Matematiikan tukikurssi

Koko: px
Aloita esitys sivulta:

Download "Matematiikan tukikurssi"

Transkriptio

1 Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss jokin käyrä y = f (x) pyörähtää x-kselin ympäri jollkin välillä x b. Tällisen kppleen tilvuus A stiin lskettu kvll A = π ( f (x)) dx. Toislt määrätyn integrlin vull voi lske myös tällisen pyörähtämällä syntyneen kppleen vipn l. Tämä l B sdn lskettu kvll B = π f (x) + ( f (x)) dx. Esimerkki.. Käyrä f (x) = + x pyörähtää x-kselin ympäri välillä x. Syntyneen kppleen tilvuus A sdn lskettu yllä esitetyllä kvll: A = π = π = π = π = π ( f (x)) dx ( + x) dx ( + x + x ) dx (x + x + 3 x3 ) (( ) ( + + )) = π.

2 Vstvsti syntyneen pyörähdyskppleen vipn l B sdn lskettu seurvsti: B = π f (x) + ( f (x)) dx = π + x + dx = π ( + x) dx = π (x + x ) = ( ) 5 π = 5 π. Tässä itseisrvot voitiin poist, kosk + x on positiivinen tutkitull välillä x. Epäoleelliset integrlit Tähän mennessä lsketut integrlit ovt olleet hyvin käyttäytyviä eli muoto f (x)dx, joss j b ovt olleet relilukuj. Tällinen integrli on ollut yleensä kohtuullisen suorviivisesti lskettviss: jos f (x) on jtkuv funktio, niin yllä olev tyyppiä olev integrli on in olemss eli voidn kirjoitt f (x)dx = A, eli integrli f (x)dx on jokin reliluku A. Tässä oleellist siis on, että f on jtkuv funktio välillä [, b] j että j b ovt relilukuj. Tällöin tämä integrli on olemss eli f on integroituv välillä [, b]. Ennen kuin etenemme, on syytä ymmärtää intuitiivisesti miksi yllä olev tyyppiä olev integrli on in olemss. Tämän voi perustell sillä, että integrli voidn ymmärtää käyrän j x-kselin välissä olevn lueen pint-ln. Jos piirrät jtkuvn funktion f jollekin äärelliselle välille [, b], niin tämän funktion j x-kselin välissä on in pkoll äärellinen

3 pint-l. Täten jtkuv funktio on integroituv äärellisellä välillä. Nyt tutkimme tpust, joss f :n jtkuvuus ti :n j b:n äärellisyys eivät enää päde. Tyyppiesimerkki tälläisestä integrlist on x dx. Tässä siis toisen integrointirjn on ääretön. Onko tämä integrli olemss? Tämä riippuu intuitiivisesti siitä, onko käyrän y = /x j x- kselin välissä olevn lueen pint-l ääretön vi äärellinen välillä x [, [. Tätä ei voi kuitenkn päättää ennen kuin tiedetään, miten tällinen integrli lsketn. Määritellään siis epäoleellinen integrli seurvnlisen rj-rvon: f (x)dx f (x)dx. Tässä määritelmässä siis hlutn lske integrli äärettömyydessä. Tämä tphtuu siten, että lsketn luksi integrli f (x)dx, j nnetn tämän jälkeen integroinnin ylärjn ksv rjtt eli otetn rj-rvo lim f (x)dx. Tämä on siis määritelmän mukn sm si kuin integrli äärettömyydessä eli lim f (x)dx = f (x)dx. Nyt voimme lske epäoleellisen integrlin x dx. Merkitään siis integroinnin ylärj kirjimell M j nnetn tämän ylä- 3

4 rjn ksv rjtt: dx x x dx M ( ) x ( M ) ( ) ( M ) =. Täten tämä integrli on siis olemss j täten käyrän y = /x j x- kselin välissä olevn lueen pint-l välillä [, [ on yksi. Epäoleellinen integrli lsketn täsmälleen smll tekniikll kuin yllä, jos integroitv on funktio jok on epäjtkuv integroimisvälillä. Esimerkki tälläisestä integrlist on Nyt funktio /x on epäjtkuv nollss, joten tämä integrli määritellään jälleen rj-rvon: x. x dx x dx. 3 Integrlien suppeneminen Yllä lskettiin esimerkkinä integrli dx =. x Tässä siis epäoleellinen integrli oli olemss. Näin ei kuitenkn in käy. Tämä huomtn lskemll esimerkiksi funktion /x integrli vä- 4

