Leibnizin integraalisääntö

Koko: px
Aloita esitys sivulta:

Download "Leibnizin integraalisääntö"

Transkriptio

1 Leibnizin integrlisääntö Pro grdu -tutkielm Smi Kokko Fysiikn j mtemtiikn litos Itä-Suomen yliopisto 19. kesäkuut 219

2 Tiivistelmä Tämän tutkielmn iheen on Leibnizin integrlisääntö, jok käsittelee tilnnett, joss derivointi j integrointi voidn opertioin suoritt käänteisessä järjestyksessä. Kysymys siis pohjutuu jtukseen, milloin rj-rvo voidn tuod integrlin sisään. Tämä tulos j sen eri muodot ovt yleisesti tunnetumpi sovelletun mtemtiikn puolell. Tässä tutkielmss esitetään todistukset Leibnizin integrlisäännön eri muodoille hyödyntäen erilisi tekniikoit. Leibnizin integrlisäännönnöllä on useit lkuoletuksi, joiden voimss olless tulost voidn sovelt, mikä s luseen näyttämään ensisilmäyksellä heikolt. Kuitenkin trksteluss käy ilmi, että nämä ehdot ovt kikki tosinkin välttämättömiä. Tutkielmss esitellään tpus, jolloin Leibnizin integrlisääntö ei päde. Sovelluksen Leibnizin integrlisäännölle näytetään esimerkiksi eräs gmmfunktion ominisuus. Erityisesti kontinuumimekniikss on Leibnizin interlisääntö keskeisessä osss, sillä sitä hyödynnetään määrittäessä ln keskeisiä luseit. Tso koskev tpust käsitellään tutkielmss fyysikon tvoin j kolms ulottuvuus, jok yleisesti tunnetn virtusdynmiikss Reynoldsin kuljetusteoreemn, todistetn eksktisti hyödyntäen tekniikk, joll voidn todist Euklidisi vruuksi koskevt tpukset. Reynoldsin kuljetusteoreemn todistuksess iden on kiinnittää vruudess liikkuv joukko johonkin jnhetkeen j tehdä muuttujnvihto. Siis tekniikk mhdollist integroinnin yli jst riippumttomn joukon. Silloin integrli päästään työstämään tutuin menetelmin, jonk jälkeen tehdään muuttujnvihto tkisin. Ekskti todistus tso käsittelevälle tpukselle olisi nloginen kolmnnen ulottuvuudelle esitetyn todistuksen knss. Yleistys mielivltiseen ulottuvuuteen vtii työkluj dierentiligeometrin puolelt, mutt hyödynnettävä tekniikk todistuksess on pohjltn sm.

3 Abstrct This MSc thesis is centered round theorem tht is widely known s the Leibniz integrl rule, which sets the conditions for under which, it is llowed to interchnge the order of derivtion nd integrtion. The problem boils down to the question, under which conditions limit cn be moved inside integrl. This theorem nd its dierent forms re more known in pplied mthemtics. This thesis will introduce proofs for dierent forms of the Leibniz integrl rule utilizing vrious techniques. Most importntly, the thesis will introduce technique tht cn be used to proof the theorem in ny Eucliden spce. Leibniz integrl rule depends on severl ssumptions, which mkes the theorem pper wek t rst glnce. It turns out, tht ll the conditions re indeed needed for the theorem to hold. This thesis will showcse n exmple, where the theorem does not pply nd n ppliction, which gives certin property of the gmm function mong few others. Leibniz integrl rule hs severl pplictions in continuum mechnics, where it plys centrl role in fundmentl theorems of the eld. For generl form of the theorem, few dierent proofs will be represented. The form of the theorem, where integrtion is done over plne set, will be proved utilizing physicist's pproch nd the exct proof will be given in the cse of three dimensionl spce, which is known s the Reynolds trnsport theorem in uid dynmics. The proof of Reynolds trnsport theorem will be showcsing the technique tht cn be utilized to proof Leibniz integrl rule in ny Eucliden spce. The ide behind this proof is to utilize the chnge of vribles theorem under some xed vlue for time. More precisely, by locking the time to n rbitrry vlue, the deforming nd moving set becomes xed, which llows operting under the integrl with usul tricks. After chnging the vribles bck, the theorem shpes into form with simplistic nd pplicble structure. This is lso the technique tht is used to proof the form regrding rbitrry Eucliden spce, which requires tools from the eld of dierentil geometry.

4 Sisältö 1 Johdnto 1 2 Leibnizin integrlisääntö 2 3 Leibnizin integrlisäännön yleinen muoto 14 4 Leibnizin integrlisääntö tsoss R Leibnizin integrlisääntö vruudess R 3 24 Lähteet 34

5 1 Johdnto Tutkielm käsittelee yleisneron pidetyn Gottfried Wilhelm von Leibnizin ( ) dierentili- j integrlilskent koskev tulost, jok kulkee nimellä Leibnizin integrlisääntö. Leibniz tunnetn yhdessä Isc Newtonin knss modernin nlyysin luojin, j Leibnizin nottio on vieläkin yleisessä käytössä. [12] Leibnizin integrlisääntö trkstelee tilnnett, missä derivoidn j integroidn eri muuttujien suhteen, j erityisesti sitä, kosk nämä opertiot voidn suoritt käänteisessä järjestyksessä. Eli toisin snoen kysymys pohjutuu tilnteeseen, kosk rj-rvo voidn tuod integrlin sisään. Tutkielmss trkstelln Leibnizin integrlisääntöä edeten yksiulotteisest tpuksest kolmiulotteiseen Euklidiseen vruuteen. Oletuksen tutkielmss on, että lukijll on esitieton yliopistotson mtemtiikn opinnot misteritsolt. Kuitenkin kertuksen on suurin os oleellisist määritelmistä esitetty. Os tutkielmss esille nousevien luseiden todistuksist sivuutetn riippuen kuink relevntti luse on tutkielmn näkökulmst. Tutkielmss käytettävät merkinnät ovt yliopistotsolt tuttuj. Integroitess kuitenkin käytetään suomlisen sijoitusmerkin sijn merkintää: ( x 2 ) (x + 1)dx = 2 + x b = 2 b ( b). Lähdetään nyt kohti Leibnizin integrlisääntöä trkstelemll Anlyysin peruslusett, jonk todistus sivuutetn. Luse 1.1. Jos funktio f on välillä [, b] jtkuv j F on sen primitiivifunktio, niin [1, s. 134] f(x)dx = F (b) F (). (1.1) Trkstelln nyt väliä [, x] j oletetn Anlyysin perusluseen 1.1 oletukset. Silloin derivoimll yhtälöä (1.1) puolittin muuttujn x suhteen, sdn d x f(t)dt = d [F (x) F ()] = f(x), (1.2) dx dx d missä F () on muuttujst x riippumton eli F () =. Siis Anlyysin perusluseen 1.1 vull sdn derivointi j integrointi koskevlle tilnteelle dx yhteys yhtälön (1.2) vull. 1

6 2 Leibnizin integrlisääntö Olkoon ϕ khden muuttujn funktio, jok voidn integroid toisen muuttujn j derivoid toisen muuttujn suhteen. Leibnizin integrlisääntö trkstelee tilnnett, missä nämä opertiot voitisiin suoritt käänteisessä järjestyksessä. Eli toisin snoen, milloin voidn sno, että d dt ϕ(x, t)dx = (D 2 ϕ)(x, t)dx (2.1) pätee? [1, s. 236] Leibnizin integrlisääntöä ei yleisesti ole opetettu yliopiston mtemtiikss j onkin tunnetumpi sovelletun mtemtiikn puolell. Kuitenkin se kuului fysiikn Nobel-plkinnon voittneen teoreettisen fyysikon Richrd Feynmnin vkiorsenliin, joll hän lähestyi integrlien rtkisemist. Feynmn opetteli säännön itse j si seuruksen mineen kyvystään rtkist monimutkisi integrlej. Tämä johtui siitä, että muut olivt jo yrittäneet heille tuttuj keinoj, kun ts Feynmnill oli vielä yksi työklu käytettävissä. Feynmn olikin ktlysttori Leibnizin integrlisäännön suosioon. [6, 86-87] Lähdetään nyt trkstelemn Leibnizin integrlisääntöä määrittelemällä trvittvt putyöklut. Olkoon funktio ϕ : [, b] R rjoitettu. Olkoon P välin [, b] ositus, millä trkoitetn pisteiden = x x n = b, missä n N, äärellistä joukko. Merkitään x i = x i x i 1, missä i = 1,..., n. Silloin jokiselle osituksen P muodostmlle osvälille on olemss pienin ylärj j suurin lrj Merkitään nyt yläsumm j lsumm Silloin M i = m i = U(P, ϕ) = L(P, ϕ) = sup ϕ(x), x [x i 1,x i ] inf ϕ(x). x [x i 1,x i ] n M i x i, i=1 n m i x i. i=1 ϕ(x)dx = inf U(P, ϕ), 2

