Matematiikan tukikurssi

Koko: px
Aloita esitys sivulta:

Download "Matematiikan tukikurssi"

Transkriptio

1 Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss jokin käyrä y = f (x) pyörähtää x-kselin ympäri jollkin välillä x b. Tällisen kppleen tilvuus A stiin lskettu kvll A = π ( f (x)) dx. Toislt määrätyn integrlin vull voi lske myös tällisen pyörähtämällä syntyneen kppleen vipn l. Tämä l B sdn lskettu kvll B = π f (x) + ( f (x)) dx. Esimerkki.. Käyrä f (x) = + x pyörähtää x-kselin ympäri välillä x. Syntyneen kppleen tilvuus A sdn lskettu yllä esitetyllä kvll: A = π = π = π = π = π ( f (x)) dx ( + x) dx ( + x + x ) dx (x + x + 3 x3 ) (( ) ( + + )) = π.

2 Vstvsti syntyneen pyörähdyskppleen vipn l B sdn lskettu seurvsti: B = π f (x) + ( f (x)) dx = π + x + dx = π ( + x) dx = π (x + x ) = ( ) 5 π = 5 π. Tässä itseisrvot voitiin poist, kosk + x on positiivinen tutkitull välillä x. Epäoleelliset integrlit Tähän mennessä lsketut integrlit ovt olleet hyvin käyttäytyviä eli muoto f (x)dx, joss j b ovt olleet relilukuj. Tällinen integrli on ollut yleensä kohtuullisen suorviivisesti lskettviss: jos f (x) on jtkuv funktio, niin yllä olev tyyppiä olev integrli on in olemss eli voidn kirjoitt f (x)dx = A, eli integrli f (x)dx on jokin reliluku A. Tässä oleellist siis on, että f on jtkuv funktio välillä [, b] j että j b ovt relilukuj. Tällöin tämä integrli on olemss eli f on integroituv välillä [, b]. Ennen kuin etenemme, on syytä ymmärtää intuitiivisesti miksi yllä olev tyyppiä olev integrli on in olemss. Tämän voi perustell sillä, että integrli voidn ymmärtää käyrän j x-kselin välissä olevn lueen pint-ln. Jos piirrät jtkuvn funktion f jollekin äärelliselle välille [, b], niin tämän funktion j x-kselin välissä on in pkoll äärellinen

3 pint-l. Täten jtkuv funktio on integroituv äärellisellä välillä. Nyt tutkimme tpust, joss f :n jtkuvuus ti :n j b:n äärellisyys eivät enää päde. Tyyppiesimerkki tälläisestä integrlist on x dx. Tässä siis toisen integrointirjn on ääretön. Onko tämä integrli olemss? Tämä riippuu intuitiivisesti siitä, onko käyrän y = /x j x- kselin välissä olevn lueen pint-l ääretön vi äärellinen välillä x [, [. Tätä ei voi kuitenkn päättää ennen kuin tiedetään, miten tällinen integrli lsketn. Määritellään siis epäoleellinen integrli seurvnlisen rj-rvon: f (x)dx f (x)dx. Tässä määritelmässä siis hlutn lske integrli äärettömyydessä. Tämä tphtuu siten, että lsketn luksi integrli f (x)dx, j nnetn tämän jälkeen integroinnin ylärjn ksv rjtt eli otetn rj-rvo lim f (x)dx. Tämä on siis määritelmän mukn sm si kuin integrli äärettömyydessä eli lim f (x)dx = f (x)dx. Nyt voimme lske epäoleellisen integrlin x dx. Merkitään siis integroinnin ylärj kirjimell M j nnetn tämän ylä- 3

4 rjn ksv rjtt: dx x x dx M ( ) x ( M ) ( ) ( M ) =. Täten tämä integrli on siis olemss j täten käyrän y = /x j x- kselin välissä olevn lueen pint-l välillä [, [ on yksi. Epäoleellinen integrli lsketn täsmälleen smll tekniikll kuin yllä, jos integroitv on funktio jok on epäjtkuv integroimisvälillä. Esimerkki tälläisestä integrlist on Nyt funktio /x on epäjtkuv nollss, joten tämä integrli määritellään jälleen rj-rvon: x. x dx x dx. 3 Integrlien suppeneminen Yllä lskettiin esimerkkinä integrli dx =. x Tässä siis epäoleellinen integrli oli olemss. Näin ei kuitenkn in käy. Tämä huomtn lskemll esimerkiksi funktion /x integrli vä- 4

5 lillä [, ] dx x M x dx ln x (ln M ln ) =, eli kyseinen integrli on ääretön. Toisin snottun siis funktion /x j x-kselin välissä olev pint-l on ääretön välillä [, [. Jos integrli f (x)dx on rvoltn jokin reliluku, snotn että se suppenee. Jos tämä epäoleellinen integrli puolestn ei ole reliluku (vn esimerkiksi ääretön ti miinus ääretön), niin kyseinen integrli hjntuu. Usein hjntumisen ti suppenemisen voi päättää yksinkertisesti lskemll epäoleellisen integrlin, kuten ll olevss esimerkissä. Esimerkki 3.. Tutki suppeneeko vi hjntuuko xe x dx. Rtkisu. Integrli näyttää lkuun siltä, että siinä trvitsisi käyttää osittisintegrointi, mutt tämä itse siss sujuu helpommin, sillä integroitv luseke xe x on itse siss melkein muoto f (x) f (x), joss f (x) = e x : xe x dx M xe x dx ( ) e x ( e M ( e ) = ( /) = /. ) 5

6 Usein integroitv funktiot ei kuitenkn voi suorn lske. Tällinen on esimerkiksi integrli e x dx, jot ei voi suorn lske siitä yksinkertisest syystä, että tähän lskuun trvittv määräämätöntä integrli e x dx ei ole olemss. Tämän j monet muut ei-negtiivisten funktioiden integrlit voi kuitenkin osoitt suppeneviksi mjornttiperitteen vull. Tätä peritett käytetään, kun hlutn osoitt että integrli f (x)dx. on olemss. Muistetn luksi, että integrli on pint-l. Hlumme siis osoitt, että jokin pint-l on äärellinen. Oletetn nyt, että löydetään jokin integrli g(x)dx jok on suurempi kuin f :n integrli: f (x)dx g(x)dx. Jos tämä integrli g(x)dx on nyt olemss äärellisenä, niin integrli f (x)dx on myös pkoll olemss: pint-l f (x)dx on äärellisenä olemss, kosk se on pienempi kuin pint-l g(x)dx, jok on myös äärellisenä olemss. Oletetn siis että seurvt seikt pätevät:.. f (x) f (x) g(x) kun x [, b] 3. Integrli on äärellisenä olemss. Tässä b voi oll myös j voi oll. g(x)dx 6

7 Tällöin pätee f (x)dx g(x)dx j integrli f (x) suppenee mjornttiperitteen nojll. Mjornttiperitteess siis etsitään suurempirvoinen integrli, jok suppenee. Esimerkki 3.. Osoit, että suppenee. e x dx Rtkisu. Nyt f (x) = e x. Tämä funktio on in positiivinen, joten siihen voi mhdollisesti sovelt mjornttiperitett. Hlutn löytää tätä suurempirvoinen funktio g(x), jonk integrli suppenee. Välillä [, ] pätee e x = e x e x e x. Täten funktioksi g voidn vlit g(x) = e x. Tämän integrli on helppo lske: Eli e x dx M e x dx ( e x ) ( e M ( e )) = e. e x dx e x dx = e, joten esimerkin integrli suppenee mjornttiperitteen nojll. Nyt kun mjornttiperite on käsitelty, on helppo rvt mistä on kyse minornttiperitteess. Tässä trkstelln jälleen kht funktiot f j g, jotk ovt kumpikin ei-negtiivisi j joille pätee g(x)dx f (x)dx 7