5 lillä [, ] dx x M x dx ln x (ln M ln ) =, eli kyseinen integrli on ääretön. Toisin snottun siis funktion /x j x-kselin välissä olev pint-l on ääretön välillä [, [. Jos integrli f (x)dx on rvoltn jokin reliluku, snotn että se suppenee. Jos tämä epäoleellinen integrli puolestn ei ole reliluku (vn esimerkiksi ääretön ti miinus ääretön), niin kyseinen integrli hjntuu. Usein hjntumisen ti suppenemisen voi päättää yksinkertisesti lskemll epäoleellisen integrlin, kuten ll olevss esimerkissä. Esimerkki 3.. Tutki suppeneeko vi hjntuuko xe x dx. Rtkisu. Integrli näyttää lkuun siltä, että siinä trvitsisi käyttää osittisintegrointi, mutt tämä itse siss sujuu helpommin, sillä integroitv luseke xe x on itse siss melkein muoto f (x) f (x), joss f (x) = e x : xe x dx M xe x dx ( ) e x ( e M ( e ) = ( /) = /. ) 5

6 Usein integroitv funktiot ei kuitenkn voi suorn lske. Tällinen on esimerkiksi integrli e x dx, jot ei voi suorn lske siitä yksinkertisest syystä, että tähän lskuun trvittv määräämätöntä integrli e x dx ei ole olemss. Tämän j monet muut ei-negtiivisten funktioiden integrlit voi kuitenkin osoitt suppeneviksi mjornttiperitteen vull. Tätä peritett käytetään, kun hlutn osoitt että integrli f (x)dx. on olemss. Muistetn luksi, että integrli on pint-l. Hlumme siis osoitt, että jokin pint-l on äärellinen. Oletetn nyt, että löydetään jokin integrli g(x)dx jok on suurempi kuin f :n integrli: f (x)dx g(x)dx. Jos tämä integrli g(x)dx on nyt olemss äärellisenä, niin integrli f (x)dx on myös pkoll olemss: pint-l f (x)dx on äärellisenä olemss, kosk se on pienempi kuin pint-l g(x)dx, jok on myös äärellisenä olemss. Oletetn siis että seurvt seikt pätevät:.. f (x) f (x) g(x) kun x [, b] 3. Integrli on äärellisenä olemss. Tässä b voi oll myös j voi oll. g(x)dx 6

7 Tällöin pätee f (x)dx g(x)dx j integrli f (x) suppenee mjornttiperitteen nojll. Mjornttiperitteess siis etsitään suurempirvoinen integrli, jok suppenee. Esimerkki 3.. Osoit, että suppenee. e x dx Rtkisu. Nyt f (x) = e x. Tämä funktio on in positiivinen, joten siihen voi mhdollisesti sovelt mjornttiperitett. Hlutn löytää tätä suurempirvoinen funktio g(x), jonk integrli suppenee. Välillä [, ] pätee e x = e x e x e x. Täten funktioksi g voidn vlit g(x) = e x. Tämän integrli on helppo lske: Eli e x dx M e x dx ( e x ) ( e M ( e )) = e. e x dx e x dx = e, joten esimerkin integrli suppenee mjornttiperitteen nojll. Nyt kun mjornttiperite on käsitelty, on helppo rvt mistä on kyse minornttiperitteess. Tässä trkstelln jälleen kht funktiot f j g, jotk ovt kumpikin ei-negtiivisi j joille pätee g(x)dx f (x)dx 7

8 j lisäksi oletetn, että integrli g(x)dx hjntuu. Tällöin minornttiperitteen nojll myös integrli f (x)dx hjntuu. Eli intuitiivisesti jteltun funktion f j x-kselin välinen pint-l on ääretön, kosk tämä l on suurempi kuin funktion g j x-kselin välinen pint-l, jok on ääretön. Minornttiperitett käytetään seurvsti:. Hlutn todist, että jokin integrli f (x)dx hjntuu.. Etsitään funktio g, jok on pienempi kuin f eli g(x) f (x) j jonk integrli g(x)dx hjntuu. 3. Tällöin integrli f (x)dx hjntuu. Esimerkki 3.3. Osoit minornttiperitteen vull, että integrli hjntuu. x dx Rtkisu. Nyt f (x) = x. Pitäisi löytää tätä funktiot pienempi funktio g, jonk integrli hjntuu välillä [, ]. Helppo tp löytää pienempi funktio on ksvtt osoittj yhdellä: x > x. Eli nyt etsimämme funktio on g(x) = / x. Tämän integrli voidn lske jälleen suorviivisesti: x dx M x dx x ( M ) =. Tämä perite seur itse siss suorn mjornttiperitteest: jos f suppenisi, niin silloin mjornttiperitett voisi sovelt j myös g suppenisi. 8

