Matematiikan tukikurssi

Koko: px
Aloita esitys sivulta:

Download "Matematiikan tukikurssi"

Transkriptio

1 Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss jokin käyrä y = f (x) pyörähtää x-kselin ympäri jollkin välillä x b. Tällisen kppleen tilvuus A stiin lskettu kvll A = π ( f (x)) dx. Toislt määrätyn integrlin vull voi lske myös tällisen pyörähtämällä syntyneen kppleen vipn l. Tämä l B sdn lskettu kvll B = π f (x) + ( f (x)) dx. Esimerkki.. Käyrä f (x) = + x pyörähtää x-kselin ympäri välillä x. Syntyneen kppleen tilvuus A sdn lskettu yllä esitetyllä kvll: A = π = π = π = π = π ( f (x)) dx ( + x) dx ( + x + x ) dx (x + x + 3 x3 ) (( ) ( + + )) = π.

2 Vstvsti syntyneen pyörähdyskppleen vipn l B sdn lskettu seurvsti: B = π f (x) + ( f (x)) dx = π + x + dx = π ( + x) dx = π (x + x ) = ( ) 5 π = 5 π. Tässä itseisrvot voitiin poist, kosk + x on positiivinen tutkitull välillä x. Epäoleelliset integrlit Tähän mennessä lsketut integrlit ovt olleet hyvin käyttäytyviä eli muoto f (x)dx, joss j b ovt olleet relilukuj. Tällinen integrli on ollut yleensä kohtuullisen suorviivisesti lskettviss: jos f (x) on jtkuv funktio, niin yllä olev tyyppiä olev integrli on in olemss eli voidn kirjoitt f (x)dx = A, eli integrli f (x)dx on jokin reliluku A. Tässä oleellist siis on, että f on jtkuv funktio välillä [, b] j että j b ovt relilukuj. Tällöin tämä integrli on olemss eli f on integroituv välillä [, b]. Ennen kuin etenemme, on syytä ymmärtää intuitiivisesti miksi yllä olev tyyppiä olev integrli on in olemss. Tämän voi perustell sillä, että integrli voidn ymmärtää käyrän j x-kselin välissä olevn lueen pint-ln. Jos piirrät jtkuvn funktion f jollekin äärelliselle välille [, b], niin tämän funktion j x-kselin välissä on in pkoll äärellinen

3 pint-l. Täten jtkuv funktio on integroituv äärellisellä välillä. Nyt tutkimme tpust, joss f :n jtkuvuus ti :n j b:n äärellisyys eivät enää päde. Tyyppiesimerkki tälläisestä integrlist on x dx. Tässä siis toisen integrointirjn on ääretön. Onko tämä integrli olemss? Tämä riippuu intuitiivisesti siitä, onko käyrän y = /x j x- kselin välissä olevn lueen pint-l ääretön vi äärellinen välillä x [, [. Tätä ei voi kuitenkn päättää ennen kuin tiedetään, miten tällinen integrli lsketn. Määritellään siis epäoleellinen integrli seurvnlisen rj-rvon: f (x)dx f (x)dx. Tässä määritelmässä siis hlutn lske integrli äärettömyydessä. Tämä tphtuu siten, että lsketn luksi integrli f (x)dx, j nnetn tämän jälkeen integroinnin ylärjn ksv rjtt eli otetn rj-rvo lim f (x)dx. Tämä on siis määritelmän mukn sm si kuin integrli äärettömyydessä eli lim f (x)dx = f (x)dx. Nyt voimme lske epäoleellisen integrlin x dx. Merkitään siis integroinnin ylärj kirjimell M j nnetn tämän ylä- 3

4 rjn ksv rjtt: dx x x dx M ( ) x ( M ) ( ) ( M ) =. Täten tämä integrli on siis olemss j täten käyrän y = /x j x- kselin välissä olevn lueen pint-l välillä [, [ on yksi. Epäoleellinen integrli lsketn täsmälleen smll tekniikll kuin yllä, jos integroitv on funktio jok on epäjtkuv integroimisvälillä. Esimerkki tälläisestä integrlist on Nyt funktio /x on epäjtkuv nollss, joten tämä integrli määritellään jälleen rj-rvon: x. x dx x dx. 3 Integrlien suppeneminen Yllä lskettiin esimerkkinä integrli dx =. x Tässä siis epäoleellinen integrli oli olemss. Näin ei kuitenkn in käy. Tämä huomtn lskemll esimerkiksi funktion /x integrli vä- 4

5 lillä [, ] dx x M x dx ln x (ln M ln ) =, eli kyseinen integrli on ääretön. Toisin snottun siis funktion /x j x-kselin välissä olev pint-l on ääretön välillä [, [. Jos integrli f (x)dx on rvoltn jokin reliluku, snotn että se suppenee. Jos tämä epäoleellinen integrli puolestn ei ole reliluku (vn esimerkiksi ääretön ti miinus ääretön), niin kyseinen integrli hjntuu. Usein hjntumisen ti suppenemisen voi päättää yksinkertisesti lskemll epäoleellisen integrlin, kuten ll olevss esimerkissä. Esimerkki 3.. Tutki suppeneeko vi hjntuuko xe x dx. Rtkisu. Integrli näyttää lkuun siltä, että siinä trvitsisi käyttää osittisintegrointi, mutt tämä itse siss sujuu helpommin, sillä integroitv luseke xe x on itse siss melkein muoto f (x) f (x), joss f (x) = e x : xe x dx M xe x dx ( ) e x ( e M ( e ) = ( /) = /. ) 5