8 j lisäksi oletetn, että integrli g(x)dx hjntuu. Tällöin minornttiperitteen nojll myös integrli f (x)dx hjntuu. Eli intuitiivisesti jteltun funktion f j x-kselin välinen pint-l on ääretön, kosk tämä l on suurempi kuin funktion g j x-kselin välinen pint-l, jok on ääretön. Minornttiperitett käytetään seurvsti:. Hlutn todist, että jokin integrli f (x)dx hjntuu.. Etsitään funktio g, jok on pienempi kuin f eli g(x) f (x) j jonk integrli g(x)dx hjntuu. 3. Tällöin integrli f (x)dx hjntuu. Esimerkki 3.3. Osoit minornttiperitteen vull, että integrli hjntuu. x dx Rtkisu. Nyt f (x) = x. Pitäisi löytää tätä funktiot pienempi funktio g, jonk integrli hjntuu välillä [, ]. Helppo tp löytää pienempi funktio on ksvtt osoittj yhdellä: x > x. Eli nyt etsimämme funktio on g(x) = / x. Tämän integrli voidn lske jälleen suorviivisesti: x dx M x dx x ( M ) =. Tämä perite seur itse siss suorn mjornttiperitteest: jos f suppenisi, niin silloin mjornttiperitett voisi sovelt j myös g suppenisi. 8

9 Täten kosk = x < x, niin integrli x hjntuu. 4 Tiheysfunktiot Kuten jo usen kertn on todettu, integrlill voi lske loj j tilvuuksi. Yksi määrätyn integrlin tärkeimpiä sovelluksi on lisäksi se, että sillä voi lske tphtumien todennäköisyyksiä. Tämän sovelluksen käyttäminen vtii kuitenkin tiheysfunktion käsitettä. Tiheysfunktio on mtemttisesti jteltun mikä thns ei-negtiivisi rvoj sv funktio, jok integroituu relikselill lukuun yksi eli jolle pätee f (x)dx = j f (x). Grfisesti tulkittun tiheysfunktio on siis funktio, jok on jtkuvsti x- kselin yläpuolell (ti x-kselill) j jonk ll olevn lueen pint-l on yksi. Tiheysfunktion ide on seurv: jos stunnismuuttujll X on tiheysfunktio f (x), niin tätä tiheysfunktiot integroimll voi lske todennäköisyyksiä. Jos merkitään P( X b) todennäköisyyttä, että stunnismuuttuj X s rvon välillä [, b], niin tämän todennäköisyyden voi lske integroimll stunnismuuttujn tiheysfunktion f (x) tällä välillä: P( X b) = f (x)dx. All oleviss esimerkeissä käytetään lisäksi seurv integrointisääntöä : jos funktio f (x) on jollkin välillä [i, j] noll eli pätee f (x) =, x [i, j], niin myös tämän funktion integrli välillä [i, j] on noll eli j f (x) =. Trkstelln nyt funktiot f (x), jok on määritelty ploittin: { e x, kun x [, b] f (x) = muulloin. i 9

10 Eli funktio f s positiivisen rvon e x joukoss [, b] j on noll muull. Kun tätä funktiot nyt integroi välillä [, ], niin se lue joss funktio on noll voidn sivutt: f (x)dx = e x dx. Eli kosk funktion integrli on noll sillä lueell joss funktio on noll, niin integroitess tämä noll-lue voidn poist eli integroinnit rjt voidn muutt siten, että noll-lue poistuu. Trkstelln nyt esimerkkien vull tiheysfunktioit j niiden integrointi. Esimerkki 4.. Stunnismuuttuj X on tsjkutunut, jos todennäköisyys että X s rvon tietyssä joukoss riippuu inostn tämän joukon koost (eikä tämän joukon sijinnist x-kselill). Jos X on esimerkiksi tsjkutunut välillä [, ], sen tiheysfunktio on {, jos x f (x) = muulloin. Tämä on tiheysfunktio, kosk se on in ei-negtiivinen j sen integrli relikselill on yksi: f (x)dx = = x =. dx Nyt tätä tiheysfunktiot integroimll voi siis lske todennäköisyyksiä. Lsketn todennäköisyys, että X s rvon välillä [, /6]: P( X /6) = = /6 /6 dx x = /. Esimerkki 4.. Toinen esimerkki stunnismuuttujn tiheysfunktiost on { e x, jos x f (x) = muulloin.

11 Tämä on tiheysfunktio, kosk se on in ei-negtiivinen j se integroituu yhteen: f (x)dx = e x dx M e x dx e x ( e M ( e )) = ( ) =. Tämä on erään eksponenttijkumn tiheysfunktio. Integroimll tiheysfunktiot voidn jälleen lske välien todennäköisyyksiä: joss oletetn, että >. P( X b) = e x dx = ( e ( e b ) = e b e, Trkstelln nyt ploittin määriteltyä funktiot { x, jos x f (x) = muulloin. Tässä on jokin vkio. Kysymys kuuluu: millä :n rvoll tämä funktio on tiheysfunktio? Kosk tiheysfunktiolt vditn ensinnäkin ei-negtiiviisuus, niin on pkko oll, että, sillä muuten yllä olev tiheysfunktio sisi negtiivi rvoj. Toislt tiheysfunktiolt vditn, että se integroituu yhteen relikselill eli f (x)dx =. Integroidn nyt funktio f (x) = x j ktsotn millä :n rvoll se

12 integroituu lukuun yksi: f (x)dx = = = x dx x dx 3 x3. = 3. Nyt tämä funktio on siis tiheysfunktio, kun tämä integrli s rvon yksi eli pätee =, 3 eli = 3/. Täten funktio { 3 f (x) = x, jos x muulloin on tiheysfunktio. 5 Tsointegrlit Ennen tsointegrleihin siirtymistä käsitellään hiemn integroinnin nottiot. Trkstelln jälleen tvllist yksiulotteist integrli f (x)dx. Tässä siis integrointi tphtuu välillä x [, b]. Tätä väliä [, b] voidn kuitenkin merkitä [, b] = A, jolloin yllä olev integrli voidn merkitä vstvsti: f (x)dx = f (x)dx. Integrli A f (x)dx ilmisee, että funktio f (x) integroidn joukoss A. Tässä tpuksess kosk A = [, b], niin tämä on sm si kuin integrli f (x)dx. A

13 Tälle uudelle lyhyemmälle nottiolle tulee käyttöä, kun trkstelemme usemmn muuttujn funktion integroimist. Trkstelln khden muuttujn funktiot f : R R R, (x, y) f (x, y). Tämän muuttujn lähtöjoukko on nyt tso eli R R. Sen mlijoukko on puolestn reliluvut eli R. Yksi esimerkki tällisest khden muuttujn funktiost on f (x, y) = x + y, jolle pätee siis esimerkiksi että f (, ) = 3. Nyt tällist funktiot f (x, y) voi integroid tsoss eli khden muuttujn x j y suhteen. Syntynyt integrli on nimeltään tsointegrli. Seurvksi tsointegrli pitäisi määritellä. Plutetn luksi mieliin, että yhden muuttujn tpuksess määrätty integrli f (x)dx määriteltiin l- j yläsummien vull. Esimerkiksi lsumm stiin lskettu jkmll ensin integrointiväli [, b] osiin j lskemll funktion f pienin rvo jokisess näistä osiss. Esimerkissämme väli [, b] jettiin kolmen osn, joiden jokisen pituus oli /3. Lskimme seurvksi funktion f pienimmän rvon jokisess näistä osiss: merkitsimme näitä m, m j m 3. Alsumm stiin tämän jälkeen summn 3 m + 3 m + 3 m 3, joss siis jokisen välin pituus kerrottiin funktion pienemmällä rvoll kyseisellä välillä. Kuten yhden muuttujn tpuksess, määrätty integrli tsoss määritellään ylä- j lsummien vull. Nyt emme kuitenkn voi enää pelkästään ositt väliä, kosk tsointegrli on nimensä mukisesti määritelty tsoss eikä välillä. Vlitn integroitvksi funktioksi f (x, y) = x + y. Tutkitn kuitenkin helppo esimerkkiä, joss integrointi tphtuu joukoss [, 3] [, 3], eli joukoss joss x [, 3] j y [, 3]. Tämä joukko on sikäli helppo, että se määritellään khden välin krteesisen tulon. Kyseinen joukko on siis yksinkertinen suorkulmio, jok näyttää kuvn seurvlt: 3