9 Täten kosk = x < x, niin integrli x hjntuu. 4 Tiheysfunktiot Kuten jo usen kertn on todettu, integrlill voi lske loj j tilvuuksi. Yksi määrätyn integrlin tärkeimpiä sovelluksi on lisäksi se, että sillä voi lske tphtumien todennäköisyyksiä. Tämän sovelluksen käyttäminen vtii kuitenkin tiheysfunktion käsitettä. Tiheysfunktio on mtemttisesti jteltun mikä thns ei-negtiivisi rvoj sv funktio, jok integroituu relikselill lukuun yksi eli jolle pätee f (x)dx = j f (x). Grfisesti tulkittun tiheysfunktio on siis funktio, jok on jtkuvsti x- kselin yläpuolell (ti x-kselill) j jonk ll olevn lueen pint-l on yksi. Tiheysfunktion ide on seurv: jos stunnismuuttujll X on tiheysfunktio f (x), niin tätä tiheysfunktiot integroimll voi lske todennäköisyyksiä. Jos merkitään P( X b) todennäköisyyttä, että stunnismuuttuj X s rvon välillä [, b], niin tämän todennäköisyyden voi lske integroimll stunnismuuttujn tiheysfunktion f (x) tällä välillä: P( X b) = f (x)dx. All oleviss esimerkeissä käytetään lisäksi seurv integrointisääntöä : jos funktio f (x) on jollkin välillä [i, j] noll eli pätee f (x) =, x [i, j], niin myös tämän funktion integrli välillä [i, j] on noll eli j f (x) =. Trkstelln nyt funktiot f (x), jok on määritelty ploittin: { e x, kun x [, b] f (x) = muulloin. i 9

10 Eli funktio f s positiivisen rvon e x joukoss [, b] j on noll muull. Kun tätä funktiot nyt integroi välillä [, ], niin se lue joss funktio on noll voidn sivutt: f (x)dx = e x dx. Eli kosk funktion integrli on noll sillä lueell joss funktio on noll, niin integroitess tämä noll-lue voidn poist eli integroinnit rjt voidn muutt siten, että noll-lue poistuu. Trkstelln nyt esimerkkien vull tiheysfunktioit j niiden integrointi. Esimerkki 4.. Stunnismuuttuj X on tsjkutunut, jos todennäköisyys että X s rvon tietyssä joukoss riippuu inostn tämän joukon koost (eikä tämän joukon sijinnist x-kselill). Jos X on esimerkiksi tsjkutunut välillä [, ], sen tiheysfunktio on {, jos x f (x) = muulloin. Tämä on tiheysfunktio, kosk se on in ei-negtiivinen j sen integrli relikselill on yksi: f (x)dx = = x =. dx Nyt tätä tiheysfunktiot integroimll voi siis lske todennäköisyyksiä. Lsketn todennäköisyys, että X s rvon välillä [, /6]: P( X /6) = = /6 /6 dx x = /. Esimerkki 4.. Toinen esimerkki stunnismuuttujn tiheysfunktiost on { e x, jos x f (x) = muulloin.

11 Tämä on tiheysfunktio, kosk se on in ei-negtiivinen j se integroituu yhteen: f (x)dx = e x dx M e x dx e x ( e M ( e )) = ( ) =. Tämä on erään eksponenttijkumn tiheysfunktio. Integroimll tiheysfunktiot voidn jälleen lske välien todennäköisyyksiä: joss oletetn, että >. P( X b) = e x dx = ( e ( e b ) = e b e, Trkstelln nyt ploittin määriteltyä funktiot { x, jos x f (x) = muulloin. Tässä on jokin vkio. Kysymys kuuluu: millä :n rvoll tämä funktio on tiheysfunktio? Kosk tiheysfunktiolt vditn ensinnäkin ei-negtiiviisuus, niin on pkko oll, että, sillä muuten yllä olev tiheysfunktio sisi negtiivi rvoj. Toislt tiheysfunktiolt vditn, että se integroituu yhteen relikselill eli f (x)dx =. Integroidn nyt funktio f (x) = x j ktsotn millä :n rvoll se