7 jot snotn yläintegrliksi j ϕ(x)dx = sup L(P, ϕ), jot snotn lintegrliksi, missä pienin ylärj j suurin lrj otetn yli kikkien välin [, b] ositusten P. Silloin, jos inf U(P, ϕ) = sup L(P, ϕ), niin funktiot ϕ snotn Riemnn-integroituvksi välillä [, b]. Merkitään jtkoss Riemnn-integroituvien funktioiden joukko R. Leibnizin integrlisäännön trksteluss trvitn lisäksi tsisen jtkuvuuden käsitettä. Funktion f snotn olevn tsisesti jtkuv joukoss X, jos kikill ε > on olemss δ > siten, että kikill x, x X j x x < δ pätee f(x) f(x ) < ε. Luse 2.1. Olkoon, b, c, d R. Oletn, että (i) funktio ϕ(x, t) on määritelty x b j c t d; (ii) funktio x ϕ(x, t) on Riemnn integroituv välillä [, b] kikill t [c, d]; (iii) c < s < d j kikill ε > on olemss δ > siten, että (D 2 ϕ)(x, t) (D 2 ϕ)(x, s) < ε, kikill x [, b] j kikill t s < δ. Määritellään f(t) = ϕ(x, t)dx, (2.2) missä t [c, d]. Silloin funktio x (D 2 ϕ)(x, s) on Riemnn integroituv j [1, s ] f (s) = (D 2 ϕ)(x, s)dx. (2.3) Huomtn, että (iii) pätee vrmsti, jos D 2 ϕ on jtkuv määrittelyjoukossn, j stu tulos kertoo vin derivtst pisteessä s. Todistetn seurvksi Leibnizin integrlisääntö 2.1 hyödyntäen dierentililskennn välirvolusett, jonk todistus sivuutetn. Luse 2.2. Olkoon funktio f relinen jtkuv funktio suljetull välillä [, b], jok on derivoituv voimell välillä (, b). Silloin on olemss piste x (, b), joss f(b) f() = (b )f (x). [1, s. 18] 3

8 Leibnizin integrlisäännön 2.1 todistuksess hyödynnetään lisäksi seurv lemm, jot vrten ensin määritellään tsinen suppeneminen. Snotn, että funktioiden joukko {ϕ n }, missä n N, suppenee tsisesti joukoss X funktioon ϕ, jos kikill ε > on olemss kokonisluku N siten, että kun n N niin ϕ n (x) ϕ(x) ε, kikill x X. Lemm 2.3. Oletetn, että ϕ n R suljetull välillä [, b] kikill n N j ϕ n ϕ tsisesti suljetull välillä [, b]. Silloin ϕ R suljetull välillä [, b] j [1, s. 151] lim n ϕ n (x)dx = ϕ(x)dx. Todistus. Olkoon ε >. Vlitn N N siten, että ϕ n (x) ϕ(x) ε b, kikill x [, b] j n N. Silloin ϕ n (x)dx ϕ(x)dx = Siis väite seur. ε b ( ϕn (x) ϕ(x) ) dx ϕn (x) ϕ(x) dx dx = ε. Luseen 2.1 todistus. Olkoon s (c, d) kiinnitetty ehdon (iii) mukisesti. Olkoon ϕ(x, t) ϕ(x, s) ψ(x, t) =, t s missä < t s < δ. Nyt välirvoluseen 2.2 nojll kikill (x, t) on olemss u (s, t) siten, että ψ(x, t) = (D 2 ϕ)(x, u). Nyt kikill ε > oletuksest (iii) seur, että ψ(x, t) (D 2 ϕ)(x, s) < ε, (2.4) 4

9 kun x b j < t s < δ. Huomtn, että f(t) f(s) t s = ψ(x, t)dx. (2.5) Nyt ehdon (2.4) nojll ψ(x, t) (D 2 ϕ)(x, s) tsisesti suljetull välillä [, b], kun t s. Oletuksen (ii) nojll ψ(x, t) R. Silloin ottmll rjnkäynti puolittin yhtälössä (2.5), huomioimll ominisuus (2.4) j soveltmll Lemm 2.3 sdn ensin j edelleen f (s) = f(t) f(s) lim t s t s = lim t s lim ψ(x, t)dx = t s ψ(x, t)dx, (D 2 ϕ)(x, s)dx. Huomtn, että Leibnizin integrlisäännölle 2.1 seur trivilisti seurv korollri. Korollri 2.4. Olkoon, b, c, d R. Oletn, että ϕ j D 2 ϕ ovt jtkuvi joukoss [, b] [c, d]. Määritellään f(t) = missä t [c, d]. Silloin f on derivoituv j kikill t (c, d). [13], [3, s ] f (t) = ϕ(x, t)dx, (D 2 ϕ)(x, t)dx, Todistetn kuitenkin Korollri 2.4 käyttäen tekniikk, jok hyödyntää ll olev Fubinin lusett, jonk todistus sivuutetn. Luse 2.5. Olkoon f(x, y) määritelty j rjoitettu joukoss X = [, b] [c, d] R 2. Olkoon y f(x, y) Riemnn integroituv kikill x [, b], j x f(x, y) Riemnn integroituv kikill y [c, d]. Merkitään F (x) = d c f(x, y)dy, G(y) = 5 f(x, y)dx.

10 Silloin F R välillä [, b] j G R välillä [c, d], j pätee [9, s. 94] X f(x, y)dxdy = F (x)dx = d c G(y)dy. Korollrin 2.4 todistus. Olkoon u < t j olkoon δ > siten, että [u, t] [c, d] j t u < δ. Silloin oletusten nojll D 2 ϕ R joukoss [, b] [u, t]. Merkitään ψ(t) = (D 2 ϕ)(x, t)dx. Kosk ψ on tietynlinen primitiivi, niin se on riittävän sileä joukoss [, b]. Dierentioituvuuden trkempi trkstelu tässä yhteydessä sivuutetn. Silloin ψ on jtkuv joukoss [, b], j edelleen Fubinin luseen 2.5 j Anlyysin perusluseen 1.1 nojll ψ(t) = (D 2 ϕ)(x, t)dx = d { t } b (D 2 ϕ)(x, s)dx ds dt = d dt = d dt { } t (D 2 ϕ)(x, s)ds dx = d dt u ϕ(x, t)dx d dt Siis ψ(t) = f (t) j väite seur. u ϕ(x, u)dx = d dt { } ϕ(x, t) ϕ(x, u) dx ϕ(x, t)dx. Leibnizin integrlisääntö 2.1 ei kuitenkn in päde. Käydään seurvksi läpi tälläinen tpus. Esimerkki 2.6. Trkstelln tilnnett, joss määritellään funktio ϕ(x, t) kikill t : x, kun x t, ϕ(x, t) = x + 2 t, kun t < x 2 t,, muulloin. J olkoon ϕ(x, t) = ϕ(x, t ), jos t <. [1, s ] 6

11 Kuv 1: Funktio ϕ(x, t). Osoitetn ensin, että funktio ϕ(x, t) on jtkuv koko tsoss R 2. Nyt riittää trkstell vin rjtpuksi, kosk ploittin määritellyn funktion ϕ(x, t) määrittävät funktiot ovt jtkuvi koko tsoss R 2. Kun t, niin j lim x ϕ(x, t) = lim t+ x ( x + 2 t) = t, t+ lim x ϕ(x, t) = lim t x x = t, t lim x 2 ϕ(x, t) = lim t+ x 2 =, t+ lim x 2 ϕ(x, t) = lim t x 2 ( x + 2 t) =. t Kun t <, niin oletuksen mukn ϕ(x, t) = ϕ(x, t ), jolloin tilnne on etumerkkejä lukuunottmtt nloginen tpuksen t > knss. Siis ploittin määritelty funktio ϕ(x, t) on jtkuv kikkill. Osoitetn seurvksi, että (D 2 ϕ)(x, ) =. Nyt, kun x t, (D 2 ϕ)(x, t) = 1 t, kun t < x 2 t,, muulloin. Trivilisti, kun x <, niin (D 2 ϕ)(x, ) = kikill t. Jos x, niin (D 2 ϕ)(x, ) =, kun t < 1 4 x2 ti t x 2. 7

12 Jos t < 1 4, niin f(t) = 1 1 = 1 t 2 x2 ϕ(x, t)dx = ( + t xdx + 2 t t ( x + 2 t)dx 1 2 x2 + 2x ) 2 t t = t. t Jos 1 4 < t <, niin f(t) = 1 1 t ϕ(x, t)dx = = 1 2 x2 t ( xdx 2 t t ( x + 2 t)dx 1 2 x2 + 2x ) 2 t t = ( t) = t. t Siis f(t) = t kikill t < 1. Silloin f (t) = 1 j erityisesti f () = 1. 4 Kuitenkin 1 1 (D 2 ϕ)(x, )dx = dx =. 1 1 Eli päädyimme ristiriitn f () 1 1 (D 2 ϕ)(x, )dx. Seurvksi esitetään esimerkkejä Leibnizin integrlisäännön 2.1 käytöstä. Esimerkki 2.7. Olkoon f(t) = 1 t dx 1 1 x2 t = ϕ(x, t)dx, 2 missä t < 1. Lsketn f (t). [2, s. 427] Nyt, jott ϕ(x, t) olisi jtkuv j derivoituv täytyy 1 x 2 t 2 >, mikä pätee oletusten x [, 1) j t < 1 nojll. Lsketn (D 2 ϕ)(x, t). Silloin (D 2 ϕ)(x, t) = 1 1 x2 t 2 t 2 ( 2tx2 )(1 t 2 x 2 ) 3 2 = (1 x 2 t 2 )

13 Nyt voimme hyödyntää Leibnizin integrlisääntöä 2.1. Sdn f (t) = 1 (1 x 2 t 2 ) 3 2 dx. (2.6) Olkoon x = sin u = u = rcsin xt. (2.7) t Silloin dx = d ( sin u ) du = cos u du. (2.8) du t t Sijoitetn kvt (2.7) j (2.8) kvn (2.6). Silloin rcsin t ( f (t) = 1 t 2 sin2 u ) 3 ( 2 cos u ) du t 2 t rcsin t cos u = du = 1 t(1 sin 2 u) 3 2 t ( tn u ) rcsin t tn(rcsin t) = =. t t rcsin t Olkoon c = rcsin t [ 1, 1]. Silloin sin c = t j edelleen tn c = Esimerkki 2.8. Olkoon, b > j I(, b) = Trkstelln ensin integrli I (, b) = π 2 Tehdään muuttujnvihto t 1 t 2 = f (t) = π 2 π dx cos 2 x + b sin 2 x = t 2. dx ( cos 2 x + b sin 2 x) 2. 1 cos 2 x dx = + b sin2 x cos 2 x 1 cos 2 u du π 2 sec 2 x + b tn 2 x dx. Silloin u = tn x = dx = 1 sec 2 x du. I = 1 b du +, b u2 9

14 j edelleen tehdään toinen muuttujnvihto b v = u = du = dv b. Silloin I = 1 b { 1 v dv = 1 rctn v} b = π 2 b. (2.9) Kosk integrlin I rjt ovt muuttujst riippumttomt, niin Leibnizin integrlisäännön 2.1 nojll di d = d d π 2 dx cos 2 x + b sin 2 x = j toislt yhtälön (2.9) nojll di d = d ( π ) d 2 b Silloin yhtälöiden (2.1) j (2.11) nojll π 2 π 2 cos 2 x ( cos 2 x + b sin 2 dx, (2.1) x) 2 = π 4 3 b. (2.11) cos 2 x ( cos 2 x + b sin 2 x) dx = π b. (2.12) j nlogisesti trkstelemll osittisderivtt D 2 I sdn π 2 sin 2 x ( cos 2 x + b sin 2 x) dx = π 2 4 b. (2.13) 3 Silloin yhdistämällä tulokset (2.12) j (2.13) sdn Merkitään I = π 2 dx ( cos 2 x + b sin 2 x) = π b( + 1 ). b I n = π 2 dx ( cos 2 x + b sin 2 x) n. Kosk integrlin I n 1 rjt ovt muuttujst riippumttomt, niin Leibnizin integrlisäännön 2.1 nojll di n 1 d = d d = π 2 π 2 dx ( cos 2 x + b sin 2 x) n 1 (1 n) cos 2 x ( cos 2 x + b sin 2 dx, (2.14) x) n 1

15 j di n 1 db = π 2 Nyt yhtälöiden (2.14) j (2.15) nojll sdn j edelleen di n 1 d + di n 1 db di n 1 (1 n) sin 2 x ( cos 2 x + b sin 2 dx. (2.15) x) n π 2 = (1 n) 1 ( cos 2 x + b sin 2 x) n dx, d + di n 1 + (n 1)I n =. (2.16) db Kvll (2.16) voidn lske I n kikill n > 1. [13] Leibnizin integrlisääntö 2.1 pätee myös epäoleellisille integrleille. Todistus sivuutetn j tätä ominisuutt käsitellään vin esimerkkien kutt. Määritelmä 2.9. Jos kompleksiluvulle z pätee R(z) >, niin gmmfunktio Γ(z) määritellään suppenevn epäoleellisen integrlin vull Γ(z) = x z 1 e x dx. Esimerkki 2.1. Gmmfunktiolle 2.9 pätee ominisuus, jos z = n+1 N, missä n N, niin Γ(n + 1) = n! [15]. Se sdn derivoimll gmmfunktiot puolittin j iteroimll Leibnizin integrlisääntöä 2.1 epäoleellisille integrleille loitten tpuksest n =. Silloin Γ(1) = e x dx = 1. (2.17) Trkstelln tilnnett uuden prmetrin t vull. Kikill t >, olkoon x = tu, jolloin dx = tdu. Nyt sijoittmll nämä yhtälöön (2.17) sdn te tu du = 1. (2.18) Seurvksi jetn yhtälö (2.18) puolittin prmetrill t. Vlitn u = s, jolloin integrndi e ts on derivoituv prmetrin s suhteen trksteltvss joukoss s. Silloin e ts ds = 1 t, (2.19) jok on prmetrinen muoto gmmfunktiolle tpuksess, jolloin z =. Olkoon t >, jott yhtälön (2.19) epäoleellinen integrli suppenee joukoss 11

16 s. Iteroidn yhtälön (2.19) osittisderivointi puolittin prmetrin t suhteen. Silloin Leibnizin integrlisäännön 2.1 oletukset ovt voimss eli iteroitess voidn yhtälön (2.19) vsemmll puolell siirtää osittisderivointi integrlin sisään. Silloin j se ts ds = 1 t 2, s 2 e ts ds = 2 t 3, s 3 e ts ds = 6 t 4, Huomtn, että kyseessä on s 4 e ts ds = 24 t 5. s n e ts ds = n! t n+1, johon sijoittmll t = 1 sdn gmmfunktion ominisuus Γ(n + 1) = n!. [8, s. 2-3] Olkoon f : [, ) R. Silloin funktion f Lplce-muunnos F {f} on missä s (, ). F (s) = f(t)e st dt, (2.2) Esimerkki Tutkitn miten funktioiden f j h Lplce-muunnokset riippuvt toisistn, jos f(t) = h(t) 1 t = h(t) = f(t) tf(t). (2.21) Oletetn, että Leibnizin integrlisäännön 2.1 oletukset ovt voimss. Silloin derivoimll kv (2.2) puolittin sdn Luseen 2.1 nojll F (s) = d ds f(t)e st dt = [ tf(t)]e st dt, 12

17 jok on funktion t tf(t) Lplce-muunnos. Nyt sijoittmll Lplcemuunnokset kvn (2.21) sdn f(t)e st dt + [ tf(t)]e st dt = h(t)e st dt. Siis Lplce-muunnokset riippuvt toisistn dierentiliyhtälön välityksellä. F (s) + F (s) = F {h}(s) F (s) = 1 F (s) + F {h}(s). Trkstelln seurvksi epäoleellist integrli sin x x dx, jok tunnetn yhtenä Dirichlet integrleist [16]. Hyödynnetään trksteluss Eulerin kvn korollri. Määritellään trvittvt putyöklut. Eulerin kvn j sen korollrin todistukset sivuutetn. Luse Olkoon ϕ R. Silloin [17] e iϕ = sin ϕ + i cos ϕ. Itse siss Eulerin kv 2.12 on voimss kikille kompleksiluvuille ϕ. Eulerin kvlle 2.12 sdn seurv korollri trkstelemll kompleksiluvun e iϕ imginäärios I(e iϕ ). Korollri Olkoon ϕ R. Silloin [16] sin ϕ = 1 2i (eiϕ e iϕ ). Kuvuksen f : X Y snotn olevn monotonisesti ksvv, jos kikill x 1, x 2 X siten, että x 1 x 2 pätee f(x 1 ) f(x 2 ). Vstvsti, kuvuksen f snotn olevn monotonisesti vähenevä, jos kikill x 1, x 2 X siten, että x 1 x 2 pätee f(x 1 ) f(x 2 ). Kuvuksen f : X Y käänteiskuvukseksi snotn kuvust f : Y X, jolle pätee f f 1 = id Y, f 1 f = id X, missä id on identtinen kuvus, jok kuv jokisen lkion itselleen. 13

18 Esimerkki Merkitään I(α) = e αx sin x dx, (2.22) x missä α >. [13] Selvitetään rvo I(). Oletetn, että funktio (2.22) toteutt Leibnizin integrlisäännön 2.1 oletukset välillä (, ). Silloin Luseen 2.1 j Korollrin 2.13 nojll sdn di dα = d dα e αx sin x dx = e αx sin xdx x e αx (e ix e ix ) = dx = 1 2i 2i = 1 ( 1 2i α i e x(α i) + 1 ) α + i e x(α+i) = 1 2i = 1 ( 2i ) = 1 2i α α 2 + 1, kosk e x, kun x. J edelleen (e x(α i) e x(α+i) ) dx ( 1 α i 1 ) α + i I(α) = C rctn α, (2.23) missä C R on integroimisvkio. Kosk rkustngentin päähr on funktion tn : ( π, π ) R käänteisfunktio, jok on monotonisesti ksvv välillä 2 2 ( π, π), niin 2 2 lim rctn α = π α + 2. Kosk I(α), kun α, niin I(α) = π 2 rctn α. Siis [16] I() = e x sin x sin x dx = x x dx = π 2. 3 Leibnizin integrlisäännön yleinen muoto Luse 3.1. Olkoon funktio ϕ(x, t) j derivtt (D 2 ϕ)(x, t) jtkuvi joukoss Ω = {(x, t) : x b, c t d}, 14

19 j olkoon u 1 (t) j u 2 (t) jtkuvsti derivoituvi kikill c t d, missä u 1, u 2 : [, b] (c, d). Jos niin f(t) = u2 (t) u 1 (t) ϕ(x, t)dx, f (t) = ϕ[u 2 (t), t]u 2(t) ϕ[u 1 (t), t]u 1(t) + [2, s ] u2 (t) u 1 (t) (D 2 ϕ)(x, t)dx. (3.1) Leibnizin integrlisäännön yleisen muodon 3.1 todistmist vrten trvitn seurvi putyökluj. Todistukset yhdistetylle kuvukselle j ketjusäännölle sivuutetn. Luse 3.2. Olkoon U R n j V R m voimi j n, m, k N. Jos kuvus g : U V on jtkuv pisteessä x U j kuvus f : V R k on jtkuv pisteessä g(x) V, niin yhdistetty kuvus f g : U R k, on jtkuv pisteessä x. [1, s. 19] (f g)(x) = f[g(x)], Olkoon v, w R n, missä n N. Olkoon vektorien välinen kulm θ [, π]. Silloin pistetulo v w on ti v w = v w cos θ v w = v 1 w v n w n = n v i w i. Olkoon x = (x 1,..., x n ) R n, n N j r >. Silloin joukko, i=1 Ω(x, r) = { R n : x < r}, kutsutn x-keskiseksi r-säteiseksi voimeksi plloksi. Olkoon f : Ω(x, r) R derivoituv pisteessä x R n. Silloin funktion f grdientti pisteessä x on f(x) = (D 1 f(x),..., D n f(x)). 15

20 Luse 3.3. Olkoon g : Ω(v, r) R n pisteessä v R m dierentioituv kuvus j olkoon f pisteessä g(v) R n dierentioituv relirvoinen funktio. Silloin f g on dierentioituv pisteessä v j n D i (f g)(v) = f[g(v)] D i g(v) = D j f[g(v)]d i g j (v), missä i = 1,..., m. [1, s. 33] Luseen 3.1 todistus. Olkoon y, z (c, d) j y < z. Olkoon h : R 3 R, h(y, z, t) = z y j=1 ϕ(x, t)dx, j g : R R 3, g(t) = [u 1 (t), u 2 (t), t]. Olkoon f : R R yhdistetty kuvus f(t) = (h g)(t) = h[g(t)] = h[u 1 (t), u 2 (t), t]. Funktio h on jtkuvn funktion primitiivinä riittävän sileä. Dierentioituvuuden trkempi trkstelu tässä yhteydessä sivuutetn. Silloin ketjusäännön 3.3 nojll f (t) = d d (h g)(t) = h[g(t)] dt dt g(t) [ ] = (D 1 h)(g(t)), (D 2 h)(g(t)), (D 3 h)(g(t)) [u 1(t), u 2(t), 1] = (D 1 h)(u 1 (t), u 2 (t), t)u 1(t) + (D 2 h)(u 1 (t), u 2 (t), t)u 2(t) + (D 3 h)(u 1 (t), u 2 (t), t). Silloin Anlyysin perusluseen 1.1 nojll j (D 1 h)(u 1 (t), u 2 (t), t) = ϕ(u 1 (t), t) (D 2 h)(u 1 (t), u 2 (t), t) = ϕ(u 2 (t), t), j Leibnizin integrlisäännön 2.1 nojll (D 3 h)(u 1 (t), u 2 (t), t) = Siis u2 (t) u 1 (t) f (t) = ϕ[u 2 (t), t]u 2(t) ϕ[u 1 (t), t]u 1(t) + (D 2 ϕ)(x, t)dx, u2 (t) u 1 (t) (D 2 ϕ)(x, t)dx. 16

21 Todistetn Leibnizin integrlisäännön yleinen muoto 3.1 toisell tvll käyttäen tekniikk, jot voidn hyödyntää todistess eri Euklidisi vruuksi R n käsitteleviä tpuksi. Luseen 3.1 todistus. Olkoon ϕ : R 2 R j u 1 (t) < u 2 (t). Tehdään muuttujnvihto x = yu 2 (t) + (1 y)u 1 (t), jolloin dx = [u 2 (t) u 1 (t)]dy. Silloin f(t) = = u2 (t) u 1 (t) 1 ϕ(x, t)dx ϕ(yu 2 (t) + [1 y]u 1 (t), t)[u 2 (t) u 1 (t)]dy = [u 2 (t) u 1 (t)] 1 ϕ[yu 2 (t) + (1 y)u 1 (t), t]dy. Nyt Leibnizin integrlisäännön 2.1 j ketjusäännön 3.3 nojll 1 f (t) = [u 2(t) u 1(t)] ϕ(yu 2 (t) + [1 y]u 1 (t), t)dy { 1 + [u 2 (t) u 1 (t)] (D 2 ϕ)(yu 2 (t) + [1 y]u 1 (t), t) 1dy + 1 Huomtn, että (D 1 ϕ)(yu 2 (t) + [1 y]u 1 (t), t)[yu 2(t) + (1 y)u 1(t)]dy d ( ) ϕ(yu 2 (t) + [1 y]u 1 (t), t)[yu dy 2(t) + (1 y)u 1(t)] = (D 1 ϕ)(yu 2 (t) + [1 y]u 1 (t), t)[u 2 (t) u 1 (t)][yu 2(t) + (1 y)u 1(t)] + ϕ(yu 2 (t) + [1 y]u 1 (t), t)[u 2(t) u 1(t)]. Silloin Anlyysin perusluseen 1.1 nojll f (t) = u2 (t) u 1 (t) (D 2 ϕ)(x, t)dx ( ) + ϕ[yu 2 (t) + [1 y]u 1 (t), t][yu 2(t) + [1 y]u 1 1(t)] = ϕ[u 2 (t), t]u 2(t) ϕ[u 1 (t), t]u 1(t) + u2 (t) u 1 (t) (D 2 ϕ)(x, t)dx. }. 17

22 Seurvksi esitetään esimerkkejä Leibnizin integrlisäännön yleisen muodon 3.1 käytöstä. Määritelmä 3.4. Virhefunktio erf(t) sdn, kun integroidn Gussisen funktion normlijkum j määritellään missä t. erf(t) = 2 t e x2 dx, π Esimerkki 3.5. Olkoon f(t) = t e x2 t 2 x 2 dx = t ϕ(x, t)dx, missä t. Nyt ϕ(x, t) on jtkuv j derivoituv, kun x j (D 2 ϕ)(x, t) = 2te x2 t 2. Nyt Leibnizin integrlisäännön yleisen muodon 3.1 nojll huomioiden, että u 2(t) = 1 j u 1(t) = sdn Merkitään f (t) = e t4 t 2 t u = xt = dx = du t. 2te x2 t 2 dx. (3.2) Sijoittmll nämä edelliseen integrliin (3.2) sdn t 2 f (t) = e t4 2 e u2 du. t 2 Huomtn, että kyseessä on Gussin virhefunktio Määritelmästä 3.4. Siis f (t) = e t4 t 2 π erf(t 2 ). Anlyyttiseksi relifunktioksi snotn funktiot, jok voidn loklisti esittää suppenevn potenssisrjn vull. Seurv trkstelu pohjutuu lähteeseen [11, s. 19-2]. Trkstelln nyt dierentiliyhtälöä f (k) + A(x)f =, (3.3) missä k N j A(x) on relinen nlyyttinen funktio joukoss ( 1, 1). Seurv rtkisufunktioiden esityskv on osoittutunut tärkeäksi työkluksi lineristen dierentiliyhtälöiden teoriss. 18

23 Luse 3.6. Olkoon f yhtälön (3.3) rtkisu. Silloin f(x) = missä x ( 1, 1). = d(k 1) dx (k 1) k 1 n= f (n) () x n n! 1 (k 1)! x (x ξ) k 1 A(ξ)f(ξ)dξ, Todistus. Derivoimll funktiot f k-kert sdn Leibnizin integrlisäännön 3.1 j Anlyysin perusluseen 1.1 nojll ( d k k 1 f (n) ) () x n 1 x (x ξ) k 1 A(ξ)f(ξ)dξ dx k n! (k 1)! n= ( k 1 ) x n=1. = d ( f (n) () dx = A(x)f(x). f (n) () (n 1)! xn 1 x ) A(ξ)f(ξ)dξ 1 (k 2)! (x ξ) k 2 A(ξ)f(ξ)dξ Kosk f (k) (x) = A(x)f(x), niin väite seur integroimll. 4 Leibnizin integrlisääntö tsoss R 2 Trkstelln ensin tilnnett, joss tsoss R 2 liikkuv rjoitettu lue on vkio jn suhteen. Määritellään trkstelu vrten trvittvt putyöklut. Joukon X R n snotn olevn rjoitettu, jos on olemss x X j r > siten, että X Ω(x, r). Muulloin joukon X snotn olevn rjoittmton. Krkesti snoen joukko X kutsutn yhtenäiseksi, jos se on yhdessä osss eli sitä ei void jk khteen epätyhjään voimeen osjoukkoon. Trkk määritelmä trvitsee topologin työkluj j iheest voi luke lisää lähteestä [4, s. 9]. Avruuden R n osjoukko X on kompkti jos j vin jos se on suljettu j rjoitettu. Jos joukko X on epätyhjä, voin j yhtenäinen, snotn sitä lueeksi. Luse 4.1. Olkoon X R 2 lue j olkoon Ω X kompkti joukko. Olkoon F lueess X relirvoinen funktio siten, että sekä F että D 3 F ovt jtkuvi. Silloin d F (x, y, t)dxdy = (D 3 F )(x, y, t)dxdy. (4.1) dt Ω 19 Ω

24 Todistetn Luse 4.1 hyödyntäen Heine-Cntor lusett, jonk todistus sivuutetn. Luse 4.2. Jos funktio f : X Y on jtkuv, missä X, Y R n j joukko X on kompkti. Silloin f on tsisesti jtkuv. [14] Luseen 4.1 todistus. Merkitään kvn (4.1) vsemmn puolen pintintegrli h(t). Nyt Heine-Cntor luseen 4.2 j oletusten nojll F j D 3 F ovt tsisesti jtkuvi joukoss Ω. Siis kikill ε > on olemss δ > siten, että kikill (x, y) Ω j kikill t pätee F (x, y, t + t) F (x, y, t) (D 3 F )(x, y, t) t Ω = (D 3 F )(x, y, s)(t + t t) t (D 3 F )(x, y, t) = (D 3 F )(x, y, s) (D 3 F )(x, y, t) < ε, kun t < δ j s (t, t + t). Silloin h t = F (x, y, t + t) F (x, y, t) dxdy = t missä R < missä re(ω) on joukon Ω pint-l. Siis { 1 t h (t) = lim t = Siis väite seur. Ω Ω Ω εdxdy = ε re(ω), F (x, y, t + t)dxdy Ω (D 3 F )(x, y, t)dxdy. (D 3 F )(x, y, t)dxdy + R, Ω F (x, y, t)dxdy Trkstelln seurvksi tilnnett, joss tsoss R 2 liikkuv lue ei ole vkio, vn se deformoituu eli muutt muoton jn kuluess. Määritellään trksteluss trvittvt putyöklut. Kuvust f : X Y snotn injektioksi, jos jokinen lähtöjoukon lkio on täsmälleen yhden mlijoukon lkion lkukuv. Mlijoukko voi sisältää lkioit, joill ei ole olemss lkukuv. Toislt kuvust f : X Y snotn surjektioksi, jos jokisell mlijoukon lkioll on lkukuv. Silloin 2 }

25 usempi lähtöjoukon lkio voi kuvutu smlle mlijoukon lkiolle. Kuvust f : X Y snotn bijektioksi, jos se on sekä injektio että surjektio. Bijektiiviselle kuvukselle voidn määrittää käänteiskuvus f 1 : Y X. Käänteiskuvus f 1 on myös bijektio. Avoimi joukkoj X, Y R n snotn homeomorsiksi, jos on olemss jtkuv bijektiivinen kuvus f : X Y, joll on olemss jtkuv käänteiskuvus f 1 : Y X. Silloin kuvust f snotn homeomorsmiksi. Lisäksi, jos homeomorsmi f j sen käänteiskuvus f 1 ovt dierentioituvi, niin voimi joukkoj X, Y R n snotn dieomorsiksi j funktiot f snotn dieomorsmiksi. Joukon X snotn olevn polkuyhtenäinen, jos jokisell x, y X on olemss jtkuv funktio f : [, 1] X siten, että f() = x j f(1) = y. Polkuyhtenäisen voimen joukon X snotn olevn yhdesti yhtenäinen, jos jokinen suljettu käyrä Γ X voidn jtkuvsti deformoid pisteeksi x X. Lgrngen kuvustvss trkstelln liikkuvn j deformoituvn joukon Ω(t) R n lkion u pikk jnhetkellä t, jonk nt kuvus u x. Eulerin kuvustvss trkstelln liikkuvn j deformoituvn joukon Ω(t) R n nopeutt pikss x Ω hetkellä t, jonk nt kuvus x v. Ekskti todistus deformoituvn joukon tpuksess trkstelee Lgrngen kuvuksen u x ntm dieomorsmi φ : U X, jok voidn yleistää kikkiin Euklidisiin vruuksiin R n hyödyntäen tekniikk, jok on pohjltn sm. Vektorirvoisen kuvuksen f = (f 1, f 2,..., f n ) divergenssi on div f = f = D 1 f 1 + D 2 f D n f n. Luse 4.3. Olkoon X R 2 lue j olkoon Ω(t) X yhdesti yhtenäinen rjoitettu lue, jok deformoituu j liikkuu jn t suhteen. Olkoon Lgrngen kuvus u x dieomorsmi, jok kuv joukon Ω(t) deformtiot. Olkoon F lueess X relirvoinen funktio siten, että sekä F että D 3 F ovt jtkuvi. Silloin d dt Ω(t) F (x, y, t)dxdy = Ω(t) [div(f v) + (D 3 F )(x, y, t)]dxdy. (4.2) missä v R 2 on Eulerin kuvuksen ntm nopeusvektori pisteessä (x, y, t) Ω(t). [7, s ] Huomutus 4.4. Itse siss Luseen 4.3 tilnteess yhdesti yhtenäisyyttä ei vdit, vn yhtenäisyys on riittävä ehto. Todistuksess hyödynnetään ll 21

26 olev versiot Greenin kvst, jok vtii yhdesti yhtenäisyyden. Greenin kvst on olemss versioit, joiss yhdesti yhtenäisyyttä ei vdit. Hyödynnetään Luseen 4.3 todistmiseksi lusett, jok kulkee nimellä Greenin kv, jonk todistus sivuutetn. Joukon X R n reun X on niiden pisteiden x R n joukko, joille kikill r >. Ω(x, r) X j Ω(x, r) (R n \ X), Luse 4.5. Olkoon X R 2 joukko j olkoon Ω X rjoitettu lue, jonk reun on yksinkertinen suljettu käyrä Ω positiivisesti suunnttun. Oletetn, että F : X R 2 on jtkuvsti derivoituv vektorikenttä. Silloin f 1 (x, y)dx + f 2 (x, y)dy = [(D 1 f 2 )(x, y) (D 2 f 1 )(x, y)]dxdy, Ω missä F = (f 1, f 2 ). [1, s. 84] Ω Vektori x snotn yksikkövektoriksi, jos x = 1. Tngenttivektoriksi kutsutn vektori, jok on tngentti tsolle ti pinnlle X josskin pisteessä x X. Normlivektoriksi kutsutn vektori, jok on kohtisuorss tson ti pinnn X tngenttivektori vstn pisteessä x X. Luseelle 4.3 esitettävä todistus ei ole ekskti, vn lähinnä fysiikn hvintoihin perustuv hhmotelm. Luseen 4.3 todistus. Trkstelln tilnnett hetkellä t = t. Jetn ensin yhtälön (4.2) vsemmn puolen pintintegrli osiin F (x, y, t)dxdy = F (x, y, t )dxdy Ω(t) Ω(t) + [F (x, y, t) F (x, y, t )]dxdy. (4.3) Ω(t) Merkitään pintintegrli (4.3) funktioll Φ(t). Kun t = t, Φ(t ) = dxdy =. Ω(t ) 22

27 Silloin Lemmn 2.3 nojll ( d F (x, y, t)dxdy dt Ω(t) ( d = dt ( d = dt Ω(t) Ω(t) ) t=t ) F (x, y, t )dxdy + lim t=t ) F (x, y, t )dxdy t=t Φ(t) Φ(t ) t t t t F (x, y, t) F (x, y, t ) + lim dxdy t t Ω(t) t t ( d = F (x, y, t )dxdy + (D 3 F )(x, y, t )dxdy. (4.4) dt Ω(t) ) t=t Ω(t ) Jtkoss trkstelln vin kvn (4.4) ensimmäistä termiä j pidetään toisen termin rjnkäyntiä tunnettun. Trkstelln luett Ω(t) j sen osittin päällekkäistä ljennust Ω(t + dt). Olkoon v(x, y, t) nopeusvektori reunn Ω(t) pisteessä (x, y) j olkoon n yksikköulkonormli tässä pisteessä. Nyt erotuksess F (x, y, t )dxdy F (x, y, t )dxdy, Ω(t+dt) kikki lueiden Ω(t + dt) j Ω(t) päällekkäisyydet kumovt toisens j inostn kpe reun-lueen kistle jää kontribuutioon jäljelle. Olkoon tämän kren kistleen pituus ds. Olkoon nopeusvektorin v yksikköulkonormlin n suuntisen komponentin pituus l, j vektoreiden välinen kulm α. Silloin cos α = l = v n = v n cos α = l. v Nopeudelle pätee v = dx = dx = vdt. dt Nyt kren kistleen leveys on (v n)dt j korkeus on F (x, y, t ). Silloin kren kisteleen tilvuus on F (x, y, t )(v n)dtds. Ω(t) Silloin voidn pproksimoid 1 ( F (x, y, t )dxdy dt Ω(t+dt) F (x, y, t )(v n)ds. Ω(t) 23 Ω(t) Ω(t) ) F (x, y, t )dxdy

28 Kierretään yksikkötngenttivektori t siten, että sdn yksikköulkonormli n ( dx t = ds, dy ) ( dy ) = n = ds ds, dx. ds Merkitään v = (v 1, v 2 ). Silloin j edelleen d dt (v n)ds = (v 1, v 2 ) (dy, dx) = v 1 dy v 2 dx, Ω(t) F (x, y, t )dxdy = Ω(t) F (x, y, t )(v 1 dy v 2 dx). (4.5) Nyt käyttämällä Greenin kv 4.5 yhtälön (4.5) oiken puoleen, tekemällä sijoitus t = t j yhdistämällä tulos yhtälöön (4.4) sdn ( d ) F (x, y, t)dxdy dt Ω(t) t=t = F (x, y, t )(v 1 dy v 2 dx) + (D 3 F )(x, y, t )dxdy Ω(t ) Ω(t ) = [(D 1 v 1 F )(x, y, t ) + (D 2 v 2 F )(x, y, t ) + (D 3 F )(x, y, t )]dxdy Ω(t ) = [div(f v) + (D 3 F )(x, y, t )]dxdy, Ω(t ) missä erityisesti F v R 2. Siis väite seur. 5 Leibnizin integrlisääntö vruudess R 3 Luse 5.1. Olkoon X R 3 lue j olkoon Ω X kompkti joukko. Olkoon F lueess X relirvoinen funktio siten, että sekä F että D 4 F ovt jtkuvi. Silloin d F (x, t)dv = (D 4 F )(x, t)dv, dt Ω Ω missä dv on tilvuuselementti. Todistus Luseelle 5.1 on nloginen Luseen 4.1 todistuksen knss, joten todistus tässä yhteydessä sivuutetn. Trkstelln nyt Leibnizin integrlisäännön vruuden R 3 tpust, joss rjoitettu lue deformoituu j liikkuu jn suhteen. Hyödynnetään todistuksess tekniikk, jok esiteltiin yleisen muodon, Luse 3.1, vihtoehtoisen todistustpn. Todistuksess jtuksen on tehdä muuttujnvihto jollekin kiinnitetylle jnhetkelle, jott lueest jonk yli integroidn, 24

29 sdn jst riippumton. Integrli päästään siten käsittelemään tutuin menetelmin. Lopuksi tehdään muuttujnvihto tkisin jst riippuvn tilnteeseen eli täten trksteluss pystytään ohittmn ikriippuvuudest johtuvt ongelmt. Todistuksess sivuutetn tiettyjen sileyteen liittyvien yksityiskohtien trkstelu. Hyödynnetään trksteluss Gussin divergenssilusett, jonk todistus sivuutetn. Luse 5.2. Olkoon X R 3 joukko j olkoon Ω X voin joukko, jonk reun on tsinen suljettu käyrä Ω positiivisesti suunnttun. Oletetn, että F : X R 3 on jtkuvsti derivoituv vektorikenttä. Silloin div FdV = (F n)da, Ω missä n(x) on yksikköulkonormli sekä dv j da ovt tilvuus- j pintelementit. [18] Luse 5.3. Olkoon X R 3 lue j olkoon Ω(t) X yhtenäinen kompkti joukko, jok deformoituu j liikkuu jn t suhteen. Olkoon Lgrngen kuvus u x dieomorsmi, jok kuv joukon Ω(t) deformtiot. Olkoon F lueess X relirvoinen funktio siten, että sekä F että D 4 F ovt jtkuvi. Silloin d F (x, t)dv = (D 4 F )(x, t)dv dt Ω(t) Ω(t) + [v(x, t) n(x, t)]f (x, t)da, Ω(t) missä v on Eulerin kuvuksen ntm nopeusvektori j n yksikköulkonormli pikss (x, t). [7, s. 62] Luseen 5.3 vull johdetn kontinuumimekniikn perusyhtälöt j virtusdynmiikss se tunnetn yleisesti nimellä Reynoldsin kuljetusteoreem [19]. Gussin divergenssiluseen 5.2 nojll sdn Reynoldsin kuljetusteoreemlle 5.3 seurv korollri. Korollri 5.4. Oletetn Luseen 5.3 oletukset j käytetään smoj merkintöjä. Silloin d ( ) F (x, t)dv = div[f (x, t)v(x, t)] + (D 4 F )(x, t) dv. dt Ω(t) Ω(t) 25 Ω

30 Määritellään seurvksi Reynoldsin kuljetusteoreemn 5.3 todistust vrten trvittvt putyöklut. Olkoon A m n-mtriisi, missä n, m N. Silloin d 11 d 1n da =....., d m1 d mn missä ij on mtriisin A komponentti rivillä i srkkeess j. Olkoon f : R n R m kuvus, missä n, m N j x R n. Silloin Jcobin mtriisi funktiolle f = (f 1,..., f m ) on D 1 f 1 D n f 1 J f (x) = [Df] = [D 1 f D n f] =..... D 1 f m D n f m Olkoon f : R n R n kuvus, missä n N j x R n. Silloin Jcobin determinntti funktiolle f on det J f (x) = det[df] = D 1 f D n f. Olkoon A n m-mtriisi j B m p-mtriisi. Silloin mtriisitulo AB on AB = [A] nm [B] mp = [AB] np = [C] np = C, missä n p-mtriisin C lkiot ovt muoto c ij = i1 b 1j + + im b mj = m ik b kj, missä i = 1,..., n j j = 1,..., p. Neliömtriisi eli n n-mtriisi A snotn kääntyväksi, jos on olemss n n-mtriisi A 1 siten, että AA 1 = A 1 A = I n, missä I n on n n-yksikkömtriisi eli 1 1 I n = k=1 Neliömtriisin eli n n-mtriisin A jälki on n tr(a) = ii = nn, i=1 missä ii määrittää mtriisin A lkion rivillä i j srkkeess i. Mtriiseille pätee seurv ominisuus, jonk todistus sivuutetn. 26.

31 Luse 5.5. Olkoon A n n-mtriisi. Silloin A on kääntyvä jos j vin jos det A. [2] Hyödynnetään Reynoldsin kuljetusteoreemn 5.3 todistuksess seurvi luseit, joiden todistukset sivuutetn. Ensimmäinen luseist tunnetn Jcobin kvn, toinen Schwrzin luseen j viimeinen muuttujnvihtokvn. Luse 5.6. Jos A = A(t) on kääntyvä n n-mtriisi, niin [22] d [ dt det A(t) = det A(t) tr A(t) 1 d ]. dt A(t) Merkitään jtkoss n-kert jtkuvsti derivoituvien funktioiden joukko C n. Luse 5.7. Olkoon u = (u 1,..., u n ) R n j olkoon X R n siten, että jokin pisteen u ympäristö sisältyy joukkoon X. Olkoon f : X R j oletetn, että f C 2. Silloin kikill i, j {1,..., n} pätee [21] 2 f x i x j (u 1,..., u n ) = 2 f x j x i (u 1,..., u n ). Snotn, että homeomorsmi f on C n -homemorsmi, jos f on n-kert jtkuvsti derivoituv. Vstvsti dieomorsmi f on C n -dieomorsmi, jos sekä f että f 1 ovt n-kert jtkuvsti derivoituvi. Joukon X sulkeum X on pienin suljettu joukko, jok sisältää nnetun joukon. Luse 5.8. Olkoon X, Y R n voimi j X, Y R n kompktej joukkoj. Olkoon X, Y = j olkoon kuvus g : X Y C 1 -homeomorsmi. Jos kuvus f : Y R on jtkuv, niin f(x)dx 1 dx n = f[g(u)] det[dg(u)] dx1 dx n. [5, s. 13] Y X Mtriisin A trnspoosi, jot merkitään A, on mtriisi, jok sdn muuttmll lkuperäisen mtriisin rivit srkkeiksi j päinvstoin. Toisin snoen [A ] ij = [A] ji. Lisäksi hyödennetään Reynoldsin kuljetusteoreemn 5.3 todistuksess seurvi lemmoj. 27

32 Lemm 5.9. Jos A j B ovt n n-mtriisej, niin [22] n i=1 n A ij B ij = tr(a B). j=1 Todistus. Mtriisitulo AB on n n-mtriisi j sen komponentit ovt (AB) jk = n A ji B ik, missä mtriisituloll AB on j riviä j k srkett. Sijoittmll mtriisin A piklle sen trnspoosi A sdn (A B) jk = i=1 n A ij B ik, j edelleen ottmll mtriisin jälki puolittin sdn tr(a B) = n (A B) jj = j=1 i=1 n ( n ) A ij B ij = j=1 i=1 n i=1 n A ij B ij. Lemm 5.1. Jos funktio F : R n R j vektorikenttä v : R n R n ovt derivoituivi, niin F v + F div v = div(f v). Todistus. Kosk funktion F j vektorikentän v osittisderivtt ovt olemss, niin F v + F div v = (D 1 F,..., D n F ) (v 1,..., v n ) + F (D 1 v D n v n ) = (D 1 F v D n F v n ) + (F D 1 v F D n v n ) j=1 = (D 1 F v 1 + F D 1 v 1 ) + + (D n F v n + F D n v n ) = D 1 (F v 1 ) + + D n (F v n ) = div(f v). Olkoon x = (x 1,..., x n ) j u = (u 1,..., u n ). Silloin vektorien x j u välinen normi on ( n ) 1 2 x u = x i u i 2. i=1 28

33 Määritelmä Olkoon U R n voin joukko. Silloin funktio f : U R m on dierentioituv pisteessä u U, jos on olemss linerinen kuvus Df u : R m R n siten, että f(x) + f(u) Df u (x u) lim x u x u =. Linerist kuvust Df u snotn funktion f kokonisderivtksi pisteessä u. Määritelmän 5.11 tilnteess funktio f on dierentioituv, jos kikki sen komponentit f i : U R, missä i = 1,..., n, ovt dierentioituvi. Jos kikki osittisderivtt D i f ovt olemss j jtkuvi pisteen u ympäristössä, niin funktio f on dierentioituv pisteessä u. J edelleen, silloin funktion f kokonisderivtt Df u on linerinen kuvus, jok vst Jcobin mtriisin indusoim linerist kuvust. [23] Hyödynnetään Reynoldsin kuljetusteoreemn 5.3 todistuksess vielä usen muuttujn käänteiskuvuslusett j sitä seurvi lusett sekä lemm, joiden todistukset sivuutetn. Luse Olkoon U R n voin joukko j olkoon kuvus f : U R n jtkuvsti derivoituv. Olkoon det J f (u). Silloin kuvus f on loklisti kääntyvä pisteen u ympäristössä, käänteiskuvus f 1 on jtkuvsti derivoituv j J f 1(f(u)) = [J f (u)] 1. [24], [4, s. 42] Huomutus Jos käänteiskuvusluseen 5.12 tilnteess kokonisderivtt Df u on kääntyvä pisteessä u U, niin Luseen 5.5 nojll det J f (u), j kääntäen. Huomutus Jos käänteiskuvusluseen 5.12 tilnteess kuvus f on kääntyvä koko määrittelyjoukossn, niin f on dieomorsmi. Silloin Luseen 5.5 nojll pätee det J f (u) kikill u U. Olkoon X, Y R n voimi joukkoj. Snotn, että kuvus f : X Y on suuntns säilyttävä pisteessä x X, jos det J f (x) >. Vstvsti, jos kuvus f muutt suuntns pisteessä x X, niin det J f (x) <. Intuitiivisesti voidn kuvuksen f suunt pisteessä x X kuvt trkstelemll funktion σ etumerkkiä, jok määritellään σ(x) = det J f(x) det J f (x). 29

34 Kosk dieomorsmille f : X Y pätee det J f (x) kikill x X, ktso Huomtus 5.14, niin dieomorsmi on joko suuntns säilyttävä ti suuntns muuttv pisteessä x X. Lemm Olkoon kuvus f : X Y dieomorsmi, jok on suuntns säilyttävä josskin pisteessä x X. Jos joukko X on yhtenäinen, niin funktio f on suuntns säilyttävä määrittelyjoukossn. [4, s. 67] Kosk Euklidisen vruuden positiivisen ti negtiivisen suunnn vlint on mielivltinen, niin vruuden suunt voidn in vlit siten, että dieomorsmin f : X Y Jcobin determinntti on positiivinen pisteessä x X. Siis Lemmn 5.15 nojll voimme rjoittu trkstelemn inostn suuntns säilyttäviä dieomorsmej yhtenäisen lkujoukon tpuksess. Luseen 5.3 todistus. Olkoon t jokin kiinnitetty jnhetki. Silloin oletusten nojll joukko Ω(t ) Ω(t) on kompkti. Olkoon u Ω(t ) j olkoon kuvus φ : Ω(t ) Ω(t) C 2 -dieomorsmi, jok sdn Lgrngen kuvuksest u x. Merkitään φ(u, t) = x(u, t). Silloin kuvuksen φ Jcobin mtriisi on x 1 x 1 x 1 u 1 u 2 u 3 [ x ] [ xi x 2 x 2 x 2 J φ (u, t) = [Dφ(u, t)] = = = u u j ]ij u 1 u 2 u, 3 x 3 x 3 x 3 u 1 u 2 u 3 j edelleen kuvuksen φ Jcobin determinntti on det J φ (u, t) = Dφ(u, t) = x. u Kosk kuvus φ on dieomorsmi, niin det J φ (u, t). Käänteiskuvusluseen 5.12 nojll [J φ (u, t)] 1 = J φ 1(φ(u, t)) = J φ 1(x(u, t)) = [ u ] [ uj =. (5.1) x x i ]ji Eulerin kuvuksest sdn funktio x v, jok kuv deformoituvn joukon lkion nopeutt hetkellä t. Lgrngen j Eulerin kuvuksi yhdistää kv v(x(u, t), t) = x(u, t). (5.2) t 3

35 Silloin Schwrzin luseen 5.7 j yhtälön (5.2) nojll d dt [ x ] = d [ xi [ = u dt u j ]ij 2 x [ i = t u j ]ij 2 x ] [ i vi = = u j t ij u j ]ij [ v ]. (5.3) u Ketjusäännön 3.3, Jcobin kvn 5.6 sekä Lemmn 5.9 että yhtälöiden (5.1) j (5.3) nojll kuvukselle φ pätee d d [ x ][ x ] 1 ] dt det J φ(u, t) = det J φ (u, t) tr[ dt u u [[ u ] [ u ]] 3 = det J φ (u, t) tr = det J φ (u, t) v x = det J φ (u, t) Olkoon i=1 3 j=1 v i u j u j x i 3 D i v i (x(u, t), t) = det J φ (u, t) div v(x(u, t), t). (5.4) i=1 f(t) = Ω(t) F (x, t)dv. Kosk kuvus φ on dieomorsmi, niin Lemmn 5.15 nojll voidn olett, että kuvus φ on suuntns säilyttävä yhtenäisessä joukoss Ω(t ). Muuttujnvihtokvn 5.8 nojll f(t) = F [x(u, t), t] det J φ (u, t) dv Ω(t ) = F [x(u, t), t] det J φ (u, t)dv, (5.5) Ω(t ) kosk det J φ (u, t) > kikill u Ω(t ). Siis pääsemme trkstelemn integrli yli jstriippumttomn joukon Ω(t ). Kosk yhtälön (5.5) integroitv funktio on riittävän sileä, niin derivointi voidn siirtää integrlin 31

36 sisälle. Silloin ketjusäännön 3.3, Lemmn 5.1 j yhtälön (5.4) nojll d dt f(t) = d ( ) F [x(u, t), t] det J φ (u, t) dv Ω(t ) dt { } d = Ω(t ) dt F [x(u, t), t] det J φ(u, t) + F [x(u, t), t] d dt det J φ(u, t) dv { ( d = ( F )(x(u, t), t) dt x 1(u, t), d dt x 2(u, t), d ) dt x 3(u, t), 1 = = = Ω(t ) Ω(t ) Ω(t ) Ω(t ) + F [x(u, t), t][div v(x(u, t), t)] } det J φ (u, t)dv {[ 3 ] (D j F )(x(u, t), t) v j (x(u, t), t) + (D 4 F )(x(u, t), t) { { j=1 + F [x(u, t), t][div v(x(u, t), t)] } det J φ (u, t)dv (div F )(x(u, t), t) v(x(u, t), t) + (D 4 F )(x(u, t), t) + F [x(u, t), t][div v(x(u, t), t)] } det J φ (u, t)dv div[f (x(u, t), t)v(x(u, t), t)] + (D 4 F )(x(u, t), t) j edelleen muuttujnvihtokvn 5.8 nojll d ( ) dt f(t) = div[f (x, t)v(x, t)] + (D 4 F )(x, t) dv. Ω(t) } det J φ (u, t)dv, Toislt muuttujnvihtokvn 5.8 j Gussin divergenssiluseen 5.2 nojll d dt f(t) = (D 4 F )(x, t)dv + [v(x, t) n(x, t)]f (x, t)da. Ω(t) Siis väite, j sen Korollri 5.4, seur. Ω(t) Huomttv on, että Leibnizin integrlisäännön vruutt R 3 käsittelevän tpuksen, Luse 5.3, todistuksen menetelmää olisi voitu hyödyntää todistmn tso R 2 käsittelevä tpus, Luse 4.3 j todistus sille olisi ollut 32

37 nloginen. Tätä tekniikk voidn myös hyödyntää yleistämään Leibnizin integrlisääntö vruuteen R n, mikä vtii työkluj dierentiligeometrin puolelt, jok jää tämän tutkielmn ulkopuolelle. Aiheest voi luke lisää lähteestä [7, s ]. 33

38 Lähteet [1] Rudin, W. Principles of Mthemticl Anlysis, 3ed. McGrw-Hill, Inc, Tokyo, [2] Protter, M.H. Morrey, C.B. Intermedite Clculus, 2ed. Springer-Verlg Inc, New York, [3] Fleming, W. Functions of Severl Vribles, 2ed. Springer-Verlq Inc, New York, [4] Guld, D. Dierentil Topology: An Introduction. Dover Publictions, Inc, New York, 26. [5] Mrtio, O. Vektorinlyysi. Limes ry, Helsinki, 24. [6] Feynmn, R. Surely You're Joking, Mr. Feynmn! Unwin Pperbcks, London, [7] Flnders, H. The Americn Mthemticl Monthly, Vol 8, Nro 6. Tylor nd Frncis Ltd, [8] Conrd, K. Dierentiting under the integrl sign. reznick/diunderint.pdf, [9] Pitkärnt, J. Clculus Fennicus. Avoimet oppimterilit ry, Helsinki, 215. [1] Korhonen, R. Usen muuttujn relinlyysi. Luentorunko. Itä-Suomen yliopisto, 219. [11] Heittokngs, J. On complex dierentil equtions in the unit disc. Väitöskirj. Suomlinen tiedektemi, 2. [12] [13] [14] [15] [16] [17] [18]

39 [19] [2] [21] [22] [23] [24]

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos

Lisätiedot

Numeerinen integrointi.

Numeerinen integrointi. Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 +

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 + I. INTEGRAALILASKENTA Arkhimedes (287 22 e.kr.) prbelin segmentin pint-l Newton (642 727) j Leibniz (646 76) keksivät diff.- j int.-lskennn Cuhy (789 857) ε, δ Riemnn (826 866) Riemnnin integrli Lebesgue

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdtus relifunktioihin 802161P, 5op Os 3 Pekk Slmi 19. lokkuut 2015 Pekk Slmi FUNK 19. lokkuut 2015 1 / 48 Integrlit 1 Määrätty integrli = oike integrli: esim. 1 0 x 2 dx = reliluku 2 Määräämätön integrli

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

2 Epäoleellinen integraali

2 Epäoleellinen integraali ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

Lebesguen integraali - Rieszin määritelmä

Lebesguen integraali - Rieszin määritelmä Lebesguen integrli - Rieszin määritelmä Tru Lehtonen Mtemtiikn pro grdu-tutkielm Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kevät 216 Tiivistelmä Jyväskylän Yliopisto Lehtonen, Tru Puliin: Lebesguen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

Kertausta ja täydennystä

Kertausta ja täydennystä LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

Analyyttiset funktiot ja integrointiteorian alkeita

Analyyttiset funktiot ja integrointiteorian alkeita Anlyyttiset funktiot j integrointiteorin lkeit 6. helmikuut 2006 isältö 1 Kertust 1 2 Anlyyttiset funktiot 2 2.1 Anlyyttiset funktiot tsoll................... 2 2.2 Monogeeniset funktiot vruudess R n.............

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, os II G. Gripenberg Alto-yliopisto 9. helmikuut 16 G. Gripenberg (Alto-yliopisto MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, 9. helmikuut

Lisätiedot

Viikon aiheet. Pinta-ala

Viikon aiheet. Pinta-ala info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia. 2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

Monikulmion pinta-ala ylioppilaille

Monikulmion pinta-ala ylioppilaille Solmu 3/9 Monikulmion pint-l lioppilille Mik Koskenoj Mtemtiikn j tilstotieteen litos Helsingin liopisto Tehtävä. Kuusikulmion M kärjet ovt tson pisteissä (, ), (3, ), (, ), (4, 3), (, ) j (, ). Lske M:n

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

Integraalilaskenta. Määrätty integraali

Integraalilaskenta. Määrätty integraali 9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),

Lisätiedot

Suorat, käyrät ja kaarevuus

Suorat, käyrät ja kaarevuus Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.

Lisätiedot

Pinta-alan laskeminen

Pinta-alan laskeminen Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin

Lisätiedot

Tampereen teknillinen yliopisto hum Konstruktiotekniikan laitos. MEC-2430 Elementtimenetelmän perusteet. Luento vk 1 Syksy 2012.

Tampereen teknillinen yliopisto hum Konstruktiotekniikan laitos. MEC-2430 Elementtimenetelmän perusteet. Luento vk 1 Syksy 2012. mpereen teknillinen yliopisto hum 3.8. Konstruktiotekniikn litos MEC-430 Elementtimenetelmän perusteet. Luento vk Syksy 0. Mtemtiikn j mtriisilskennn kertust Yleistä Kirjoittelen tänne joitin kurssin keskeisiä

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit TAMPEREEN YLIOPISTO Pro grdu -tutkielm Annik Heinonen Newtonin, Riemnnin j Henstock-Kurzweilin integrlit Informtiotieteiden yksikkö Mtemtiikk Helmikuu 2013 Sisältö 1 Johdnto 1 2 Newtonin integrli 2 2.1

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

4 DETERMINANTTI JA KÄÄNTEISMATRIISI

4 DETERMINANTTI JA KÄÄNTEISMATRIISI 4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.

Lisätiedot

Mat Dynaaminen optimointi, mallivastaukset, kierros 8

Mat Dynaaminen optimointi, mallivastaukset, kierros 8 Mt-.148 Dynminen optimointi, mllivstukset, kierros 8 1. Idelisess tsvirtmoottoriss vääntömomentti on suorn verrnnollinen virtn. Moottori pyörittää ikiliikkuj (ei kitk- ti sähkömgneettisi vstusvoimi). Moottorin

Lisätiedot

1. Käyrän kierrosluvusta Kompleksianalyysin tärkeimpiä tuloksia on pari Cauchyn lause ja Cauchyn integraalikaava. f(z)

1. Käyrän kierrosluvusta Kompleksianalyysin tärkeimpiä tuloksia on pari Cauchyn lause ja Cauchyn integraalikaava. f(z) 1. Käyrän kierrosluvust Kompleksinlyysin tärkeimpiä tuloksi on pri Cuchyn luse j Cuchyn integrlikv. Näistä jälkimmäinen on seurv (useimmt käsitteet knntt nyt sivuutt; vin kierrosluku on tärkeä): Olkoot

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 2009 Sisältö Relilukujen peruskäsitteitä 2 Lukujonoist 3 2. Lukujonon rj-rvo....................... 3 2.2 Monotoniset jonot......................... 7 2.3 Osjonot..............................

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

Analyysi B. Derivaatta ja integraali. Pertti Koivisto

Analyysi B. Derivaatta ja integraali. Pertti Koivisto Anlyysi B Derivtt j integrli Pertti Koivisto Kevät 7 Alkusnt Tämä moniste on trkoitettu oheislukemistoksi Tmpereen yliopistoss pidettävälle kurssille Anlyysi B. Monisteen tvoitteen on tuke luentojen seurmist,

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

Johdatus fraktaaliderivaattoihin ja niiden sovelluksiin

Johdatus fraktaaliderivaattoihin ja niiden sovelluksiin Jodtus frktliderivttoiin j niiden sovelluksiin Hnn Hlinen Mtemtiikn pro grdu Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kesä 4 Tiivistelmä: Hnn Hlinen, Jodtus frktliderivttoiin j niiden sovelluksiin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Vektoriarvoisten funktioiden analyysiä

Vektoriarvoisten funktioiden analyysiä Vektorirvoisten funktioiden nlyysiä LuK-tutkielm Arttu Hrtikk 2330325 Mtemttisten tieteiden litos Oulun yliopisto Syksy 2016 Sisältö Johdnto 2 1 Vektorivruus 3 1.1 Normi j normivruus......................

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Harri Lehtinen. Kongruenssista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Harri Lehtinen. Kongruenssista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Hrri Lehtinen Kongruenssist Mtemtiikn, tilstotieteen j filosofin litos Mtemtiikk Helmikuu 006 Tmpereen yliopisto Mtemtiikn, tilstotieteen j filosofin litos LEHTINEN,

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

2. Useamman muuttujan funktioiden integraalilaskentaa. käsitteet kuten esimerkiksi useamman muuttujan funktioiden jatkuvuus jäävät

2. Useamman muuttujan funktioiden integraalilaskentaa. käsitteet kuten esimerkiksi useamman muuttujan funktioiden jatkuvuus jäävät Usemmn muuttujn funktioiden integrlilskent Sekä jnkättösistä että pedgogisist sistä otn usemmn muuttujn integrlilskennn heti hden muuttujn integrlilskennn jtkoksi Eräät trvittvt käsitteet kuten esimerkiksi

Lisätiedot

Korkeamman kertaluvut derivaatat

Korkeamman kertaluvut derivaatat LUKU 4 Korkemmn kertluvut derivtt Derivtn määritelmän mukn differentioituv kuvust f : U F voidn pproksimoid ffiinill kuvuksell, f(x + u f(x + Df(xu. Jos f on khdesti differentioituv, voidn derivtt pproksimoid

Lisätiedot

Pertti Koivisto. Analyysi B

Pertti Koivisto. Analyysi B Pertti Koivisto Anlyysi B TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 TAMPERE 8 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 JOULUKUU 8 Pertti Koivisto Anlyysi

Lisätiedot

ANALYYSIN TEORIA A JA B

ANALYYSIN TEORIA A JA B ANALYYSIN TEORIA A JA B Kikki luseit ei ole muotoiltu smll tvll kuin luennoill. Ilmoit virheistä yms osoitteeseen mikko.kngsmki@ut. (jos et ole vrm, onko kyseessä virhe, niin ilmoit mieluummin). 1. Yleistä,

Lisätiedot

Pertti Koivisto. Analyysi C

Pertti Koivisto. Analyysi C Pertti Koivisto Anlyysi C TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 68/28 TAMPERE 28 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 68/28 JOULUKUU 28 Pertti Koivisto Anlyysi

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

Sarjojen tasainen suppeneminen

Sarjojen tasainen suppeneminen Srjojen tsinen suppeneminen Pro grdu -tutkielm Krist Mikkonen 165274 Itä-Suomen yliopisto Fysiikn j mtemtiikn litos 19. mrrskuut 2013 Sisältö 1 Johdnto 1 2 Lukujonoist j srjoist 2 2.1 Lukujoukoist...........................

Lisätiedot

Analyysi III S

Analyysi III S Anlyysi III 800624S Sisältö sitietoj 5 Riemnn integroinnin rjt 6 Luku 1. Mittteori 7 1. Algebr j σ-lgebr 7 2. Mitt 8 3. Ulkomitt j mitlliset joukot 11 4. Ulkomitn konstruointi 14 5. Lebesguen ulkomitt

Lisätiedot

Greenin ja Stokesin lauseet

Greenin ja Stokesin lauseet TAMPEREEN YLIOPISTO Pro Grdu -tutkielm Niin Oksmn Greenin j Stokesin luseet Informtiotieteiden yksikkö Mtemtiikk Toukokuu 212 Tmpereen yliopisto Informtiotieteiden yksikkö OKSMAN, NIINA: Greenin j Stokesin

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

ANALYYSI II A Matemaattisten tieteiden laitos Luentomoniste työn alla: viimeksi muutettu

ANALYYSI II A Matemaattisten tieteiden laitos Luentomoniste työn alla: viimeksi muutettu ANALYYSI II 800322A Mtemttisten tieteiden litos Luentomoniste työn ll: viimeksi muutettu 13.11.2006 Sisältö Alkusnt Suosituksi opiskelutvoist iii iii Luku 1. Usen muuttujn funktioist: jtkuvuus 1 1. Merkinnät

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

Riemann-integraalin ja mittaintegraalin vertailua

Riemann-integraalin ja mittaintegraalin vertailua Riemnn-integrlin j mittintegrlin vertilu Pro grdu -tutkielm Pii Tskinen Mtemttisten tieteiden litos Oulun yliopisto Kevät 216 Sisältö Johdnto 3 1 Esitietoj 5 1.1 Välijost............................. 5

Lisätiedot

Johdatusta variaatiolaskentaan

Johdatusta variaatiolaskentaan LUKU 6 Johdtust vritiolskentn 6.1. Prmetrist riippuvt integrlit [4, Ch. XIII, 8], [2, Ch. 1. Lemm 2.12.2], [3, Ch. VIII, 11], [15, Ch. XI, 7], [8, Ch. II, 3] Luse 6.1. Olkoot E normivruus, F Bnchin vruus,

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto Fkultet/Sektion Fculty Litos Institution Deprtment Mtemttis-luonnontieteellinen Tekijä Förfttre Author Antti Khri Työn

Lisätiedot

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön.

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön. I.6. Sijoitusmenettely A. Integrlifunktiot Integrlifunktiot etsittäessä on sopiv derivoimissääntö luettv tkperin. funktion voi trkist derivoimll. Sijoitusmenettely perustuu ketjusääntöön. Löydetyn 6..

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot