Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29
|
|
- Riikka Nurmi
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät / 29
2 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 () Numeeriset menetelmät / 29
3 Luku 6.1 Johdnto Numeerisest integroinnist Trkstelln yksiulotteisen Riemnnin integrlin f (x) dx lskemist. Anlyysin perusluseen mukn jollekin f :n ntiderivtlle F ( ts. F = f ) f (x) dx = F (b) F () (1) F :ää ei välttämättä löydetä suljetuss muodoss (esim. f (x) = e x2 ). f :n nlyyttinen luseke ei välttämättä ole käytettävissä f :n rvoj voi oll tulukoitun ennlt määrätyissä pisteissä (mittustulokset) f :n rvo sdn jonkin itertiivisen prosessin tuloksen. Luento 9 () Numeeriset menetelmät / 29
4 Luku 6.1 Johdnto Numeerisest integroinnist jtkuu Mikäli integrlin lskeminen kvll (1) ei jostkin edellä minituist syistä ole mhdollist, voidn integrli pproksimoid numeerisesti. Usein numeerist integrointi käytetään vikk ntiderivtn F luseke olisikin käytettävissä, erityisesti kun lskettvi integrlej on suuri määrä j työ hlutn utomtisoid. Luento 9 () Numeeriset menetelmät / 29
5 Luku 6.1 Johdnto Numeerisest integroinnist jtkuu Jtkoss pyritään löytämään integrlille w(x) f (x) dx likirvo kvn w(x) f (x) dx = A 1 f (x 1 ) + + A p f (x p ) + E[f ] vull. Tällisi kvoj kutsutn numeerisiksi integroimiskvoiksi eli kvdrtuureiksi. Luvut x k ovt integrointipisteet j A k pinokertoimet. Termi E[f ] on integrointikvn virhe. Positiivist funktiot w kutsutn pinofunktioksi j usein w 1. Luento 9 () Numeeriset menetelmät / 29
6 Luku 6.1 Johdnto Numeerisest integroinnist jtkuu Määritelmä 6.1 Numeerisen integroimiskvn w(x) f (x) dx = A 1 f (x 1 ) + + A p f (x p ) + E[f ] trkkuusste on d, jos se on trkk (E[f ]=0) kikill polynomeill, joiden steluku d, j jos on olemss d + 1 -steinen polynomi jolle se ei ole trkk. Luento 9 () Numeeriset menetelmät / 29
7 Luse 6.1. Luku 6.1 Johdnto Jos on nnettu pisteistö x 1 < x 2 <... < x k b, niin on olemss kertoimet A 1,..., A k siten, että kvn w(x)f (x) dx = k A i f (x i ) + E[f ] (2) i=1 trkkuusste on vähintään k 1 (ts. kv on trkk kikille polynomeille stett k 1). Luento 9 () Numeeriset menetelmät / 29
8 Luse 6.1. todistus Luku 6.1 Johdnto Kv (2) on trkk monomeille f (x) = x m, m = 0, 1,..., k 1, jos seurvt yhtälöt ovt voimss: A A k = A 1 x A k x k = A 1 x k A k x k 1 k = ts.. k A i xi m = i=1 w(x) dx w(x)x dx w(x)x k 1 dx. w(x)x m dx, m = 0, 1,..., k 1. Luento 9 () Numeeriset menetelmät / 29
9 Luse 6.1. todistus jtkuu Luku 6.1 Johdnto Eo. yhtälöt muodostvt linerisen yhtälöryhmän X A = b, joss on k yhtälöä j k tuntemtont kerroint A i. Kosk kikki x i :t ovt erisuuri, niin mtriisin X determinntti x 1 x 2... x k k i = (x.. i x j ) 0, x1 k 1 x2 k 1... x k 1 i=2 j=1 k eli yhtälöryhmällä X A = b on yksikäsitteinen rtkisu. Luento 9 () Numeeriset menetelmät / 29