14 Tsointegrlin ylä- j lsummi lskettess tämä suorkulmio jetn osiin. Muodostetn ll olevss kuvss näkyvä mhdollisimmn yksinkertinen jko eli jetn väli [, 3] khti keskeltä: 3 A 3 A 4 A A 3 Tästä näkyy, että suorkulmio [, 3] [, 3] jettiin nyt neljään osn: osiin A, A, A 3 j A 4. Alsumm määritellään vlitsemll funktion f pienin rvo jokisess näistä osist j kertomll se näiden osien pint-lll. Olkoon siis m(a i ) funktion f pienin rvo joukoss A i, joss luonnollisesti i on,, 3 ti 4. Kosk jokisen näiden joukon pint-l on, niin lsumm on tässä tpuksess m(a ) + m(a ) + m(a 3 ) + m(a 4 ). 4

15 Nyt integroitvn on funktio f (x, y) = x + y. Kuv ktsomll huomtn, että tämän pienin rvo joukoss A on yhtä kuin + =. Vstvsti tämän funktion pienin rvo joukoss A on + = 3, joukoss A 3 tämä pienin rvo on smoin + = 3 j joukoss A 4 tämä pienin rvo on + = 4. Täten lsumm s rvon m(a ) + m(a ) + m(a 3 ) + m(a 4 ) = =. Vstvsti yläsumm sdn vlitsemll jokisest joukost A i funktion suurin rvo tässä joukoss. Merkitään tätä suurint rvo joukoss M(A i ), jolloin yläsumm sdn jälleen helposti ktsomll yllä olev kuv: M(A ) + M(A ) + M(A 3 ) + M(A 4 ) = =. Näin krkell osituksell ylä- j lsummt siis erovt toisistn melko pljon. Nämä summt ntvt siis ylä- j lrjn tsointegrlille, jot merkitään khdell integroimismerkillä A f (x, y)dxdy = joss joukko A on suorkulmio [, 3] [, 3]. (x + y)dxdy, A Esimerkki 5.. Lsketn vielä ylä- j lsummien ntmt rviot tsointegrlille (x y)dxdy, A joss A = [ [, ] ] [[, ]. Tehdään nyt jko, joss x-rvojen väli [, ] jetn [ ] väleihin, j, ] j y-rvojen väli [, ] jetn neljään väliin:,, [ [ ] [, ],, j, ]. Nyt tällä joll suorkulmio A = [, ] [, ] sdn jettu khdeksn osn (piirrä kuv, tästä ei ot muuten selvää): [ A =, ] [, ] [ ] [ A =,, ] [ A 3 =, ] [ ], [ ] [ ] A 4 =,, 5 [ A 5 =, ] [, 3 ] [ ] [ A 6 =,, 3 ] [ A 7 =, ] [ ] 3, [ ] [ ] 3 A 8 =,,

16 Näiden jokisen osn l on /4. Kosk integroitv funktio on f (x, y) = x y, niin kyseisen funktion pienin rvo jokisess näistä joukost löytyy vlitsemll mhdollisimmn pieni x-rvo j mhdollisimmn suuri y- rvo. Täten lsummksi sdn 4 (m(a ) + m(a ) + m(a 3 ) + m(a 4 ) + m(a 5 ) + m(a 6 ) + m(a 7 ) + m(a 8 )) = ( ) = 9 4. Vstvsti yläsumm sdn järkeiltyä siten, että vlitn osituksen jokisess joukoss mhdollisimmn suuri x-rvo j mhdollisimmn pieni y-rvo. Täten tämä yläsumm on 4 (M(A ) + M(A ) + M(A 3 ) + M(A 4 ) + M(A 5 ) + M(A 6 ) + MA 7 ) + M(A 8 )) = ( ) =. Jälleen siis ylä- j lintegrli tuottvt huomttvn erilisi tuloksi. Todellisuudess kyseinen integrli on. 6

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT Lyhyt mtemtiikk YO-vlmennus 8. mliskuut 00 LYHYEN MATEMATIIKAN SIMULOITU YO-KOE RATKAISUT. Trkstelln yhtälöpri, polynomin sievennöstä j lusekkeeseen sijoittmist. ) Rtkistn jälkimmäisestä yhtälöstä x, jolle

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

Määrätty integraali. Markus Helén. Mäntän lukio

Määrätty integraali. Markus Helén. Mäntän lukio Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L )

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L ) 76638A Termofysiikk Hrjoitus no. 6, rtkisut syyslukukusi 014) 1. Trkstelln L:n pituist nuh, jonk termodynmiikn perusreltio on de = d Q + d W = T ds + F dl, 1) missä F on voim, joll nuh venytetään reversiibelisti

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

4 DETERMINANTTI JA KÄÄNTEISMATRIISI

4 DETERMINANTTI JA KÄÄNTEISMATRIISI 4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.

Lisätiedot

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP

Kognitiivinen mallintaminen I, kevät Harjoitus 1. Joukko-oppia. MMIL, luvut 1-3 Ratkaisuehdotuksia, MP Kognitiivinen mllintminen I, kevät 007 Hrjoitus. Joukko-oppi. MMIL, luvut -3 Rtkisuehdotuksi, MP. Määritellään joukot: A = {,,, 3, 4, 5} E = {, {}, } B = {, 4} F = C = {, } G = {{, }, {,, 4}} D = {, }

Lisätiedot

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa Luku 5. Integrli Merkitsemme seurvss [, b]:llä lukusuorn suljettu väliä { R : b}. Olkoon f välillä [, b] määritelty funktio. Snomme, että välillä [, b] määritelty funktio g on funktion f integrlifunktio

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Riemann-integraalin ja mittaintegraalin vertailua

Riemann-integraalin ja mittaintegraalin vertailua Riemnn-integrlin j mittintegrlin vertilu Pro grdu -tutkielm Pii Tskinen Mtemttisten tieteiden litos Oulun yliopisto Kevät 216 Sisältö Johdnto 3 1 Esitietoj 5 1.1 Välijost............................. 5

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

AUTOMAATTIEN SYNKRONISAATIOSTA

AUTOMAATTIEN SYNKRONISAATIOSTA AUTOMAATTIEN SYNKRONISAATIOSTA John Kopr Pro grdu -tutkielm Huhtikuu 015 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Mtemtiikn j tilstotieteen litos KOPRA, JOHAN: Automttien synkronistiost

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

2.2 Monotoniset jonot

2.2 Monotoniset jonot Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 22. syyskuuta 2016 lusekkeet, lusekkeet, TIEA241 Automtit j kieliopit, syksy 2016 Antti-Juhni Kijnho lusekkeet j smuus TIETOTEKNIIKAN LAITOS 22. syyskuut 2016 Sisällys lusekkeet, lusekkeet lusekkeet j smuus j smuus lusekkeet

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Integraali ja yleistetty Pythagoraan lause

Integraali ja yleistetty Pythagoraan lause TAMPEREEN YLIOPISTO Pro grdu -tutkielm Ann-Riikk Pvol Integrli j yleistetty Pythgorn luse Mtemtiikn j tilstotieteen litos Mtemtiikk Mrrskuu 28 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos Pvol, Ann-Riikk:

Lisätiedot

Matemaatiikan tukikurssi

Matemaatiikan tukikurssi Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit TAMPEREEN YLIOPISTO Pro grdu -tutkielm Annik Heinonen Newtonin, Riemnnin j Henstock-Kurzweilin integrlit Informtiotieteiden yksikkö Mtemtiikk Helmikuu 2013 Sisältö 1 Johdnto 1 2 Newtonin integrli 2 2.1

Lisätiedot

Suorat, käyrät ja kaarevuus

Suorat, käyrät ja kaarevuus Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Olkoon. M = (Q, Σ, δ, q 0, F)

Olkoon. M = (Q, Σ, δ, q 0, F) T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

2.2 Automaattien minimointi

2.2 Automaattien minimointi 24 2.2 Automttien minimointi Kksi utomtti, jotk tunnistvt täsmälleen smn kielen ovt keskenään ekvivlenttej Äärellinen utomtti on minimlinen jos se on tilmäärältään pienin ekvivlenttien utomttien joukoss

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Analyysi III S

Analyysi III S Anlyysi III 800624S Sisältö sitietoj 5 Riemnn integroinnin rjt 6 Luku 1. Mittteori 7 1. Algebr j σ-lgebr 7 2. Mitt 8 3. Ulkomitt j mitlliset joukot 11 4. Ulkomitn konstruointi 14 5. Lebesguen ulkomitt

Lisätiedot

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia. 2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

ANALYYSI 3. Tero Kilpeläinen

ANALYYSI 3. Tero Kilpeläinen ANALYYSI 3 Tero Kilpeläinen Luentomuistiinpnoj syksyltä 2005 20. lokkuut 2005 Sisältö 1. Esitietoj 2 1.1. Riemnn-integrli............................ 2 1.2. Derivtt................................. 4 1.3.

Lisätiedot

Integrointi ja sovellukset

Integrointi ja sovellukset Integrointi ja sovellukset Tehtävät:. Muodosta ja laske yläsumma funktiolle fx) x 5 välillä [, 4], kun väli on jaettu neljään yhtä suureen osaan.. Määritä integraalin x + ) dx likiarvo laskemalla alasumma,

Lisätiedot

= a sanoo vain, että jonon ensimmäinen jäsen annetaan. Merkintä a. lasketaan a :stä.

= a sanoo vain, että jonon ensimmäinen jäsen annetaan. Merkintä a. lasketaan a :stä. .. Lukujoo Aluksi Mtemtiiklle o erityise tyypillistä se, että käytäö tiltee settm ogelm bstrhoid. Käytäössä tämä trkoitt sitä, että siitä krsit lilluk vrret. Trkstelu kohteeksi jätetää vi si loogie ydi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja

Lisätiedot

ANALYYSI 2. Tero Kilpeläinen

ANALYYSI 2. Tero Kilpeläinen ANALYYSI Tero Kilpeläinen 3 Teksti sisältää muistiinpnoj vuosin j 3 pidetystä kurssist. Tämän pketin trkoitus on tuke omien muistiinpnojen teko, ei korvt niitä. Mtemtiikk oppii prhiten itse kirjoitten

Lisätiedot

Matemaattisen analyysin tukikurssi

Matemaattisen analyysin tukikurssi Matemaattisen analyysin tukikurssi 5. Kurssikerta Petrus Mikkola 10.10.2016 Tämän kerran asiat Raja-arvo ja toispuolinen raja-arvo Funktion suurin ja pienin arvo Lukujono Lukujonon suppeneminen Kasvava

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

S Fysiikka IV (ES) Tentti RATKAISUT. 1,0*10 m. Kineettinen energia saadaan kun tästä vähennetään lepoenergia: 2

S Fysiikka IV (ES) Tentti RATKAISUT. 1,0*10 m. Kineettinen energia saadaan kun tästä vähennetään lepoenergia: 2 S-11436 ysiikk V (ES) Tentti 175001 RATKASUT 1 Tutkittess pieniä kohteit on tutkimukseen käytettävien ltojen llonpituuden oltv yleensä enintään 1/10 os kohteen ulottuvuudest (esim hlkisijst) Lske trvittv

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17

Sisältö. Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sarjat 10. syyskuuta 2005 sivu 1 / 17 Sisältö 1 Peruskäsitteistöä 2 1.1 Määritelmiä 2 1.2 Perustuloksia 4 2 Suppenemistestejä positiivitermisille sarjoille 5 3 Itseinen ja ehdollinen suppeneminen 8 4 Alternoivat

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 5 Tasointegraalin laskeminen iemmin tutkimme ylä- ja alasummien antamia arvioita tasointegraalille f (x, ydxdy. Tässä siis funktio f (x, y integroidaan muuttujien x

Lisätiedot

Matematiikan tukikurssi, kurssikerta 4

Matematiikan tukikurssi, kurssikerta 4 Matematiikan tukikurssi, kurssikerta 4 1 Raja-arvo äärettömyydessä Tietyllä funktiolla f() voi olla raja-arvo äärettömyydessä, jota merkitään f(). Tämä tarkoittaa, että funktio f() lähestyy jotain tiettyä

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

2 INTEGRAALILASKENTAA 2.1 MÄÄRÄTTY INTEGRAALI

2 INTEGRAALILASKENTAA 2.1 MÄÄRÄTTY INTEGRAALI 37 INTEGRAALILASKENTAA.1 MÄÄRÄTTY INTEGRAALI Trstell ploitti jtuv j rjoitettu (siis ei ääretötä) futiot f ( ) välillä [, ] (s. uv) Jet väli [, ] :ää h-levyisee os h j meritää h, missä 0,1,,..., Joo liittyvä

Lisätiedot

BM20A5820 Integraalilaskenta ja sovellukset

BM20A5820 Integraalilaskenta ja sovellukset BMA58 Integrlilskent j sovellukset Jouni Smpo 6. helmikuut 7 Sisältö Integrointitekniikoit. Osittisintegrointi (Integrtion by prts)....................... Sijoitus (Method of Substitution)..........................

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista Differentili- j integrlilskent 1: tiivistelmä j oheislukemist Pekk Alestlo 4. syyskuut 2014 Tähdellä merkityt kohdt on trkoitettu lähinnä oheislukemistoksi. Lisäksi mukn on joitkin lukiot kertvi kohti,

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy

Lisätiedot

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,

Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,

Lisätiedot

33 VALON LUONNE JA ETENEMINEN (The Nature and Propagation of Light)

33 VALON LUONNE JA ETENEMINEN (The Nature and Propagation of Light) 68 33 VALON LUONNE JA ETENEMINEN (The Nture nd Propgtion of Light) Toinen ihmiselle tärkeä luonnon ltoliike, meknisten ääniltojen lisäksi, liittyy näkemiseen j on tietysti vlo. Vlo on sähkömgneettist ltoliikettä

Lisätiedot

PRELIMINÄÄRIKOE Pitkä matematiikka 7.2.2012

PRELIMINÄÄRIKOE Pitkä matematiikka 7.2.2012 PRELIMINÄÄRIKOE Pitkä mtemtiikk 7 Kokeess s vstt enintään kymmeneen tehtävään Tähdellä (*) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6 Jos tehtävässä on usempi kohti

Lisätiedot