6 Usein integroitv funktiot ei kuitenkn voi suorn lske. Tällinen on esimerkiksi integrli e x dx, jot ei voi suorn lske siitä yksinkertisest syystä, että tähän lskuun trvittv määräämätöntä integrli e x dx ei ole olemss. Tämän j monet muut ei-negtiivisten funktioiden integrlit voi kuitenkin osoitt suppeneviksi mjornttiperitteen vull. Tätä peritett käytetään, kun hlutn osoitt että integrli f (x)dx. on olemss. Muistetn luksi, että integrli on pint-l. Hlumme siis osoitt, että jokin pint-l on äärellinen. Oletetn nyt, että löydetään jokin integrli g(x)dx jok on suurempi kuin f :n integrli: f (x)dx g(x)dx. Jos tämä integrli g(x)dx on nyt olemss äärellisenä, niin integrli f (x)dx on myös pkoll olemss: pint-l f (x)dx on äärellisenä olemss, kosk se on pienempi kuin pint-l g(x)dx, jok on myös äärellisenä olemss. Oletetn siis että seurvt seikt pätevät:.. f (x) f (x) g(x) kun x [, b] 3. Integrli on äärellisenä olemss. Tässä b voi oll myös j voi oll. g(x)dx 6

7 Tällöin pätee f (x)dx g(x)dx j integrli f (x) suppenee mjornttiperitteen nojll. Mjornttiperitteess siis etsitään suurempirvoinen integrli, jok suppenee. Esimerkki 3.. Osoit, että suppenee. e x dx Rtkisu. Nyt f (x) = e x. Tämä funktio on in positiivinen, joten siihen voi mhdollisesti sovelt mjornttiperitett. Hlutn löytää tätä suurempirvoinen funktio g(x), jonk integrli suppenee. Välillä [, ] pätee e x = e x e x e x. Täten funktioksi g voidn vlit g(x) = e x. Tämän integrli on helppo lske: Eli e x dx M e x dx ( e x ) ( e M ( e )) = e. e x dx e x dx = e, joten esimerkin integrli suppenee mjornttiperitteen nojll. Nyt kun mjornttiperite on käsitelty, on helppo rvt mistä on kyse minornttiperitteess. Tässä trkstelln jälleen kht funktiot f j g, jotk ovt kumpikin ei-negtiivisi j joille pätee g(x)dx f (x)dx 7

8 j lisäksi oletetn, että integrli g(x)dx hjntuu. Tällöin minornttiperitteen nojll myös integrli f (x)dx hjntuu. Eli intuitiivisesti jteltun funktion f j x-kselin välinen pint-l on ääretön, kosk tämä l on suurempi kuin funktion g j x-kselin välinen pint-l, jok on ääretön. Minornttiperitett käytetään seurvsti:. Hlutn todist, että jokin integrli f (x)dx hjntuu.. Etsitään funktio g, jok on pienempi kuin f eli g(x) f (x) j jonk integrli g(x)dx hjntuu. 3. Tällöin integrli f (x)dx hjntuu. Esimerkki 3.3. Osoit minornttiperitteen vull, että integrli hjntuu. x dx Rtkisu. Nyt f (x) = x. Pitäisi löytää tätä funktiot pienempi funktio g, jonk integrli hjntuu välillä [, ]. Helppo tp löytää pienempi funktio on ksvtt osoittj yhdellä: x > x. Eli nyt etsimämme funktio on g(x) = / x. Tämän integrli voidn lske jälleen suorviivisesti: x dx M x dx x ( M ) =. Tämä perite seur itse siss suorn mjornttiperitteest: jos f suppenisi, niin silloin mjornttiperitett voisi sovelt j myös g suppenisi. 8

9 Täten kosk = x < x, niin integrli x hjntuu. 4 Tiheysfunktiot Kuten jo usen kertn on todettu, integrlill voi lske loj j tilvuuksi. Yksi määrätyn integrlin tärkeimpiä sovelluksi on lisäksi se, että sillä voi lske tphtumien todennäköisyyksiä. Tämän sovelluksen käyttäminen vtii kuitenkin tiheysfunktion käsitettä. Tiheysfunktio on mtemttisesti jteltun mikä thns ei-negtiivisi rvoj sv funktio, jok integroituu relikselill lukuun yksi eli jolle pätee f (x)dx = j f (x). Grfisesti tulkittun tiheysfunktio on siis funktio, jok on jtkuvsti x- kselin yläpuolell (ti x-kselill) j jonk ll olevn lueen pint-l on yksi. Tiheysfunktion ide on seurv: jos stunnismuuttujll X on tiheysfunktio f (x), niin tätä tiheysfunktiot integroimll voi lske todennäköisyyksiä. Jos merkitään P( X b) todennäköisyyttä, että stunnismuuttuj X s rvon välillä [, b], niin tämän todennäköisyyden voi lske integroimll stunnismuuttujn tiheysfunktion f (x) tällä välillä: P( X b) = f (x)dx. All oleviss esimerkeissä käytetään lisäksi seurv integrointisääntöä : jos funktio f (x) on jollkin välillä [i, j] noll eli pätee f (x) =, x [i, j], niin myös tämän funktion integrli välillä [i, j] on noll eli j f (x) =. Trkstelln nyt funktiot f (x), jok on määritelty ploittin: { e x, kun x [, b] f (x) = muulloin. i 9