10 Luse 6.1. todistus jtkuu Luku 6.1 Johdnto Edellä stiin, että yhtälöryhmällä X A = b on 1-käs. rtkisu, ts. kertoimet A 1,..., A k siten, että kv (2) on trkk monomeille. Astett k 1 olevt polynomit voidn esittää linerikombintion monomeist x m, m = 0,..., k 1 : p = k 1 j=0 jx j k 1 = w(x)p(x) dx = j j=0 i=1 k A i x j i = k i=1 k 1 k 1 w(x) j x j dx = j w(x)x j dx A i j=0 k 1 j x j i = j=0 j=0 k A i p(x i ). i=1 kv (2) on trkk polynomeille stett k 1. Luento 9 () Numeeriset menetelmät / 29
11 Luku 6.1 Johdnto Numeerisest integroinnist jtkuu Merkitään seurvss P m := {f : [, b] R f on enintään m-steinen polynomi}. Integroimispisteitä x i vstvt pinokertoimet A i voidn lske Vndermonden systeemin X A = b rtkisemisen sijn suornkin. Trkstelln Lgrngen kntfunktiot l j (x) = k m=1 m j x x m x j x m. Kosk l j P k 1, niin se voidn integroid trksti kvll (2). Luento 9 () Numeeriset menetelmät / 29
12 Luku 6.1 Johdnto Numeerisest integroinnist jtkuu Kerroin A j sdn lskettu kvst k w(x)l j (x) dx = A i l j (x i ) = i=1 k A i δ ij = A j. Käyttäen Lgrngen kntfunktioit interpoltiopolynomi s muodon p(x) = k j=1 f (x j)l j (x) k w(x)p(x) dx = w(x) f (x j )l j (x) dx = k j=1 f (x j ) w(x)l j (x) dx = j=1 i=1 k A j f (x j ) = j=1 Kv on trkk polynomeille stett k 1. k A j p(x j ). j=1 Luento 9 () Numeeriset menetelmät / 29
13 6.2. Newtonin j Cotesin kvt 6.2. Newtonin j Cotesin kvt Trkstelln seurvn integrlin lskemist I = f (x) dx. Olkoon nnettu tsvälinen pisteistö x i = x 0 + ih (i = 0, 1,..., k), missä = x 0, b = x k j h = (b )/k. Integrli I pproksimoidn nyt integrlill p k (x) dx, missä p k on enintään stett k olev interpoltiopolynomi, jolle p k (x i ) = f (x i ) =: f i, i = 0, 1,..., k. Luento 9 () Numeeriset menetelmät / 29
14 6.2. Newtonin j Cotesin kvt Suljetut Newtonin j Cotesin kvt Tekemällä muuttujnvihto x = x 0 + sh j kehittämällä p k etenevien differenssien vull, sdn = h = h p k (x) dx = k 0 k 0 k 0 p k (x 0 + sh)h ds ) ( ) ( ) + 2 s f k s ] f 2 0 ds k [ ( s f 0 + f 0 1 [ f 0 + f 0 s + 1 2! 2 f 0 s(s 1) ] k! k f 0 s(s 1)... (s k + 1) ds. Luento 9 () Numeeriset menetelmät / 29
15 Luse Newtonin j Cotesin kvt Olkoon f (k+1) j f (k+2) jtkuvi välillä [, b]. Tällöin E[f ] = j missä ξ ]0, k[. h k+3 k (k + 2)! f (k+2) (x 0 + ξh) s 2 (s 1)... (s k) ds, 0 k prillinen h k+2 (k + 1)! f (k+1) (x 0 + ξh) k priton, k 0 s(s 1)... (s k) ds, Luento 9 () Numeeriset menetelmät / 29
16 Luseen 6.2 todistus 6.2. Newtonin j Cotesin kvt Trkstelln todistust vin tpuksess k = 1. Tällöin väite on (h = b ) E[f ] = h3 2! f (x 0 + ξh) 1 s(s 1) ds = 0 } {{ } 1/6 (b )3 f ( η), η ], b[. 12 Virhetermi E[f ] sdn lskemll erotus E[f ] = f (x) dx p k(x) dx. Luento 9 () Numeeriset menetelmät / 29
17 Luseen 6.2 todistus jtkuu Nyt = f (x) dx = f (η) 2 1 2! f (ξ x ) p 1 (x) dx = 1 (x x i ) = i= Newtonin j Cotesin kvt (f (x) p 1 (x)) dx f (ξ x ) 2 (x )(x b) dx, η ], b[ = f (η) 12 (b )3, η ], b[. (x )(x b) dx }{{} 0 Luento 9 () Numeeriset menetelmät / 29
18 Etenevät differenssit (5.1.3) 6.2. Newtonin j Cotesin kvt Välin [, b] tsvälisessä pisteistössä x j = + jh Newtonin muoto funktion f interp.polynomille p n voidn muodost etenevien differenssien vull: n ( ) p n (x 0 + sh) = i s f 0, i i=0 missä f j = f (x j ), etenevä differenssi i f j on luku { i f j, i = 0 f j = i 1 f j+1 i 1 f j, i > 0 j ( ) s = i 1, i = 0, i 1 s l l + 1, i > 0. l=0 Luento 9 () Numeeriset menetelmät / 29
19 6.2. Newtonin j Cotesin kvt Esimerkki 6.1 Tpus k = 1 tunnetn puolisuunnikssäännön nimellä. Integrlin likirvolle sdn tässä tpuksess: f (x) dx = hf 0 + h p 1 (x) dx = h (f 0 + (f 1 f 0 )s) ds (f 1 f 0 )s ds = h 2 (f 0 + f 1 ). Luento 9 () Numeeriset menetelmät / 29
20 Esimerkki Newtonin j Cotesin kvt Puolisuunnikssääntö: Vlitsemll k = 1 stiin f (x) dx h 2 (f 0 + f 1 ). f (x) b x Luse 6.2.: E[f ] = h3 2! f (x 0 + ξh) 1 0 s(s 1) ds Kv on trkk jos f 0 eli jos f on ensimmäisen steen polynomi. Luento 9 () Numeeriset menetelmät / 29
21 Esimerkki Newtonin j Cotesin kvt Vlint k = 2 tuott Simpsonin kvn f (x) dx = h = h p 2 (x) dx ( f 0 + f 0 s + 1 ) 2 2 f 0 s(s 1) ds ( f 0 + (f 1 f 0 )s + 1 ) 2 (f 2 2f 1 + f 0 )s(s 1) ds = h 3 (f 0 + 4f 1 + f 2 ) E(f ) = h5 4! f (4) (x 0 + ξh) = h5 90 f (4) (η), η ], b[ Luento 9 () Numeeriset menetelmät / 29
22 6.2. Newtonin j Cotesin kvt Esimerkki 6.2 jtkuu j vlint k = 3 tuott Simpsonin 3/8-kvn f (x) dx = 3h 8 (f 0 + 3f 1 + 3f 2 + f 3 ) 3h5 80 f (4) (η), η ], b[. Kvt ovt trkkoj kork. stett 3 oleville polynomeille. Menetelmävirheen kertluokk on kummsskin O(h 5 ). Simpsonin 3/8-sääntö vtii yhden pisteen enemmän. Luento 9 () Numeeriset menetelmät / 29
23 Newtonin j Cotesin kvt 6.2. Newtonin j Cotesin kvt suljetut Newtonin j Cotesin kvt: interpoltiopolynomi interpoloi f :ää myös välin [, b] päätepisteissä. voimet Newtonin j Cotesin kvt: pproksimoidn f :ää polynomill, jok interpoloi f :ää vin välin [, b] sisäpisteissä. Luento 9 () Numeeriset menetelmät / 29
24 6.2. Newtonin j Cotesin kvt Avoimet Newtonin j Cotesin kvt Merkitään välin [, b] sisäpisteitä x i = x 0 + ih (i = 0, 1,..., k), missä x 0 = + h, x k = b h j h = (b )/(k + 2). Asetetn lisäksi x 1 = j x k+1 = b. f 0 f 1 f k f k 1 f (x) = x 1 x 0 x 1... x k 1 x k x k+1 = b Luento 9 () Numeeriset menetelmät / 29
25 6.2. Newtonin j Cotesin kvt Avoimet Newtonin j Cotesin kvt jtkuu Integrli I = = h p k (x) dx k+1 1 f (x) dx pproksimoidn nyt kvll [ f 0 + f 0 s ] k! k f 0 s(s 1)... (s k + 1) ds, missä p k on korkeintn stett k olev polynomi, jolle p k (x i ) = f (x i ), i = 0, 1,..., k. Yo. kvoj kutsutn voimiksi Newtonin j Cotesin kvoiksi. Luento 9 () Numeeriset menetelmät / 29
26 Luse Newtonin j Cotesin kvt Olkoon f (k+1) j f (k+2) jtkuvi välillä [, b]. Tällöin vointen Newton-Cotes-kvojen menetelmävirheelle pätee E[f ] = h k+3 (k + 2)! f (k+2) (x 0 + ξh) k prillinen h k+2 (k + 1)! f (k+1) (x 0 + ξh) k priton, j missä ξ ] 1, k + 1[. k+1 1 k+1 1 s 2 (s 1)... (s k) ds, s(s 1)... (s k) ds, Luento 9 () Numeeriset menetelmät / 29
27 Esimerkki Newtonin j Cotesin kvt Avoin Newtonin j Cotesin kv oli siis muoto h f (x) dx k+1 1 Vlitsemll k = 0 sdn [ f 0 + f 0 s ] k! k f 0 s(s 1)... (s k + 1) ds. 1 1 f (x) dx = h f 0 ds + h3 1 2! f (x 0 + ξh) s 2 ds 1 = 2hf 0 + h3 3 f (η), η ], b[. Luento 9 () Numeeriset menetelmät / 29
28 6.2. Newtonin j Cotesin kvt Esimerkki 6.3 jtkuu Vlitsemll k = 0 stiin (h = (b )/(k + 2) = (b )/2) f (x) dx 2hf 0 = (b )f 0. Tämä kv tunnetn keskipistesäännön nimellä. f 0 f (x) = x 1 x 0 b = x 1 Luento 9 () Numeeriset menetelmät / 29
29 Huomutus Newtonin j Cotesin kvt Trkstelemll vointen j suljettujen Newtonin j Cotesin kvojen virhetermejä, hvitn että kiinteällä k, vointen j suljettujen kvojen menetelmävirhe on sm kertluokk: O(h k+3 ), kun k prillinen. O(h k+2 ), kun k priton. Luento 9 () Numeeriset menetelmät / 29
x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b
5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),
7 Numeerinen derivointi ja integrointi
7 Numeerinen derivointi j integrointi 7.1 Derivttojen estimointi Numeerisell derivoinnill trkoitetn likirvon lskemist funktion f : R R derivtlle f ilmn derivtn nlyyttistä lusekett. Jos funktion f rvo tunnetn
1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [
1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,
2.4 Pienimmän neliösumman menetelmä
2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn
sin θ θ θ r 2 sin 2 θ φ 2 = 0.
Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin
a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1
5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },
MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali
MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November
Numeerinen integrointi.
Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause
MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen
Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.
Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017
Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.
DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen
Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot
TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.
5 Epäoleellinen integraali
5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss
Newton-Cotesin ja Gaussin integrointimenetelmistä
TAMPEREEN YLIOPISTO Pro grdu -tutkielm Anniin Julku Newton-Cotesin j Gussin integrointimenetelmistä Informtiotieteiden yksikkö Mtemtiikk Toukokuu 215 Tmpereen yliopisto Informtiotieteiden yksikkö JULKU,
3 Integraali ja derivaatta
3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,
Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?
Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät
MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
Riemannin integraalista
Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:
Johdatus reaalifunktioihin P, 5op
Johdtus relifunktioihin 802161P, 5op Os 3 Pekk Slmi 19. lokkuut 2015 Pekk Slmi FUNK 19. lokkuut 2015 1 / 48 Integrlit 1 Määrätty integrli = oike integrli: esim. 1 0 x 2 dx = reliluku 2 Määräämätön integrli
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA
OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät
MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,
Riemannin integraali
LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu
II.1. Suppeneminen., kun x > 0. Tavallinen lasku
II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä
Matematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss
Numeeriset menetelmät
Numeeriset menetelmät Luento 9 Ti 4.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 9 Ti 4.10.2011 p. 1/44 p. 1/44 Funktion approksimointi Etsitään p siten, että p f, mutta ei vaadita, että
Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007
Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions
6 Integraalilaskentaa
6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion
10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA
MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion
Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset
Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen
Sinilause ja kosinilause
Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,
Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20
Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät
Matematiikan perusteet taloustieteilijöille 2 800118P
Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4
Viikon aiheet. Pinta-ala
info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu
Polynomien laskutoimitukset
Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää
Numeerinen integrointi
Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)
Numeeriset menetelmät
Numeeriset menetelmät Luento 11 Ti 11.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 11 Ti 11.10.2011 p. 1/34 p. 1/34 Automaattiset integrointialgoritmit Numeerisen integroinnin tarkkuuteen
7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen
7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO
Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten
Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että
Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A
Matematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv
Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut
Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II
MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, os II G. Gripenberg Alto-yliopisto 9. helmikuut 16 G. Gripenberg (Alto-yliopisto MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, 9. helmikuut
Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on
4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void
Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1
Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon
4 DETERMINANTTI JA KÄÄNTEISMATRIISI
4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.
Matematiikan tukikurssi
Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.
5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos
MS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi
Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.
8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst
Numeeriset menetelmät
Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f
Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja
582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko
Matematiikan tukikurssi. Hannu Kivimäki
Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn
Numeeriset menetelmät
Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion
TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.
Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.
2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.
2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x
Integraalilaskenta. Määrätty integraali
9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),
lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.
Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS
11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.
Säännöllisten operaattoreiden täydentäviä muistiinpanoja
Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä
Numeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
Numeeriset menetelmät TIEA381. Luento 7. Kirsi Valjus. Jyväskylän yliopisto. Luento 7 () Numeeriset menetelmät / 43
Numeeriset menetelmät TIEA381 Luento 7 Kirsi Valjus Jyväskylän yliopisto Luento 7 () Numeeriset menetelmät 10.4.2013 1 / 43 Luennon 7 sisältö Interpolointi ja approksimointi Interpolaatiovirheestä Paloittainen
SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.
MITEN MÄÄRITÄN ASYMPTOOTIT?
MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti
Numeeriset menetelmät TIEA381. Luento 11. Kirsi Valjus. Jyväskylän yliopisto. Luento 11 () Numeeriset menetelmät / 37
Numeeriset menetelmät TIEA381 Luento 11 Kirsi Valjus Jyväskylän yliopisto Luento 11 () Numeeriset menetelmät 24.4.2013 1 / 37 Luennon 11 sisältö Numeerisesta integroinnista ja derivoinnista Adaptiiviset
VEKTOREILLA LASKEMINEN
..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin
Preliminäärikoe Pitkä Matematiikka 5.2.2013
Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)
2.1 Vaillinaiset yhtälöt
.1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön
Ristitulo ja skalaarikolmitulo
Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden
4. Reaalifunktioiden määrätty integraali
6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot
Analyysin perusteet kauppatieteilijöille 800118P
Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................
TYÖNTEKIJÄN ELÄKELAIN MUKAISEN ELÄKEVAKUUTUKSEN YLEISET LASKUPERUSTEET
TYÖNTEKIJÄN ELÄKELAIN MUKAISEN ELÄKEVAKUUTUKSEN YLEISET LASKUPERUSTEET TYÖNTEKIJÄN ELÄKELAIN MUKAISEN ELÄKEVAKUUTUKSEN YLEISET LASKUPERUSTEET Voimntulo Perusteet tulevt voimn 11008 Sisällysluettelo 1 LASKUPERUSTEMALLI1
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS
0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö
Kertausta ja täydennystä
LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin
Sarjaratkaisun etsiminen Maplella
Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.
Olkoon. M = (Q, Σ, δ, q 0, F)
T 79.148 Tietojenkäsittelyteorin perusteet 2.4 Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään
θ 1 θ 2 γ γ = β ( n 2 α + n 2 β = l R α l s γ l s 22 LINSSIT JA LINSSIJÄRJESTELMÄT 22.1 Linssien kuvausyhtälö
22 LINSSIT JA LINSSIJÄRJSTLMÄT 22. Linssien kuvusyhtälö Trkstelln luksi vlon tittumist pllopinnll (krevuussäde R j krevuuskeskipiste C) kuvn mukisess geometriss. Tässä vlo siis tulee ineest ineeseen 2
Olkoon. äärellinen automaatti. Laajennetaan M:n siirtymäfunktio yksittäisistä syötemerkeistä merkkijonoihin: jos q Q, x Σ, merkitään
T 79.00/002 Tietojenkäsittelyteorin perusteet 2. Äärellisten utomttien minimointi Voidn osoitt, että jokisell äärellisellä utomtill on yksikäsitteinen ekvivlentti (so. smn kielen tunnistv) tilmäärältään
( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 321 Päivitetty 19.2.2006. Saadaan yhtälö. 801 Paraabeli on niiden pisteiden ( x,
Pyrmidi Anlyyttinen geometri tehtävien rtkisut sivu Päivitetty 9..6 8 Prbeli on niiden pisteiden (, y) joukko, jotk ovt yhtä kukn johtosuorst j polttopisteestä. Pisteen (, y ) etäisyys suorst y = on d
Kuvausta f sanotaan tällöin isomorfismiksi.
Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,
Pertti Koivisto. Analyysi B
Pertti Koivisto Anlyysi B TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 TAMPERE 8 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 JOULUKUU 8 Pertti Koivisto Anlyysi
2 Epäoleellinen integraali
ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli
Mikrotalousteoria 2, 2008, osa III
Sisältö Mikrotlousteori 2, 2008, os III Yrityksen tuotntofunktiost 2 Pnosten substituoitvuus 2 3 Yrityksen teori 3 4 Mittkvedut tuotnnoss 5 5 Yksikkökustnnusten j skltuottojen steen välinen yhteys 5 6
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Harri Lehtinen. Kongruenssista
TAMPEREEN YLIOPISTO Pro grdu -tutkielm Hrri Lehtinen Kongruenssist Mtemtiikn, tilstotieteen j filosofin litos Mtemtiikk Helmikuu 006 Tmpereen yliopisto Mtemtiikn, tilstotieteen j filosofin litos LEHTINEN,
766328A Termofysiikka Harjoitus no. 12, ratkaisut (syyslukukausi 2014)
7668A Termofysiikk Hrjoitus no 1, rtkisut (syyslukukusi 14) 1 Lämpötilss T K elektronien energit eivät ylitä Fermin energi (ɛ i ɛ F ), lämpötilprmetri β j kemillinen potentili vst Fermin energi (µ() ɛ
Analyysi B. Derivaatta ja integraali. Pertti Koivisto
Anlyysi B Derivtt j integrli Pertti Koivisto Kevät 7 Alkusnt Tämä moniste on trkoitettu oheislukemistoksi Tmpereen yliopistoss pidettävälle kurssille Anlyysi B. Monisteen tvoitteen on tuke luentojen seurmist,
8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella
H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että
ICS-C2000 Tietojenkäsittelyteoria Kevät 2016
ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()
5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)
4 Taso- ja avaruuskäyrät
P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen
Riemannin integraalista
TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin
Laskennan mallit (syksy 2007) Harjoitus 5, ratkaisuja
58226 Lskennn mllit (syksy 27) Hrjoitus 5, rtkisuj. Muodostetn NF kielelle : ε ε Muunnetn DF:ksi: {,,} {,} {,} {,} Luennoll (s. 5) stiin kielelle seurv DF: Poistmll tästä svuttmttomt tilt sdn Tulos on
LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT
Lyhyt mtemtiikk YO-vlmennus 8. mliskuut 00 LYHYEN MATEMATIIKAN SIMULOITU YO-KOE RATKAISUT. Trkstelln yhtälöpri, polynomin sievennöstä j lusekkeeseen sijoittmist. ) Rtkistn jälkimmäisestä yhtälöstä x, jolle
.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek
S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä
S Fysiikka III (EST), Tentti
S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen