). Pankin kanssa sovitaan, että Laina maksetaan takaisin kuukausittain 20 vuodessa, Vuosikorko on 3.6% ja Joka kuukausi pankille maksetaan saman suuruinen erä b. Kuinka suuri on erä b (=annuiteetti)? 31
32 Annuiteettimenetelmä Eriä on = 240 kpl (=n) Korkotekijä kuukautta kohden on r = / = Kk Jäljellä oleva velka b b b = b( ) b b b = b( ) n n b(1.003 n n ) Geometrisen sarjan osasumma s n : a 1 = 1, q = r =
33 Annuiteettimenetelmä 20 vuoden kuluttua maksetaan viimeinen erä, jolloin jäljellä oleva velka: b = b ( ) = 0 b = (1.0031) ( ) /kk Korkokustannukset ovat =
34 Annuiteettimenetelmä Yleisesti: b = rn K(r1) (r n 1), missä K = lainasumma, r = korkotekijä, n = maksuerien määrä. Esim. Kuinka suuri on maksuerän suuruus, kun laina (K = ) maksetaan puolivuosittain annuiteettiperiaatteella 20 vuodessa (n = 40) ja vuosikorko on 3.6% (r = 1.018)? b = ( ) ( ) = Korkokulut ovat tällöin =
35 Annuiteettimenetelmä Esim. Kuinka suuret ovat korkokulut, jos pääoman lyhennykset ovat yhtä suuria? Lainaa lyhennetään = 1500 puolivuosittain Vuosipuolikas Maksettavat korot = = = = = = Aritmeettisen sarjan osasumma s n : a 1 = 27, d = = 1 27 s 40 = 40( ) 2 = =
36 Presemo-kysymys Meiju lainaa pankista , jonka hän sopii maksavansa takaisin vuosittaisina tasaerinä 10 vuodessa. Mikä on vuosittaisen tasaerän suuruus, kun vuosikorko on 5%?
37 Yhteenveto sovelluksista Sarjoilla on monenlaisia taloudellisia sovelluksia Kassavirta-analyysi Sijoitusten/lainojen nykyarvojen laskeminen Esim. Annuiteettiperiaatteella myönneyt lainan maksuerän b laskemisessa voidaan hyödyntää geometrisen sarjan ominaisuuksia: b = rn K(r 1) (r n 1) Sarjoja käytetään myös monimutkaisten funktioiden approksimoinnissa (ei käsitellä tällä kurssilla): e x = 1 + x + x2 + x3 + x4 + = σ n=0 sin x = x x3 + x5 + = σ n=0 xn, kun x 0 n! (1)n x 2n+1, kun x 0 (2n+1)! 37
Talousmatematiikan perusteet: Luento 2. Sarjat Sovelluksia korkolaskentaan
Talousmatematiikan perusteet: Luento 2 Sarjat Sovelluksia korkolaskentaan Viime luennolla Lukujono on päättyvä tai päättymätön jono reaalilukuja a 1, a 2,, a n, joita sanotaan jonon termeiksi. Erikoistapauksia
Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Lukujonot: aritmeettinen ja geometrinen Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran
Talousmatematiikan perusteet
Talousmatematiikan perusteet 1 Lukujonoista ja sarjoista, finanssimatematiikkaa 1.1 Suhteellinen muutos - kuinka moninkertainen jokin arvo on lähtöarvoon verrattuna Prosenttilaskennan kertausta 1. Yksi
diskonttaus ja summamerkintä, L6
diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson
Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa
Talousmatematiikan perusteet: Luento 1 Prosenttilaskentaa Korkolaskentaa Luennon sisältö Prosenttilaskennan kertausta Korkolaskentaa Käsitteitä Koron lisäys kerran / m kertaa vuodessa / jatkuvasti Diskonttaus
Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,
Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos September 13, 2017 Pekka Alestalo,
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 14.9.2016 Pekka Alestalo, Jarmo Malinen
On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.
Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA
MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: Sarjat
M-A010{2,3,4,5} (CI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 2: arjat Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos eptember 12, 2018 Pekka
1 Aritmeettiset ja geometriset jonot
1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään
MS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Käytännön asiat Jonot Sarjat 1.1 Opettajat luennoitsija Riikka Korte
Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.
Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa
Talousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
Talousmatematiikan perusteet: Luento 4. Potenssifunktio Eksponenttifunktio Logaritmifunktio
Talousmatematiikan perusteet: Luento 4 Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö- tai määrittelyjoukko
Jaksolliset suoritukset, L13
, L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan
Matemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava
9 VEROTUS, TALLETUKSET JA LAINAT
9 VEROTUS, TALLETUKSET JA LAINAT ALOITA PERUSTEISTA 370A. Kunnallisveroprosentti oli 19,5, joten 31 200 tuloista oli maksettava kunnallisveroa 0,195 31 200 = 6084. Vastaus: 6084 euroa 371A. a) Hajuveden
Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).
Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f
Ratkaisu: a) Aritmeettisen jonon mielivaltainen jäsen a j saadaan kaavalla. n = a 1 n + (n 1)n d = 5 500 + 4 = 501500. 2 500 = 5 + 2001 2
Kotitehtäviä 5. Ratkaisuehdotuksia. a) Jono a,..., a 500 on aritmeettinen, a = 5 ja erotusvakio d = 4. Laske jäsenet a, a 8 ja a 00 sekä koko jonon summa. b) Jono b,..., b 0 on geometrinen, b = ja suhdeluku
Matematiikan tukikurssi, kurssikerta 5
Matematiikan tukikurssi, kurssikerta 5 1 Jonoista Matematiikassa jono (x n ) on yksinkertaisesti järjestetty, päättymätön sarja numeroita Esimerkiksi (1,, 3, 4, 5 ) on jono Jonon i:ttä jäsentä merkitään
Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset
Rahoitusriskit ja johdannaiset Matti Estola Luento 6 Swap -sopimukset 1. Swapit eli vaihtosopimukset Swap -sopimus on kahden yrityksen välinen sopimus vaihtaa niiden saamat tai maksamat rahavirrat keskenään.
10 Liiketaloudellisia algoritmeja
218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden
Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.
Lukujoukot Luonnollisten lukujen joukko N = {1, 2, 3,... }. N 0 = {0, 1, 2, 3,... } = N {0}. Kokonaislukujen joukko Z = {0, 1, 1, 2, 2,... }. Rationaalilukujen joukko Q = {p/q p Z, q N}. Reaalilukujen
Analyysi III. Jari Taskinen. 28. syyskuuta Luku 1
Analyysi III Jari Taskinen 28. syyskuuta 2002 Luku Sisältö Sarjat 2. Lukujonoista........................... 2.2 Rekursiivisesti määritellyt lukujonot.............. 8.3 Sarja ja sen suppenminen....................
Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F
Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan
Talousmatematiikan perusteet: Luento 17. Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa
Talousmatematiikan perusteet: Luento 17 Integraalin sovelluksia kassavirta-analyysissa Integraalin sovelluksia todennäköisyyslaskennassa Motivointi Kahdella edellisellä luennolla olemme oppineet integrointisääntöjä
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
Ma4 Yhtälöt ja lukujonot
Ma4 Yhtälöt ja lukujonot H4 Lukujonot 4.1 Kirjoita lukujonon seuraavat viisi termiä, kun ensimmäinen termi on 1 ja muut muodostuvat seuraavien sääntöjen mukaan. a) Lisää edelliseen termiin 3. b) Kerro
Talousmatematiikan perusteet: Luento 18. Määrätty integraali Epäoleellinen integraali
Talousmatematiikan perusteet: Luento 18 Määrätty integraali Epäoleellinen integraali Motivointi Viime luennoilla opimme integrointisääntöjä: Tavalliset funktiotyypit (potenssi-, polynomi- ja eksponenttifunktiot)
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan
Talousmatematiikan perusteet: Luento 19
Talousmatematiikan perusteet: Luento 19 Integraalin sovelluksia kassavirtaanalyysiin Differentiaaliyhtälöt Motivointi Edellisillä luennolla olemme oppineet integrointisääntöjä Tällä luennolla tarkastelemme
Tenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
Verkkokurssin tuotantoprosessi
Verkkokurssin tuotantoprosessi Tietotekniikan perusteet Excel-osion sisältökäsikirjoitus Heini Puuska Sisältö 1 Aiheen esittely... 3 2 Aiheeseen liittyvien käsitteiden esittely... 3 2.1 Lainapääoma...
4 LUKUJONOT JA SUMMAT
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 4 LUKUJONOT JA SUMMAT ALOITA PERUSTEISTA 45A. Määritetään lukujonon (a n ) kolme ensimmäistä jäsentä ja sadas jäsen a 00 sijoittamalla
MAA9.2 2014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää.
MAA9. 014 Jussi Tyni Lue ohjeet huolellisesti! Tee pisteytysruudukko konseptin yläkertaan. Muista kirjoittaa nimesi. Kysymyspaperin saa pitää. A-OSIO: Ei saa käyttää laskinta. MAOL saa olla esillä. Maksimissaan
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Osa 5. lukujonot ja sarjat.
Osa 5. lukujonot ja sarjat. Summamerkintä Kurssilla on jo tullut vastaan ns. summamerkintä (kreikkalainen iso sigma): n k=1 Indeksin loppuarvo Indeksi jonka suhteen summataan a k =a 1 +a +a 3 +...+a n
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja
Sarjojen suppenemisesta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Terhi Mattila Sarjojen suppenemisesta Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.
Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering
Vastausehdotukset analyysin sivuainekurssin syksyn välikokeeseen
Vastausehdotukset analyysin sivuainekurssin syksyn 015 1. välikokeeseen Heikki Korpela November 1, 015 1. Tehtävä: funktio f : R R toteuttaa ehdot ax, kun x 1 f(x) x + 1, kun x < 1 Tutki, millä vakion
MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
Kompleksianalyysi, viikko 5
Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa
Korkolasku ja diskonttaus, L6
Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti
Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin
Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin
JA n. Investointi kannattaa, jos annuiteetti < investoinnin synnyttämät vuotuiset nettotuotot (S t )
Annuiteettimenetelmä Investoinnin hankintahinnan ja jäännösarvon erotus jaetaan pitoaikaa vastaaville vuosille yhtä suuriksi pääomakustannuksiksi eli annuiteeteiksi, jotka sisältävät poistot ja käytettävän
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
Talousmatematiikka (3 op)
Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu
Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17
Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat
Talousmatematiikan perusteet: Luento 3. Funktiot Lineaarinen funktio Paloittain lineaarinen funktio Lineaarinen interpolointi
Talousmatematiikan perusteet: Luento 3 Funktiot Lineaarinen funktio Paloittain lineaarinen funktio Lineaarinen interpolointi s(n) p e m K(t) Tähän mennessä Olemme jo tarkastelleet erilaisten muuttujien
Kertaava osa on 2. periodilla ja normaaliosa 3. periodilla ja 4. periodin alussa.
Ohjeita Lukuvuoden 2015-2016 talousmatematiikan perusteiden kurssi koostuu kahdesta osasta, joiden avulla tavoitellaan joinain aikaisempina vuosina toteutettua jakoa hitaammin etenevään andante-kurssiin
Positiivitermisten sarjojen suppeneminen
Positiivitermisten sarjojen suppeneminen Jono (b n ) n= on kasvava, jos b n+ b n kaikilla n =, 2,... Lemma Jokainen ylhäältä rajoitettu kasvava jono (b n ) n= raja-arvo on lim n b n = sup n Z+ b n. suppenee
Tasaerälaina ja osamaksukauppa
Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Vuosi jaetaan
Nykyarvo ja investoinnit, L14
Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...
määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit. Piirrä kuvio.
Yo-tehtäviä Mb06 kurssista Sarja 1 k09/12. Mikä on suurin arvo, jonka lauseke x + y saa epäyhtälöiden x 0, y 0, 2x + 3y 24, 5x + 3y 30 määrittelemässä alueessa? Laske alueen kärkipisteiden koordinaatit.
Matematiikan tukikurssi
Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja
1 Reaaliset lukujonot
Jonot 10. syyskuuta 2005 sivu 1 / 5 1 Reaaliset lukujonot Reaaliset lukujonot ovat funktioita f : Z + R. Lukujonosta käytetään merkintää (a k ) k=1 tai lyhyemmin vain (a k). missä a k = f(k). Täten lukujonot
1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
Mat Investointiteoria Laskuharjoitus 1/2008, Ratkaisu Yleistä: Laskarit tiistaisin klo luokassa U352.
Yleistä: Laskarit tiistaisin klo 14-16 luokassa U352. Kysyttävää laskareista yms. jussi.kangaspunta@tkk. tai huone U230. Aluksi hieman teoriaa: Kassavirran x = (x 0, x 1,..., x n ) nykyarvo P x (r), kun
Todellinen vuosikorko. Efektiivinen/sisäinen korkokanta. Huomioitavaa
Todellinen vuosikorko Huomioitavaa Edellinen keskimaksuhetkeen perustuva todellinen vuosikorko antaa vain arvion vuosikorosta. Tarkempi arvio todellisesta korosta saadaan ottamalla huomioon mm. koronkorko.
Prosentti- ja korkolaskut 1
Prosentti- ja korkolaskut 1 Prosentti on sadasosa jostakin, kuten sentti eurosta ja senttimetri metristä. Yksi ruutu on 1 prosentti koko neliöstä, eli 1% Kuinka monta prosenttia on vihreitä ruutuja neliöstä?
Talousmatematiikan perusteet: Luento 4. Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio
Talousmatematiikan perusteet: Luento 4 Polynomifunktio Potenssifunktio Eksponenttifunktio Logaritmifunktio Viime luennolla Funktiolla f: A B kuvataan muuttujan y B riippuvuutta muuttujasta x A A on lähtö-
Nykyarvo ja investoinnit, L7
Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto
MAB7 Loppukoe 25.9.2014
MAB7 Loppukoe 25.9.2014 Jussi Tyni Lue tehtävänannot huolellisesti. Tee pisteytysruudukko konseptin ekalle sivulle yläreunaan! Valitse kuusi tehtävää, joihin vastaat. Muista että välivaiheet perustelevat
x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua
Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö
Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.
Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen
Todista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.
2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na
Reaaliluvut. tapauksessa metrisen avaruuden täydellisyyden kohdalla. 1 fi.wikipedia.org/wiki/reaaliluku 1 / 13
Reaaliluvut Reaalilukujen joukko R. Täsmällinen konstruointi palautuu rationaalilukuihin, jossa eri mahdollisuuksia: - Dedekindin leikkaukset - rationaaliset Cauchy-jonot - desimaaliapproksimaatiot. Reaalilukujen
Osamaksukauppa, vakiotulovirran diskonttaus, L8
Osamaksukauppa, vakiotulovirran diskonttaus, L8 1 Kerrataan kaavoja s n;i = ((1 + i)n 1) i = prolongointitekijä a n;i = ((1 + i)n 1) i(1 + i) n = diskonttaustekijä c n;i = i(1 + i) n ((1 + i) n 1) = kuoletuskerroin
Induktio, jonot ja summat
Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka
SIJOITUSANALYYSI 2h+kk+ph, Kauppurienkatu 5, Oulu KOHDETIEDOT
KOHDETIEDOT Sivu 1 PERUSTIEDOT VUOKRATIEDOT Sijainti Kauppurienkatu 5, Oulu Vuokra 610,00 /kk Kaupunginosa Keskusta Hoitovastike 110,00 /kk Yhtiö As Oy Kauppurienkatu 5 Rahoitusvastike - Rakennusvuosi
Tasaerälaina ja osamaksukauppa
Tasaerälaina ja osamaksukauppa Merkintöjä Yleensä laskussa lähdetään todellisesta vuosikorosta. Merkitään todellista vuosikorkokantaa kirjaimella i a, jolloin vuosikorkotekijä on (1 + i a ). Merkintöjä
Talousmatematiikan perusteet: Luento 8. Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto
Talousmatematiikan perusteet: Luento 8 Tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennoilla Derivointisääntöjä eri funktiotyypeille: Polynomifunktio Potenssifunktio Eksponenttifunktio
Talousmatematiikan perusteet: Luento 7. Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto
Talousmatematiikan perusteet: Luento 7 Derivointisääntöjä Yhdistetyn funktion, tulon ja osamäärän derivointi Suhteellinen muutosnopeus ja jousto Viime luennolla Funktion Derivaatta f (x) kuvaa funktion
8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
Talousmatematiikan perusteet, ORMS1030
Vaasan yliopisto, kevät 20 Talousmatematiikan perusteet, ORMS030 4. harjoitus, viikko 6 6.2. 0.2.20) R ma 2 4 F249 R5 ti 4 6 F453 R2 ma 4 6 F453 R6 to 2 4 F40 R3 ti 08 0 F425 R to 08 0 F425 R4 ti 2 4 F453
Kertausta Talousmatematiikan perusteista
Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =
Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy
Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika
Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat
Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100
Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä
Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson
Talousmatematiikka (3 op)
Talousmatematiikka (3 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2011 Talousmatematiikka 2011 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi Työhuone M231 Kurssin kotisivu
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
MATEMATIIKAN PERUSKURSSI II kevät 2018 Ratkaisut 1. välikokeen preppaustehtäviin. 1. a) Muodostetaan osasummien jono. S n =
MATEMATIIKAN PERUSKURSSI II kevät 208 Ratkaisut. välikokeen preppaustehtäviin. a) Muodostetaan osasummien jono S n = n ( k k) k= josta saadaan = ( 0 ) + ( 2) + ( 2 3) + ( n 2 n ) + ( n n) = n, n =, 2,...,
(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.
Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =
TEHTÄVIEN RATKAISUT. Tehtäväsarja A. 2. a) a + b = = 1 b) (a + b) = ( 1) = 1 c) a + ( b) = 13 + ( 12) = = 1.
TEHTÄVIEN RATKAISUT Tehtäväsarja A.. a) a b b) (a b) ( ) c) a ( b) ( ) ). a) 4 4 5 6 6 6 6 6 b) Pienin arvo: ) 4 4 4 6 6 6 6 6 6 6 Suurin arvo: ) 4) 4 8 7 7 4 6 6 6 6 4. @ tekijät ja Sanoma Pro Oy 06 5.
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa
Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia
Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:
. Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona
1 Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f
5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
Täydellisyysaksiooman kertaus
Täydellisyysaksiooman kertaus Luku M R on joukon A R yläraja, jos a M kaikille a A. Luku M R on joukon A R alaraja, jos a M kaikille a A. A on ylhäältä (vast. alhaalta) rajoitettu, jos sillä on jokin yläraja
1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24
SISÄLTÖ 1 MATEMAATTISIA VÄLINEITÄ TALOUSELÄMÄN ONGELMIIN 7 1.1 Algebran perusteita 8 Potenssit Juuret 15 Tuntematon ja muuttuja 20 Lausekkeen käsittely 24 1.2 Yhtälöitä 29 Epäyhtälö 30 Yhtälöpari 32 Toisen
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen
Tehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
1 sup- ja inf-esimerkkejä
Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R
Talousmatematiikan perusteet
kevät 2019 / orms.1030 Talousmatematiikan perusteet 5. harjoitus, viikko 7 11.02. 15.02.2019 R01 Ma 12 14 F453 R08 Ke 10 12 F453 R02 Ma 16 18 F453 L To 08 10 A202 R03 Ti 08 10 F425 R06 To 12 14 F140 R04
Talousmatematiikan perusteet
kevät 219 / orms.1 Talousmatematiikan perusteet 1. Laske integraalit a 6x 2 + 4x + dx, b 5. harjoitus, viikko 6 x + 1x 1dx, c xx 2 1 2 dx a termi kerrallaan kaavalla ax n dx a n+1 xn+1 +C. 6x 2 + 4x +