10 Eli funktio f s positiivisen rvon e x joukoss [, b] j on noll muull. Kun tätä funktiot nyt integroi välillä [, ], niin se lue joss funktio on noll voidn sivutt: f (x)dx = e x dx. Eli kosk funktion integrli on noll sillä lueell joss funktio on noll, niin integroitess tämä noll-lue voidn poist eli integroinnit rjt voidn muutt siten, että noll-lue poistuu. Trkstelln nyt esimerkkien vull tiheysfunktioit j niiden integrointi. Esimerkki 4.. Stunnismuuttuj X on tsjkutunut, jos todennäköisyys että X s rvon tietyssä joukoss riippuu inostn tämän joukon koost (eikä tämän joukon sijinnist x-kselill). Jos X on esimerkiksi tsjkutunut välillä [, ], sen tiheysfunktio on {, jos x f (x) = muulloin. Tämä on tiheysfunktio, kosk se on in ei-negtiivinen j sen integrli relikselill on yksi: f (x)dx = = x =. dx Nyt tätä tiheysfunktiot integroimll voi siis lske todennäköisyyksiä. Lsketn todennäköisyys, että X s rvon välillä [, /6]: P( X /6) = = /6 /6 dx x = /. Esimerkki 4.. Toinen esimerkki stunnismuuttujn tiheysfunktiost on { e x, jos x f (x) = muulloin.

11 Tämä on tiheysfunktio, kosk se on in ei-negtiivinen j se integroituu yhteen: f (x)dx = e x dx M e x dx e x ( e M ( e )) = ( ) =. Tämä on erään eksponenttijkumn tiheysfunktio. Integroimll tiheysfunktiot voidn jälleen lske välien todennäköisyyksiä: joss oletetn, että >. P( X b) = e x dx = ( e ( e b ) = e b e, Trkstelln nyt ploittin määriteltyä funktiot { x, jos x f (x) = muulloin. Tässä on jokin vkio. Kysymys kuuluu: millä :n rvoll tämä funktio on tiheysfunktio? Kosk tiheysfunktiolt vditn ensinnäkin ei-negtiiviisuus, niin on pkko oll, että, sillä muuten yllä olev tiheysfunktio sisi negtiivi rvoj. Toislt tiheysfunktiolt vditn, että se integroituu yhteen relikselill eli f (x)dx =. Integroidn nyt funktio f (x) = x j ktsotn millä :n rvoll se

12 integroituu lukuun yksi: f (x)dx = = = x dx x dx 3 x3. = 3. Nyt tämä funktio on siis tiheysfunktio, kun tämä integrli s rvon yksi eli pätee =, 3 eli = 3/. Täten funktio { 3 f (x) = x, jos x muulloin on tiheysfunktio. 5 Tsointegrlit Ennen tsointegrleihin siirtymistä käsitellään hiemn integroinnin nottiot. Trkstelln jälleen tvllist yksiulotteist integrli f (x)dx. Tässä siis integrointi tphtuu välillä x [, b]. Tätä väliä [, b] voidn kuitenkin merkitä [, b] = A, jolloin yllä olev integrli voidn merkitä vstvsti: f (x)dx = f (x)dx. Integrli A f (x)dx ilmisee, että funktio f (x) integroidn joukoss A. Tässä tpuksess kosk A = [, b], niin tämä on sm si kuin integrli f (x)dx. A

13 Tälle uudelle lyhyemmälle nottiolle tulee käyttöä, kun trkstelemme usemmn muuttujn funktion integroimist. Trkstelln khden muuttujn funktiot f : R R R, (x, y) f (x, y). Tämän muuttujn lähtöjoukko on nyt tso eli R R. Sen mlijoukko on puolestn reliluvut eli R. Yksi esimerkki tällisest khden muuttujn funktiost on f (x, y) = x + y, jolle pätee siis esimerkiksi että f (, ) = 3. Nyt tällist funktiot f (x, y) voi integroid tsoss eli khden muuttujn x j y suhteen. Syntynyt integrli on nimeltään tsointegrli. Seurvksi tsointegrli pitäisi määritellä. Plutetn luksi mieliin, että yhden muuttujn tpuksess määrätty integrli f (x)dx määriteltiin l- j yläsummien vull. Esimerkiksi lsumm stiin lskettu jkmll ensin integrointiväli [, b] osiin j lskemll funktion f pienin rvo jokisess näistä osiss. Esimerkissämme väli [, b] jettiin kolmen osn, joiden jokisen pituus oli /3. Lskimme seurvksi funktion f pienimmän rvon jokisess näistä osiss: merkitsimme näitä m, m j m 3. Alsumm stiin tämän jälkeen summn 3 m + 3 m + 3 m 3, joss siis jokisen välin pituus kerrottiin funktion pienemmällä rvoll kyseisellä välillä. Kuten yhden muuttujn tpuksess, määrätty integrli tsoss määritellään ylä- j lsummien vull. Nyt emme kuitenkn voi enää pelkästään ositt väliä, kosk tsointegrli on nimensä mukisesti määritelty tsoss eikä välillä. Vlitn integroitvksi funktioksi f (x, y) = x + y. Tutkitn kuitenkin helppo esimerkkiä, joss integrointi tphtuu joukoss [, 3] [, 3], eli joukoss joss x [, 3] j y [, 3]. Tämä joukko on sikäli helppo, että se määritellään khden välin krteesisen tulon. Kyseinen joukko on siis yksinkertinen suorkulmio, jok näyttää kuvn seurvlt: 3

14 Tsointegrlin ylä- j lsummi lskettess tämä suorkulmio jetn osiin. Muodostetn ll olevss kuvss näkyvä mhdollisimmn yksinkertinen jko eli jetn väli [, 3] khti keskeltä: 3 A 3 A 4 A A 3 Tästä näkyy, että suorkulmio [, 3] [, 3] jettiin nyt neljään osn: osiin A, A, A 3 j A 4. Alsumm määritellään vlitsemll funktion f pienin rvo jokisess näistä osist j kertomll se näiden osien pint-lll. Olkoon siis m(a i ) funktion f pienin rvo joukoss A i, joss luonnollisesti i on,, 3 ti 4. Kosk jokisen näiden joukon pint-l on, niin lsumm on tässä tpuksess m(a ) + m(a ) + m(a 3 ) + m(a 4 ). 4

15 Nyt integroitvn on funktio f (x, y) = x + y. Kuv ktsomll huomtn, että tämän pienin rvo joukoss A on yhtä kuin + =. Vstvsti tämän funktion pienin rvo joukoss A on + = 3, joukoss A 3 tämä pienin rvo on smoin + = 3 j joukoss A 4 tämä pienin rvo on + = 4. Täten lsumm s rvon m(a ) + m(a ) + m(a 3 ) + m(a 4 ) = =. Vstvsti yläsumm sdn vlitsemll jokisest joukost A i funktion suurin rvo tässä joukoss. Merkitään tätä suurint rvo joukoss M(A i ), jolloin yläsumm sdn jälleen helposti ktsomll yllä olev kuv: M(A ) + M(A ) + M(A 3 ) + M(A 4 ) = =. Näin krkell osituksell ylä- j lsummt siis erovt toisistn melko pljon. Nämä summt ntvt siis ylä- j lrjn tsointegrlille, jot merkitään khdell integroimismerkillä A f (x, y)dxdy = joss joukko A on suorkulmio [, 3] [, 3]. (x + y)dxdy, A Esimerkki 5.. Lsketn vielä ylä- j lsummien ntmt rviot tsointegrlille (x y)dxdy, A joss A = [ [, ] ] [[, ]. Tehdään nyt jko, joss x-rvojen väli [, ] jetn [ ] väleihin, j, ] j y-rvojen väli [, ] jetn neljään väliin:,, [ [ ] [, ],, j, ]. Nyt tällä joll suorkulmio A = [, ] [, ] sdn jettu khdeksn osn (piirrä kuv, tästä ei ot muuten selvää): [ A =, ] [, ] [ ] [ A =,, ] [ A 3 =, ] [ ], [ ] [ ] A 4 =,, 5 [ A 5 =, ] [, 3 ] [ ] [ A 6 =,, 3 ] [ A 7 =, ] [ ] 3, [ ] [ ] 3 A 8 =,,

16 Näiden jokisen osn l on /4. Kosk integroitv funktio on f (x, y) = x y, niin kyseisen funktion pienin rvo jokisess näistä joukost löytyy vlitsemll mhdollisimmn pieni x-rvo j mhdollisimmn suuri y- rvo. Täten lsummksi sdn 4 (m(a ) + m(a ) + m(a 3 ) + m(a 4 ) + m(a 5 ) + m(a 6 ) + m(a 7 ) + m(a 8 )) = ( ) = 9 4. Vstvsti yläsumm sdn järkeiltyä siten, että vlitn osituksen jokisess joukoss mhdollisimmn suuri x-rvo j mhdollisimmn pieni y-rvo. Täten tämä yläsumm on 4 (M(A ) + M(A ) + M(A 3 ) + M(A 4 ) + M(A 5 ) + M(A 6 ) + MA 7 ) + M(A 8 )) = ( ) =. Jälleen siis ylä- j lintegrli tuottvt huomttvn erilisi tuloksi. Todellisuudess kyseinen integrli on. 6

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin Ludtur MAA rtkisut kertushrjoituksiin Integrlifunktio. ) Jokin integrli funktio on esimerkiksi F( ) b) Kikki integrlifunktiot F( ) + C, missä C on vkio Vstus: ) F( ) b) F( ) + C, C on vkio. Kikki integrlifunktiot

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka B 2014

Mika Hirvensalo. Insinöörimatematiikka B 2014 Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Jouni Sampo. 28. marraskuuta 2012

Jouni Sampo. 28. marraskuuta 2012 A2 Jouni Smpo 28. mrrskuut 2012 Sisältö 1 Integrointitekniikoit 2 1.1 Osittisintegrointi (Integrtion by prts)...................... 2 1.2 Sijoitus (Method of Substitution).......................... 2 1.3

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13

Viivaintegraali: Pac- Man - tulkinta. Viivaintegraali: Pac- Man - tulkinta. Perinteisempi tulkinta: 1D 3/19/13 Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

MATEMATIIKAN HARJOITTELUMATERIAALI

MATEMATIIKAN HARJOITTELUMATERIAALI SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Ari Tuomenlehto - 0 - Lusekkeen käsittelyä Luseke j lusekkeen rvo Näkyviin merkittyä

Lisätiedot

Johdatus fraktaaliderivaattoihin ja niiden sovelluksiin

Johdatus fraktaaliderivaattoihin ja niiden sovelluksiin Jodtus frktliderivttoiin j niiden sovelluksiin Hnn Hlinen Mtemtiikn pro grdu Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kesä 4 Tiivistelmä: Hnn Hlinen, Jodtus frktliderivttoiin j niiden sovelluksiin

Lisätiedot

5.4 Ellipsi ja hyperbeli (ei kuulu kurssivaatimuksiin, lisätietoa)

5.4 Ellipsi ja hyperbeli (ei kuulu kurssivaatimuksiin, lisätietoa) 5.4 Ellipsi j hypereli (ei kuulu kurssivtimuksiin, lisätieto) Aurinkokuntmme plneett kiertävät Aurinko ellipsin (=litistyneen ympyrän) muotoist rt, jonk toisess polttopisteessä Aurinko on. Smoin Mt kiertävät

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

AUTOMAATTIEN SYNKRONISAATIOSTA

AUTOMAATTIEN SYNKRONISAATIOSTA AUTOMAATTIEN SYNKRONISAATIOSTA John Kopr Pro grdu -tutkielm Huhtikuu 015 MATEMATIIKAN JA TILASTOTIETEEN LAITOS TURUN YLIOPISTO TURUN YLIOPISTO Mtemtiikn j tilstotieteen litos KOPRA, JOHAN: Automttien synkronistiost

Lisätiedot

Mikrotalousteoria 2, 2008, osa III

Mikrotalousteoria 2, 2008, osa III Sisältö Mikrotlousteori 2, 2008, os III Yrityksen tuotntofunktiost 2 Pnosten substituoitvuus 2 3 Yrityksen teori 3 4 Mittkvedut tuotnnoss 5 5 Yksikkökustnnusten j skltuottojen steen välinen yhteys 5 6

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö

θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö 22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2

Lisätiedot

Suorat, käyrät ja kaarevuus

Suorat, käyrät ja kaarevuus Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

6 Kertausosa. 6 Kertausosa

6 Kertausosa. 6 Kertausosa Kertusos Kertusos. ) b). ) b). ) ( ( ) : ) ( : ) b) { : [ ( ) ]} { :[ - ]} { : } -{ - } -{} c) ( ) : - ( ) ( ) ( ) ( 9) 9 9 Kertusos. ) ( ) b) ( ). ) ) ) b) / / c) : 7 7. ) ) ) b) Kertusos c) : 7 ( 9)

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Monikulmio on suljettu, yhtenäinen tasokuvio, jonka muodostavat pisteet ja näitä yhdistävät janat

Monikulmio on suljettu, yhtenäinen tasokuvio, jonka muodostavat pisteet ja näitä yhdistävät janat MAB: Monikulmiot Aluksi Tässä luvuss käsitellään pljon monikulmioit sekä muutmi tärkeimpiä esimerkkejä monikulmioiin liittyvistä leist. Näistä leist edottomsti tärkein ti inkin kuskntoisin on Pytgorn luse.

Lisätiedot

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1

VEKTORILASKENTA. Timo Mäkelä SISÄLTÖ: 1 VEKTORIN KÄSITE...1 VEKTORILASKENTA Timo Mäkelä SISÄLTÖ: VEKTORIN KÄSITE VEKTOREIDEN ERUSLASKUTOIMITUKSET VEKTOREIDEN YHTEENLASKU VEKTOREIDEN VÄHENNYSLASKU 4 VEKTORIN KERTOMINEN LUVULLA6 4 VEKTORILAUSEKKEIDEN KÄSITTELY7 TASON

Lisätiedot

3.7. Rekursiivisista lukujonoista

3.7. Rekursiivisista lukujonoista .7 Rekursiivisist lukujooist.7. Rekursiivisist lukujooist Kerrt vielä, että lukujoo void määritellä khdell eri tvll, joko käyttämällä lyyttistä säätöä ti rekursiivist säätöä. Joo määrittelemie rekursiivisesti

Lisätiedot

7303045 Laaja matematiikka 2 Kevät 2005 Risto Silvennoinen

7303045 Laaja matematiikka 2 Kevät 2005 Risto Silvennoinen 7303045 Lj mtemtii 2 Kevät 2005 Risto Silveoie. Luusrjt Kos srjt ovt summie jooj, ertmme esi jooje teori. Joot Joo o mtemtii iei perustvimpi äsitteitä j se vull ohdt äärettömyys esimmäistä ert. Luulueit

Lisätiedot

33 VALON LUONNE JA ETENEMINEN (The Nature and Propagation of Light)

33 VALON LUONNE JA ETENEMINEN (The Nature and Propagation of Light) 68 33 VALON LUONNE JA ETENEMINEN (The Nture nd Propgtion of Light) Toinen ihmiselle tärkeä luonnon ltoliike, meknisten ääniltojen lisäksi, liittyy näkemiseen j on tietysti vlo. Vlo on sähkömgneettist ltoliikettä

Lisätiedot

SUORAKULMAINEN KOLMIO

SUORAKULMAINEN KOLMIO Clulus Lukion Täydentävä ineisto 45 0 45 60 ( - ) + SUORKULMINEN KOLMIO Pvo Jäppinen lpo Kupiinen Mtti Räsänen Suorkulminen kolmio Suorkulminen kolmio Käsillä olev Lukion Clulus -srjn täydennysmterili

Lisätiedot

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S 3.3. Aritmeettie summ 3.3. Aritmeettie summ Mikä olisi helpoi tp lske 0 esimmäistä luoollist luku yhtee? Olisiko r voim käyttö 0 + + + 3 + + 00 hyvä jtus? Tekiik vull se iki toimii. Fiksumpiki tp kuiteki

Lisätiedot

Gillespie A.: Foundations of Economics., 2011, luvut 6-8, 17, 21 ja 29. ISBN 978-0-19-958654-7. Oxford University Press.

Gillespie A.: Foundations of Economics., 2011, luvut 6-8, 17, 21 ja 29. ISBN 978-0-19-958654-7. Oxford University Press. Vltiotieteellinen tiedekunt Tloustieteen vlintkoe Arvosteluperusteet Kesä 0 Vlintkoekirjt Gillespie A.: Foundtions of Economics., 0, luvut 6-8, 7, j 9. ISBN 978-0-9-958654-7. Oxford University Press. sekä

Lisätiedot

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,

( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x, Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d

Lisätiedot

PRELIMINÄÄRIKOE Pitkä matematiikka 7.2.2012

PRELIMINÄÄRIKOE Pitkä matematiikka 7.2.2012 PRELIMINÄÄRIKOE Pitkä mtemtiikk 7 Kokeess s vstt enintään kymmeneen tehtävään Tähdellä (*) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6 Jos tehtävässä on usempi kohti

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto Integroimistekniikk /5 Sisältö Sijoitsmenettely Annetn fnktion integrlifnktiot lskettess fnktiot pyritään mntmn siten, että tlos voidn tnnist jonkin lkeisfnktion derivtksi. Usein mntminen jodtn tekemään

Lisätiedot

Tutkimusasetelmien tilastollisista menetelmistä

Tutkimusasetelmien tilastollisista menetelmistä Tutkimussetelmien tilstollisist menetelmistä Jnne Pitkäniemi VTM, MS (iometry HY, Knsnterveystieteen litos 1 Kohorttitutkimuksen siruen j ltisteen välinen ssositio Tpusverrokki tutkimus Poikkileikkustutkimus

Lisätiedot

AVOIN MATEMATIIKKA 7 lk. Osio 3: Potensseja ja polynomeja

AVOIN MATEMATIIKKA 7 lk. Osio 3: Potensseja ja polynomeja Mrik Toivol j Tiin Härkönen AVOIN MATEMATIIKKA lk. Osio : Potenssej j polynomej Sisältö on lisensoitu voimell CC BY.0 -lisenssillä. Osio : Potenssej j polynomej. Smnkntisten potenssien tulo.... Smnkntisten

Lisätiedot

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET

9 A I N. Alkuperäinen piiri. Nortonin ekvivalentti R T = R N + - U T = I N R N. Théveninin ekvivalentti DEE-11110 SÄHKÖTEKNIIKAN PERUSTEET DEE11110 SÄHKÖTEKNIIKAN PERUSTEET http://www.tut.fi/smg/course.php?id=57 Rtkisut Hrjoitukset 3, 2014 Tehtävä 1. Pyydetään muodostmn nnetun piirin Nortonin ekvivlentti. Nortonin, smoin kuin Theveninin,

Lisätiedot

Matematiikkaolympialaiset 2008 kuusi vaikeaa tehtävää

Matematiikkaolympialaiset 2008 kuusi vaikeaa tehtävää Solmu 3/2008 Mtemtiikkolympiliset 2008 kuusi vike tehtävää Mtti Lehtinen Mnpuolustuskorkekoulu 49. Knsinväliset mtemtiikkolympiliset pidettiin Mdridiss 4. 22. heinäkuut 2008. Kilpilijoit oli 535 j he edustivt

Lisätiedot

http://www.math.helsinki.fi/solmu/

http://www.math.helsinki.fi/solmu/ 1/2000 2001 http://www.mth.helsinki.fi/solmu/ Solmu Solmu Solmu 1/2000 2001 Mtemtiikn litos PL 4 (Yliopistonktu 5) 00014 Helsingin yliopisto http://www.mth.helsinki.fi/solmu/ Päätoimittj Pekk Alestlo Toimitussihteerit

Lisätiedot

Yläkoulun geometriaa. Yläkoulun geometriaa

Yläkoulun geometriaa. Yläkoulun geometriaa Yläkoulun geometri Tämä tehtäväkokoelm nt yläkoulun oppillle mhdollisuuden syventää kouluss opittv geometrin oppimäärää. Se on erityisen hyödyllinen niille, jotk ikovt lukioss vlit pitkän mtemtiikn. Kokoelmn

Lisätiedot

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla?

Kuva 1. n i n v. (2 p.) b) Laske avaimiesi etäisyys x altaan seinämästä. (4 p.) c) Kuinka paljon lunta voi sulaa enintään Lassen suksien alla? TKK, TTY, LTY, OY, ÅA, TY j VY insinööriosstojen vlintkuulustelujen fysiikn koe 26.5.2004 Merkitse jokiseen koepperiin nimesi, hkijnumerosi j tehtäväsrjn kirjin. Lske jokinen tehtävä siististi omlle sivulleen.

Lisätiedot

Geometrinen algebra: kun vektorien maailma ei riitä

Geometrinen algebra: kun vektorien maailma ei riitä Geometrinen lgebr: kun vektorien milm ei riitä Risto A. Pju 4. huhtikuut 2003 Tiivistelmä Geometrinen lgebr on viime vuosin ksvttnut suosiotn luonnontieteiden mtemttisen menetelmänä. Sen juuret ovt vektori-

Lisätiedot

Kirjallinen teoriakoe

Kirjallinen teoriakoe 11 Kirjllinen teorikoe Päivämäärä: Osllistujn nimi: Kirjllinen teorikoe Arviointi koostuu khdest osst: "yleiset kysymykset "j lskutehtävät" Kokeen hyväksytty rj on 51% molemmist osioist erikseen. St 1

Lisätiedot

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN)

Asennus- ja käyttöohje ROBA -liukunavoille Koot 0 12 (B.1.0.FIN) Pyydämme lukemn käyttöohjeen huolellisesti läpi j noudttmn sitä! Ohjeiden liminlyönti voi joht kytkimen toiminthäiriöihin j siitä johtuviin vurioihin. Nämä käyttöohjeet (B.1.0.FIN) ovt os kytkintoimitust.

Lisätiedot

Luentoesimerkki: Riemannin integraali

Luentoesimerkki: Riemannin integraali Luentoesimerkki: Riemannin integraali Heikki Apiola, "New perpectives "-esitykseen lievästi muokattu Kurssi: Informaatioverkostot, keväällä Tässä (4..) käytetään "worksheet-modea", uudempaa "document mode"

Lisätiedot

Euroopan neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnallisesta merkityksestä

Euroopan neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnallisesta merkityksestä Sopimustekstin käännös 30.03.2015 (epävirllinen) Counil of Europe Trety Series - No. 199 Euroopn neuvoston puiteyleissopimus kulttuuriperinnön yhteiskunnllisest merkityksestä Fro, 27.10.2005 Johnto Euroopn

Lisätiedot

Nelikanavainen vahvistin aktiivisella jakosuotimella

Nelikanavainen vahvistin aktiivisella jakosuotimella Mrkku Kuppinen Neliknvinen vhvistin ktiivisell jkosuotimell Vhvistimen yleisselostus Suunnittelun lähtökohtn on ollut toteutt edullinen mutt kuitenkin lduks ktiivisell jkosuotimell vrustettu stereovhvistin

Lisätiedot

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε.

Outoja funktioita. 0 < x x 0 < δ ε f(x) a < ε. Outoja funktioita Differentiaalilaskentaa harjoitettiin miltei 200 vuotta ennen kuin sen perustana olevat reaaliluvut sekä funktio ja sen raja-arvo määriteltiin täsmällisesti turvautumatta geometriseen

Lisätiedot

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050

OUML7421B3003. Jänniteohjattu venttiilimoottori KÄYTTÖKOHTEET TEKNISET TIEDOT OMINAISUUDET SOPIVAT VENTTIILIT TUOTETIEDOT. i OUV5049 i OUV5050 OUML7421B3003 Jänniteohjttu venttiilimoottori TUOTETIEDOT OMINAISUUDET Helppo j nope sent Ei trvitse erillistä sennustelinettä Ei trvitse liikepituuden säätöä Momenttirjkytkimet Käsikäyttömhdollisuus Mikroprosessorin

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot

Kiertomatriisi Erikoistyö. Petri Rönnholm

Kiertomatriisi Erikoistyö. Petri Rönnholm Kietomtiisi Eikoistö Peti önnholm isälls JOHDANO KEOUUNNA 3 OMEGA-, PH- JA KAPPA-KEO 3 ALPHA-, N- JA KAPPA-KEO 5 5 KOLMULOEEN KEOMAN OMNAUUKA 7 6 KEOMAN KOVAAMNEN MLLÄ AHANA OOGONAALELLA MALLA 9 7 KEOMAN

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

Metsätieteen aikakauskirja

Metsätieteen aikakauskirja Metsätieteen ikkuskirj t u t k i m u s r t i k k e l i Sij Huuskonen j Anssi Ahtikoski Sij Huuskonen Ensihrvennuksen joituksen j voimkkuuden vikutus kuivhkon knkn männiköiden tuotokseen j tuottoon Huuskonen,

Lisätiedot

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta

Mitä ovat blogit? Mitä blogit ovat. Mahdollisuuksia Verkostoitumista Viestintää Todistusta Kirsi Myllyniemi, Blogikurssi teologeille mlikuuss 2006 Mitä blogit ovt Mhdollisuuksi Verkostoitumist Mitä ovt blogit? Mhdollisuuksi Verkostoitumist Sn blogi tulee englnnin snoist web log. Se sisältää

Lisätiedot

2. Digitaalisten kuvien peruskäsitteet 2.1. Visuaalinen havaitseminen

2. Digitaalisten kuvien peruskäsitteet 2.1. Visuaalinen havaitseminen 2. Digitlisten kuvien peruskäsitteet 2.1. Visulinen hvitseminen Tässä luvuss käsitellään digitlisten kuvien perussioist, in kuvien näkemisestä pikseleihin j trvittviin lskentmenetelmiin sti. Vikk kuvnprosessointi

Lisätiedot

NASTOLAN YRITYSPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 500, 501, 504-511 KOSKEVAT RAKENNUSTAPAOHJEET

NASTOLAN YRITYSPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 500, 501, 504-511 KOSKEVAT RAKENNUSTAPAOHJEET NASTOLAN YRISPUISTO RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 00, 0, 0 - KOSKEVAT RAKENNUSTAPAOHJEET NASTOLAN YRITSPUISTON ALUEEN KORTTELEITA 00, 0, 0 - KOSKEVAT RAKENNUSTAPAOHJEET YLEISTÄ

Lisätiedot

4.7.2 Testerit. Test ok. virhe vast.ota. lähetä τ. virhe. virhe. vast.ota. τ τ. vast.ota. lähetä. lähetä. lähetä ok

4.7.2 Testerit. Test ok. virhe vast.ota. lähetä τ. virhe. virhe. vast.ota. τ τ. vast.ota. lähetä. lähetä. lähetä ok OHJ-2600 Tilkoneet 204 6. Tämän tehtävän tvoite on kuvn LTS:ää vstesimerkkinä käyttäen osoitt, että nnetun LTS:n knss minimlinen CFFD-smnlinen LTS ei in ole yksikäsitteinen. P Q AG(P) = AG(Q) f, {{}} f,

Lisätiedot

HAVAINNOINTI JA TUTKIMINEN

HAVAINNOINTI JA TUTKIMINEN ilumuoto st ksvtu luun ou perusk Tuntikehyksen os-lue: HAVAINNOINTI JA TUTKIMINEN A2 Aivomyrsky j unelmien leikkipuisto Kesto: 1 kksoistunti, 45 min + 45 min Aihe: Syvennetään jtuksi ympäristöstä liittyvästä

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen luentomonisteest krsien muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden

Lisätiedot

6.2 Algoritmin määritelmä

6.2 Algoritmin määritelmä 6.2 Algoritmin määritelmä Mitä lgoritmill yleensä trkoitetn? Peritteess: Yksiselitteisesti kuvttu jono (tietojenkäsittely)opertioit, jotk voidn toteutt meknisesti. Käytännössä: luonnollist kieltä, pseudokoodi

Lisätiedot

Laudatur. Lukion pitkän matematiikan kertausta ylioppilastehtävien avulla Otava

Laudatur. Lukion pitkän matematiikan kertausta ylioppilastehtävien avulla Otava Ludtur Lukio pitkä mtemtiik kertust ylioppilstehtävie vull Otv Ylioppilstehtävät vuositti Mtemtiik koe 6.. Pitkä oppimäärä Perustitoj. Sieveä lusekkeet ), b) y y + y y. Geometri. Tssivuise kolmio ympäri

Lisätiedot

Runkovesijohtoputket

Runkovesijohtoputket Runkovesijohtoputket PUTKET JA PUTKEN OSAT SSAB:n vlmistmi pinnoitettuj putki j putken osi käytetään lähinnä runkovesijohtolinjoihin, joiden hlkisij on DN 400-1200. Ost vlmistetn teräksisistä pineputkist

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Laskennan perusmallit (LAP)

Laskennan perusmallit (LAP) Lskennn perusmllit (LAP) Kimmo Fredrikssonin j Mtti Nykäsen mterileist muoknnut Pekk Kilpeläinen Tietojenkäsittelytieteen litos, Itä-Suomen yliopisto sähköposti: pekk.t.kilpelinen@uef.fi Lukuvuoden 2014

Lisätiedot

1 / 5 Virkailijoiden talo, asemakaavamuutos (2305), luonnos nähtävillä (MRA 30 ) 22.6-21.7.2015.

1 / 5 Virkailijoiden talo, asemakaavamuutos (2305), luonnos nähtävillä (MRA 30 ) 22.6-21.7.2015. / irilijoiden tlo, semvmuutos (0), luonnos nähtävillä (MRA 0 ). -..0. Stujen lusuntojen j mielipiteiden tiivistelmät seä vstineet niihin Lusunnot pyydettiin seurvilt: Kervn Omotiyhdistys ry, Kervn ympäristösuojeluyhdistys

Lisätiedot

Osa 6: Perustukset. Betoniteollisuus 1(10) Betonirakenteiden suunnittelu eurokoodien mukaan. EN 1997 Eurokoodi 7: Geotekninen suunnittelu.

Osa 6: Perustukset. Betoniteollisuus 1(10) Betonirakenteiden suunnittelu eurokoodien mukaan. EN 1997 Eurokoodi 7: Geotekninen suunnittelu. 1(10) Betonirkenteiden suunnittelu eurokoodien mukn Johdnto Eurokoodien käyttöönotto kntvien rkenteiden suunnitteluss on merkittävin suunnitteluohjeit koskev muutos kutt ikojen. Koko Euroopp on siirtymässä

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

Matematiikan peruskurssi KP3 I OSA 2: Kompleksinen derivaatta ja integrointi, analyyttiset funktiot. Derivaatta ja analyyttinen funktio

Matematiikan peruskurssi KP3 I OSA 2: Kompleksinen derivaatta ja integrointi, analyyttiset funktiot. Derivaatta ja analyyttinen funktio Mtemtiikn peruskurssi KP3 I OSA 2: Kompleksinen derivtt j integrointi, nlyyttiset funktiot Antti Rsil Jn v.pfler (modif.) 26. syyskuut 27 Antti Rsil, Jn v.pfler (modif.) () KP3 Kompleksiluvut 26. syyskuut

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

Vuoden 2014 tuloveroprosentti. Vuoden 2014 kiinteistöveroprosentit

Vuoden 2014 tuloveroprosentti. Vuoden 2014 kiinteistöveroprosentit Kunnnvltuusto KOKOUSKUTSU Kokousik Perjnti 15.11.2013 klo 14.00-15.00 Kokouspikk Käsiteltävät sit Asino Liite no Svukosken kunnnvirsto 1 60 Järjestäytymissit 2 61 1-2 Vuoden 2014 tuloveroprosentti 3 62

Lisätiedot

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä.

Vuokrahuoneistojen välitystä tukeva tietojärjestelmä. Kertusesimerkki: Vuokrhuoneistojen välitystä tukev tietojärjestelmä. Esimerkin trkoituksen on on hvinnollist mllinnustekniikoiden käyttöä j suunnitteluprosessin etenemistä tietojärjestelmän kehityksessä.

Lisätiedot

KANDIDAATINTYÖ: TEOLLISUUSKIINTEISTÖN ILMANVAIHTOKONEEN LTO- LAITTEISTON HYÖTYSUHTEEN PARANTAMINEN

KANDIDAATINTYÖ: TEOLLISUUSKIINTEISTÖN ILMANVAIHTOKONEEN LTO- LAITTEISTON HYÖTYSUHTEEN PARANTAMINEN LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunt Energitekniikn koulutusohjelm KANDIDAATINTYÖ: TEOLLISUUSKIINTEISTÖN ILMANVAIHTOKONEEN LTO- LAITTEISTON HYÖTYSUHTEEN PARANTAMINEN Lppeenrnnss 1.2.2010

Lisätiedot