12 integroituu lukuun yksi: f (x)dx = = = x dx x dx 3 x3. = 3. Nyt tämä funktio on siis tiheysfunktio, kun tämä integrli s rvon yksi eli pätee =, 3 eli = 3/. Täten funktio { 3 f (x) = x, jos x muulloin on tiheysfunktio. 5 Tsointegrlit Ennen tsointegrleihin siirtymistä käsitellään hiemn integroinnin nottiot. Trkstelln jälleen tvllist yksiulotteist integrli f (x)dx. Tässä siis integrointi tphtuu välillä x [, b]. Tätä väliä [, b] voidn kuitenkin merkitä [, b] = A, jolloin yllä olev integrli voidn merkitä vstvsti: f (x)dx = f (x)dx. Integrli A f (x)dx ilmisee, että funktio f (x) integroidn joukoss A. Tässä tpuksess kosk A = [, b], niin tämä on sm si kuin integrli f (x)dx. A

13 Tälle uudelle lyhyemmälle nottiolle tulee käyttöä, kun trkstelemme usemmn muuttujn funktion integroimist. Trkstelln khden muuttujn funktiot f : R R R, (x, y) f (x, y). Tämän muuttujn lähtöjoukko on nyt tso eli R R. Sen mlijoukko on puolestn reliluvut eli R. Yksi esimerkki tällisest khden muuttujn funktiost on f (x, y) = x + y, jolle pätee siis esimerkiksi että f (, ) = 3. Nyt tällist funktiot f (x, y) voi integroid tsoss eli khden muuttujn x j y suhteen. Syntynyt integrli on nimeltään tsointegrli. Seurvksi tsointegrli pitäisi määritellä. Plutetn luksi mieliin, että yhden muuttujn tpuksess määrätty integrli f (x)dx määriteltiin l- j yläsummien vull. Esimerkiksi lsumm stiin lskettu jkmll ensin integrointiväli [, b] osiin j lskemll funktion f pienin rvo jokisess näistä osiss. Esimerkissämme väli [, b] jettiin kolmen osn, joiden jokisen pituus oli /3. Lskimme seurvksi funktion f pienimmän rvon jokisess näistä osiss: merkitsimme näitä m, m j m 3. Alsumm stiin tämän jälkeen summn 3 m + 3 m + 3 m 3, joss siis jokisen välin pituus kerrottiin funktion pienemmällä rvoll kyseisellä välillä. Kuten yhden muuttujn tpuksess, määrätty integrli tsoss määritellään ylä- j lsummien vull. Nyt emme kuitenkn voi enää pelkästään ositt väliä, kosk tsointegrli on nimensä mukisesti määritelty tsoss eikä välillä. Vlitn integroitvksi funktioksi f (x, y) = x + y. Tutkitn kuitenkin helppo esimerkkiä, joss integrointi tphtuu joukoss [, 3] [, 3], eli joukoss joss x [, 3] j y [, 3]. Tämä joukko on sikäli helppo, että se määritellään khden välin krteesisen tulon. Kyseinen joukko on siis yksinkertinen suorkulmio, jok näyttää kuvn seurvlt: 3

14 Tsointegrlin ylä- j lsummi lskettess tämä suorkulmio jetn osiin. Muodostetn ll olevss kuvss näkyvä mhdollisimmn yksinkertinen jko eli jetn väli [, 3] khti keskeltä: 3 A 3 A 4 A A 3 Tästä näkyy, että suorkulmio [, 3] [, 3] jettiin nyt neljään osn: osiin A, A, A 3 j A 4. Alsumm määritellään vlitsemll funktion f pienin rvo jokisess näistä osist j kertomll se näiden osien pint-lll. Olkoon siis m(a i ) funktion f pienin rvo joukoss A i, joss luonnollisesti i on,, 3 ti 4. Kosk jokisen näiden joukon pint-l on, niin lsumm on tässä tpuksess m(a ) + m(a ) + m(a 3 ) + m(a 4 ). 4

15 Nyt integroitvn on funktio f (x, y) = x + y. Kuv ktsomll huomtn, että tämän pienin rvo joukoss A on yhtä kuin + =. Vstvsti tämän funktion pienin rvo joukoss A on + = 3, joukoss A 3 tämä pienin rvo on smoin + = 3 j joukoss A 4 tämä pienin rvo on + = 4. Täten lsumm s rvon m(a ) + m(a ) + m(a 3 ) + m(a 4 ) = =. Vstvsti yläsumm sdn vlitsemll jokisest joukost A i funktion suurin rvo tässä joukoss. Merkitään tätä suurint rvo joukoss M(A i ), jolloin yläsumm sdn jälleen helposti ktsomll yllä olev kuv: M(A ) + M(A ) + M(A 3 ) + M(A 4 ) = =. Näin krkell osituksell ylä- j lsummt siis erovt toisistn melko pljon. Nämä summt ntvt siis ylä- j lrjn tsointegrlille, jot merkitään khdell integroimismerkillä A f (x, y)dxdy = joss joukko A on suorkulmio [, 3] [, 3]. (x + y)dxdy, A Esimerkki 5.. Lsketn vielä ylä- j lsummien ntmt rviot tsointegrlille (x y)dxdy, A joss A = [ [, ] ] [[, ]. Tehdään nyt jko, joss x-rvojen väli [, ] jetn [ ] väleihin, j, ] j y-rvojen väli [, ] jetn neljään väliin:,, [ [ ] [, ],, j, ]. Nyt tällä joll suorkulmio A = [, ] [, ] sdn jettu khdeksn osn (piirrä kuv, tästä ei ot muuten selvää): [ A =, ] [, ] [ ] [ A =,, ] [ A 3 =, ] [ ], [ ] [ ] A 4 =,, 5 [ A 5 =, ] [, 3 ] [ ] [ A 6 =,, 3 ] [ A 7 =, ] [ ] 3, [ ] [ ] 3 A 8 =,,

16 Näiden jokisen osn l on /4. Kosk integroitv funktio on f (x, y) = x y, niin kyseisen funktion pienin rvo jokisess näistä joukost löytyy vlitsemll mhdollisimmn pieni x-rvo j mhdollisimmn suuri y- rvo. Täten lsummksi sdn 4 (m(a ) + m(a ) + m(a 3 ) + m(a 4 ) + m(a 5 ) + m(a 6 ) + m(a 7 ) + m(a 8 )) = ( ) = 9 4. Vstvsti yläsumm sdn järkeiltyä siten, että vlitn osituksen jokisess joukoss mhdollisimmn suuri x-rvo j mhdollisimmn pieni y-rvo. Täten tämä yläsumm on 4 (M(A ) + M(A ) + M(A 3 ) + M(A 4 ) + M(A 5 ) + M(A 6 ) + MA 7 ) + M(A 8 )) = ( ) =. Jälleen siis ylä- j lintegrli tuottvt huomttvn erilisi tuloksi. Todellisuudess kyseinen integrli on. 6

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

> 1. = lim. ja lisäksi oletetaan, että integraali b

> 1. = lim. ja lisäksi oletetaan, että integraali b j lisäksi oletetn, että integrli b g(x)dx hjntuu. Tällöin minornttiperitteen nojll myös integrli b f (x)dx hjntuu5. Eli intuitiivisesti jteltun funktion f j x-kselin välinen pint-l on ääretön, kosk tämä

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

Integraalilaskenta. Määrätty integraali

Integraalilaskenta. Määrätty integraali 9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

Viikon aiheet. Pinta-ala

Viikon aiheet. Pinta-ala info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi

Lisätiedot

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka B 2014

Mika Hirvensalo. Insinöörimatematiikka B 2014 Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen

Lisätiedot

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat

LINSSI- JA PEILITYÖ TEORIAA. I Geometrisen optiikan perusaksioomat (0) LINSSI- JA PEILITYÖ MOTIVOINTI Tutustutn linsseihin j peileihin geometrisen optiikn mittuksiss Tutkitn vlon käyttäytymistä linsseissä j peileissä Määritetään linssien j peilien polttopisteet Optiset

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

Lebesguen integraali - Rieszin määritelmä

Lebesguen integraali - Rieszin määritelmä Lebesguen integrli - Rieszin määritelmä Tru Lehtonen Mtemtiikn pro grdu-tutkielm Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kevät 216 Tiivistelmä Jyväskylän Yliopisto Lehtonen, Tru Puliin: Lebesguen

Lisätiedot

2 Epäoleellinen integraali

2 Epäoleellinen integraali ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Pinta-alan laskeminen

Pinta-alan laskeminen Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin

Lisätiedot

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT Lyhyt mtemtiikk YO-vlmennus 8. mliskuut 00 LYHYEN MATEMATIIKAN SIMULOITU YO-KOE RATKAISUT. Trkstelln yhtälöpri, polynomin sievennöstä j lusekkeeseen sijoittmist. ) Rtkistn jälkimmäisestä yhtälöstä x, jolle

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

Muita määrätyn integraalin sovelluksia

Muita määrätyn integraalin sovelluksia Muit määrätyn integrlin sovelluksi Ekstr Pohint Auto kiihyttää tsisesti viiessä sekunniss vuhist 4 km/h vuhtiin 76 km/h. ) Muoost funktio, jok ilmisee uton vuhin v(t), kun on kulunut t sekunti kiihytyksen

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdtus relifunktioihin 802161P, 5op Os 3 Pekk Slmi 19. lokkuut 2015 Pekk Slmi FUNK 19. lokkuut 2015 1 / 48 Integrlit 1 Määrätty integrli = oike integrli: esim. 1 0 x 2 dx = reliluku 2 Määräämätön integrli

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

Pertti Koivisto. Analyysi C

Pertti Koivisto. Analyysi C Pertti Koivisto Anlyysi C TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 68/28 TAMPERE 28 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 68/28 JOULUKUU 28 Pertti Koivisto Anlyysi

Lisätiedot

Jouni Sampo. 28. marraskuuta 2012

Jouni Sampo. 28. marraskuuta 2012 A2 Jouni Smpo 28. mrrskuut 2012 Sisältö 1 Integrointitekniikoit 2 1.1 Osittisintegrointi (Integrtion by prts)...................... 2 1.2 Sijoitus (Method of Substitution).......................... 2 1.3

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015

ICS-C2000 Tietojenkäsittelyteoria Kevät 2015 ICS-C2 Tietojenkäsittelyteori Kevät 25 Kierros 3, 26. 3. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys.

TYÖ 30. JÄÄN TIHEYDEN MÄÄRITYS. Tehtävänä on määrittää jään tiheys. TYÖ 30 JÄÄN TIHEYDEN MÄÄRITYS Tehtävä älineet Tusttietoj Tehtävänä on äärittää jään tiheys Byretti (51010) ti esi 100 l ittlsi (50016) j siihen sopivi jääploj, lkoholi (sopii jäähdytinneste lsol), nlyysivk

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto Fkultet/Sektion Fculty Litos Institution Deprtment Mtemttis-luonnontieteellinen Tekijä Förfttre Author Antti Khri Työn

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 2009 Sisältö Relilukujen peruskäsitteitä 2 Lukujonoist 3 2. Lukujonon rj-rvo....................... 3 2.2 Monotoniset jonot......................... 7 2.3 Osjonot..............................

Lisätiedot

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L )

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L ) 76638A Termofysiikk Hrjoitus no. 6, rtkisut syyslukukusi 014) 1. Trkstelln L:n pituist nuh, jonk termodynmiikn perusreltio on de = d Q + d W = T ds + F dl, 1) missä F on voim, joll nuh venytetään reversiibelisti

Lisätiedot

Viivaintegraali: "Pac- Man" - tulkinta. Viivaintegraali: "Pac- Man" - tulkinta. "Perinteisempi" tulkinta: 1D 3/19/13

Viivaintegraali: Pac- Man - tulkinta. Viivaintegraali: Pac- Man - tulkinta. Perinteisempi tulkinta: 1D 3/19/13 Viivintegrli: "Pc- Mn" - tulkint Otetn funk:o f(,), jok riippuu muudujist j. Jokiselle, tson pisteellä funk:oll on siis joku rvo. Tpillisiä fsiklis- kemillisi esimerkkejä voisivt oll esimerkiksi mss:hes

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

Riemann-integraalin ja mittaintegraalin vertailua

Riemann-integraalin ja mittaintegraalin vertailua Riemnn-integrlin j mittintegrlin vertilu Pro grdu -tutkielm Pii Tskinen Mtemttisten tieteiden litos Oulun yliopisto Kevät 216 Sisältö Johdnto 3 1 Esitietoj 5 1.1 Välijost............................. 5

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

Numeerinen integrointi.

Numeerinen integrointi. Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun

Lisätiedot

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa Luku 5. Integrli Merkitsemme seurvss [, b]:llä lukusuorn suljettu väliä { R : b}. Olkoon f välillä [, b] määritelty funktio. Snomme, että välillä [, b] määritelty funktio g on funktion f integrlifunktio

Lisätiedot

Kertausta ja täydennystä

Kertausta ja täydennystä LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot