Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku."

Transkriptio

1 Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio (=yksinkertinen prmetriesitys). Huomutus Emme ole näyttäneet, miksi kren sileydestä luopuminen on sllittu. Tämä seur smn tpn kuin Luseen yhteydessä. Trkempi todistus sivuutetn. Määritelmä Olkoon C R m yksinkertinen kri j γ : [, b] R m sen yksinkertinen prmetriesitys, jok on ploittin C 1 -polku. (i) Yksinkertinen kri C on suunnistettu pisteestä γ() pisteeseen γ(b), kun sille sllitn vin yksinkertisi prmetriesityksiä γ, joiden lkupiste on γ() j loppupiste on γ(b). Suunnistettu yksinkertist krt merkitään C +. (ii) Jtkuvn vektorikentän f : D R m R m integrli yli yksinkertisen suunnistetun kren C + on f ds = f(γ(t)) γ (t)dt C + missä γ on C + :n jokin yksinkertinen prmetriesitys j Riemnn-integrli lsketn vstvsti ploittin.

2 Esimerkki Olkoot I 1 jn pisteestä (0, 1) pisteeseen (1, 1), I 2 jn pisteestä (1, 1) pisteeseen (1, 1) j C = I 1 I 2. Tällöin C on yksinkertinen kri, sillä sen eräs yksinkertinen prmetriesitys on { (t, 1) kun 0 t 1 γ(t) =. (1, t 2) kun 1 t 3 γ on injektiivinen. γ on ploittin C 1 j sen derivtt välillä [0, 1] on γ (t) = (1, 0) (0, 0) j derivtt välillä [1, 3] on γ (t) = (0, 1) (0, 0). (Huom! derivtt pisteessä t = 1 ei ole, vn inostn toispuoliset derivtt). Suunnistetn C + pisteestä (0, 1) pisteeseen (1, 1). Funktion f(x 1, x 2 ) = 1 2 ( x 1x 2, x 2 ), missä x 1, x 2 R, kri-integrli yli suunnistetun yksinkertisen kren C + on 3 1 f ds = f(γ(t)) γ (t)dt = (t, 1) (1, 0)dt+ C ( t+2, t 2) (0, 1)dt = 1 4

3 4.2 Suljetut käyrät j polut Ljennetn kri-integrlin käsite sellisille käyrille, joiden päätepisteet yhtyvät. Toisin snoen käyrän päätepisteet rikkovt käyrän prmetriesityksen injektiivisyyden, jolloin kysessä ei ole yksinkertinen kri. Määritelmä (i) Jtkuv funktio γ : [, b] R m on suljettu yksinkertinen polku, jos γ() = γ(b) j kuvus γ : [, b) R m on injektiivinen. (i) Joukko C R m on yksinkertinen suljettu käyrä, jos löytyy sellinen suljettu yksinkertinen ploittin C 1 -polku γ : [, b] R m, että C = γ([, b]). Tällöin snotn, että γ on suljetun yksinkertisen käyrän C yksinkertinen prmetriesitys. (iii) Yksinkertinen suljettu käyrä C R m on suunnistettu yksinkertisen prmetriesityksen γ suuntn, jos sille sllitn vin sellisi yksinkertisi prmetriesityksiä γ, jotk kiertävät käyrää C smn suuntn kuin γ.

4 Esimerkki ) Neliön kehä j ympyrän kehä ovt yksinkertisi suljettuj käyriä. b) Kun piirrät numeron 8, niin tällöin muodostunut tsokäyrä ei ole yksinkertinen suljettu käyrä, sillä käyrän prmetriesityksen injektiivisyyys rikkoutuu khteen kertn. (Mielikuv: muurhinen juoksee pitkin käyrää j pysähtyy, kun ensimmäisen kerrn kulkee smn pisteen yli. Jos muurhisen kulkem reitti peittää koko käyrän, niin käyrä on yksinkertinen j suljettu).

5 c) Olkoon C = {(x 1, x 2 ) R 2 : x 2/3 1 +x 2/3 2 = 1}. Tällöin C on yksinkertinen suljettu käyrä, sillä funktio γ(t) = (cos 3 (t), sin 3 (t)), missä t [0, 2π] on sellinen, että γ([0, 2π]) = C γ : [0, 2π) R 2 on injektiivinen γ on C 1 -funktio (mutt ei sileä).

6 Määritelmä (i) Olkoon C yksinkertinen suljettu käyrä j olkoon γ : [, b] R m sen yksinkertinen prmetriesitys. Olkoon f : D R m R sellinen jtkuv funktio, että C D. Funktion f kri-integrli yli C:n on fds = f(γ(t)) γ (t) dt, (4.2.4) missä γ on jokin C:n yksinkertinen prmetriesitys. C (ii) Olkoon C + yksinkertinen suljettu käyrä j olkoon γ : [, b] R m sen yksinkertinen prmetriesitys. Olkoon f : D R m R m sellinen jtkuv funktio, että C D. Funktion f kri-integrli yli C + :n on f ds = f(γ(t)) γ (t)dt, (4.2.5) C + missä γ on jokin C + :n yksinkertinen prmetriesitys. Seurv luse näyttää, että yhtälön (4.2.4) oiken puolen rvo ei riipu prmetriesityksen vlinnst (yhtälö (4.2.5) sivuutetn). Tämä osoitt, että (4.2.4) on hyvin setettu määritelmä. Luse Olkoon C R m yksinkertinen suljettu käyrä j olkoon γ : [, b] R m j γ : [c, d] R m sen yksinkertisi prmetriesityksiä. Olkoon f : D R sellinen jtkuv funktio, että C D. Silloin d f(γ(t)) γ (t) dt = f( γ(t)) γ (t) dt c

7 Todistus. Trkstelln vin tpus joss molemmt polut kiertävät käyrää C smn suuntn. Vstkkiset kiertosuunnt käsitellään smn tpn. Olkoon ensin γ() = γ(c) Jtkuvn funktion integrlifunktio on jtkuv, joten ε f(γ(t)) γ (t) dt = lim f(γ(t)) γ (t) dt ε 0 Kun 0 < ε < b, niin C ε = γ([, b ε]) on yksinkertinen kri, jonk yksinkertinen prmetriesitys on γ [,b ε. Merkitään [c, d ε ] = γ 1 (C ε ), missä d ε = γ 1 (γ(ε)). Tällöin γ : [c, d ε ] C ε on bijektio (j C 1 -polku). Kosk d ε riippuu jtkuvsti luvust ε, on lim ε 0 dε c f( γ(t)) γ (t) dt = d c f( γ(t)) γ (t) dt. (4.2.6) Lisäksi funktion f integrlit pitkin injektiivisiä polkuj γ [,b ε] j γ [c,dε ] ovt smt (Luse 4.1.3). Tällöin ε f(γ(t)) γ (t) dt = lim f(γ(t)) γ (t) dt ε 0 dε = lim f( γ(t)) γ (t) dt = ε 0 c Täten luseen väite pätee, kun γ() = γ(c). d c f( γ(t)) γ (t) dt.

8 Oletetn seurvksi, että γ() γ(c). Silloin löytyy sellinen t 0 (, b), että γ(t 0 ) = γ(c). Määritellään polun γ periodinen jtke γ kikille reliluvuille settmll γ(t + m(b )) := γ(t) kikill t [, b] j m Z. Trkestelln jtkeen rjoittum γ : [t 0, t 0 + (b )]. Tällöin γ(t 0 ) = γ(c), jolloin funktion f integrlit pitkin polkuj γ [t0,t 0 +(b )] j γ yhtyvät yllä olevn nojll. Lisäksi funktion f polkuintegrli pitkin polku γ : [t 0, t 0 + (b )] on t0 +b t0 fds = f(γ(t)) γ (t) dt = f(γ(t)) γ +b (t) dt + f(γ(t)) γ (t) dt t 0 t 0 b γ [t0,t 0 +b ] = = = t 0 f(γ(t)) γ (t) dt + t 0 f(γ(t)) γ (t) dt + f(γ(t)) γ (t) dt. t0 t0 f(γ(t + b )) γ (t + b ) dt f(γ(t)) γ (t) dt

9 Esimerkki Olkoon f(x 1, x 2, x 3 ) = ( x 2, x 2 1, 2x 2 3) kikill x 1, x 2, x 3 R. Olkoon C = {(x 1, x 2, x 3 ) R 3 : x x 2 2 = 1 j x 3 = 1}. Silloin C on yksinkertinen suljettu käyrä, sillä sen yksinkertinen prmetriesitys on γ(t) = (cos(t), sin(t), 1), t [0, 2π]. (Selvästi γ : [0, 2π] C on surjektio, γ : [0, 2π) C on injektio j γ on C 1 -funktio). Suunnistetn C + prmetriesityksen γ suuntn. Silloin 2π f ds = f(γ(t)) γ (t)dt C + = = 0 2π 0 2π 0 ( sin(t), cos 2 (t), 2) ( sin(t), cos(t), 0)dt sin 2 (t) + cos 3 (t)dt = π.

10 4.2.1 Anlyysin perusluseen yleistys Anlyysin perusluse kertoo, että f (t)dt = f() f(b) kikille C 1 -funktioille f : [, b] R. Osoitetn seurvksi nlyysin perusluseen moniulotteinen vstine. Luse Olkoon D R m voin j f : D R C 1 -funktio. Jos γ : [, b] R m on sellinen ploittin C 1 -polku, että γ([, b]) D, niin f(γ(b)) f(γ()) = f dγ. (4.2.7) Todistus. Riittää näyttää tpus, joss γ on C 1 -polku, sillä väite seur silloin summmll yhteen integrlej yli osvälien. Lsketn yhdistetyn funktio f γ derivtt: Luseen nojll funktioll γ : [, b] R m löytyy C 1 -ljennus johonkin voimeen joukkoon (, b ) jok sisältää suljetun välin [, b]. Voidn olett, että ljunnuksen kuvjoukko sisältyy joukkoon D. (Trvittess ljennus voidn rjoitt vointen joukkojen (, b ) j γ 1 (D) leikkukseen). γ

11 Nyt f j γ on määritelty voimiss joukoiss, jolloin derivoinnin ketjusäännön nojll (f γ) (t) = m j=1 f (γ(t)) dγ i(t) x i dt erityisesti jokisell t [, b]. Anlyysin perusluseen nojll = f(γ(t)) γ (t), Toislt, f(γ(b)) f(γ()) = (f γ) (t)dt = (f γ) (t)dt. f(γ(t)) γ (t)dt = γ fdγ.

12 Korollri Olkoot D R m voin j f : D R C 1 -funktio. (i) Jos γ, γ ovt sellisi C 1 -polkuj pisteestä p D pisteesen q D joiden kuvjoukot sisältyvät joukkon D, niin f dγ = f d γ. (ii) Jos γ : [, b] R m on sellinen C 1 -polku, että γ() = γ(b), niin f dγ = 0. Todistus. Seur Luseest γ γ Esimerkki Olkoon g(x) = 1 x kun (0, 0, 0) x R3. Lske työ, jonk vektorikenttä G = g tekee, kun hiukkseen vikutt voim G [yksikkö=newton] j hiukknen liikkuu pitkin polku γ(t) = (t, t 2, exp(t 2 )), [yksikkö=metri] missä t [1, 2]. Rtkisu: 1 G dγ = g(γ(2)) g(γ(1)) = e [ yksikkö=joule] e 2 γ γ

13 4.2.2 Konservtiivinen vektorikenttä Määritelmä Olkoon D R m voin j G : D R m jtkuv. Vektorikenttä G on konservtiivinen, jos löytyy sellinen C 1 -funktio g : D R, että G = g. Kuvust g nimitetään tällöin vektorikentän G potentilifunktioksi. Esimerkki )Vektorikentän G(x) = (0, 0, 1) missä x R 3, potentilifunktio on g(x 1, x 2, x 3 ) = x 3. b) Vektorikentän G(x) = x x, missä 0 x Rm potentilifunktio on log( x ). Opetelln seurvksi tunnistmn konservtiivisi vektorikenttiä o luseen vull. Luse Olkoon D R m voin j G : D R m jtkuv vektorikenttä. Seurvt väitteet ovt yhtäpitäviä: 1. On olemss sellinen C 1 -funktio g : D R, että G = g. 2. Jos γ, γ ovt ploittin C 1 -polkuj pisteestä p pisteeseen q, joiden kuvjoukot sisältyvät joukkoon D, niin γ G dγ = γ G d γ. 3. Löytyy sellinen C 1 -funktio g : D R, että γ G dγ = g(q) g(p), missä γ on sellinen vpsti vlittu ploittin C 1 -polku pisteestä p pisteeseen q, että sen kuvjoukko sisältyy joukkoon D. 4. Jokisell p D j jokisell selliselle ploittin C 1 -polulle γ pisteestä p pisteeseen p pätee γ G dγ = 0.

14 Todistus. L j Kor seur, että (1) (2), (3), (4). Sivuutetn muiden impliktioiden näyttö. Esimerkki (Tp 1: Eri poluill eri integrli). Tutki, onko vektorikenttä G(x 1, x 2 ) = ( x 2, x 1 ), missä x 1, x 2 R, konservtiivinen. Rtkisu: Näytetään, että Väite 2 ei ole tott. Olkoon missä t [0, π/2] j γ(t) = (cos(t), sin(t)), γ(t) = (cos( t), sin( t)) = (cos(t), sin(t)), missä t [0, 3π/2]. Silloin kummnkin polun lkupiste on (1, 0) j loppupiste on (0, 1). (Polut kulkevt eri reittejä). Silloin π/2 G dγ = ( sin(t), cos(t)) ( sin(t), cos(t))dt = π 2 j γ γ G d γ = 0 3π/2 0 (sin(t), cos(t)) ( sin(t), cos(t))dt = 3π 2. Nähdään, että Väite 2 ei päde, jolloin G ei ole konservtiivinen. (Oikeiden polkujen löytäminen on joskus hnkl).

15 Esimerkki (Tp 2: Pyörteettömyys). Olkoon G(x 1, x 2, x 3 ) = (e 1+x 2 1 +sin(x 3 ) 2, x 2, x 3 ) kikill x 1, x 2, x 3 R. Silloin G toteutt jtkuvuutt tiukemmn ehdon G C 1 (R 3 ; R 3 ). Jos G 0, niin Väite 1 ei ole tott, sillä muutoin tulisi oll g 0. Lsketn e 1 e 2 e 3 G(x 1, x 2, x 3 ) = x 1 x 2 x 3 e 1+x 2 1 +sin(x 3 ) 2 x 2 x 3 ( ) = 0,, 0 + sin(x 3) cos(x 3 ) 1+x x sin(x 3 ) 2e 1 +sin(x 3 ) 2, 0 (0, 0, 0). Täten vektorikenttä G ei ole konservtiivinen. (Tämän strtegin onnistuminen riippuu G:n muodost j jtkuvst differentioituvuudest. Tulos G = 0 ei trkoit, että G olisi konservtiivinen!).

16 Esimerkki (Tp 3: Etsi g osittisdifferentiliyhtälöiden vull). Olkoon G(x 1, x 2, x 3 ) = (2x 1 x 2 x 3 + x 3, x 2 1x 3 + 1, x 2 1x 2 + x 1 ) kikill x 1, x 2, x 3 R. Kirjoitetn osittisdifferentiliyhtälöt (jotk rtkistn nlyysin perusluseen vull integroimll yhden muuttujn suhteen) g x 1 (x 1, x 2, x 3 ) = 2x 1 x 2 x 3 + x 3 g (x 1, x 2, x 3 ) = x 2 x 1x g (x 1, x 2, x 3 ) = x 2 x 1x 2 + x 1 3 Vertmll g:n lusekkeit sdn selville vlint x1 0 dx 1 g(x 1, x 2, x 3 ) = x 2 1x 2 x 3 + x 3 x 1 + C(x 2, x 3 ) }{{} =g(0,x 2,x 3 ) x2 0 dx 2 g(x 1, x 2, x 3 ) = x 2 1x 2 x 3 + x 2 + C(x 1, x 3 ) x3 0 dx 3 g(x 1, x 2, x 3 ) = x 2 1x 2 x 3 + x 1 x 3 + C(x 1, x 2 ) g(x 1, x 2, x 3 ) = x 2 1x 2 x 3 + x 2 + x 1 x 3 Täten vektorikenttä G on konservtiivinen, kosk se toteutt Väitteen 1. (Joskus päädytään hnkliin osittisdifferentiliyhtälöihin).

17 4.2.3 Yhteenveto polkuintegrleist Kun f : D R m R on jtkuv, γ : [, b] R m on C 1 (ti ploittin C 1 ) j γ([, b]) D, niin polkuintegrli fds = f(γ(t)) γ (t) dt. Mitä trkoitt ploittin C 1? γ : [, b] R m on jtkuv γ väli [, b] voidn jk osväleihin, joill γ on C 1 -funktio. (Tämä sllii, että eri osvälien yhteisissä päätepisteissä γ:n toispuoliset derivtt voivt oll erisuuret.) Kun f : D R m R m on jtkuv, γ : [, b] R m on C 1 (ti ploittin C 1 ) j γ([, b]) D, niin polkuintegrli f dγ = f(γ(t)) γ (t)dt. Kun f = g, niin polkuintegrlin lskeminen on helppo g dγ = g(b) g(). γ γ

18 4.2.4 Yhteenveto kri-integrleist Kri-integrlist käytetään myös nimitystä viivintegrli. Kun C R m on yksinkertinen kri j f : C R on jtkuv, niin fds = f(γ(t)) γ (t) dt, C missä γ : [, b] R m on kren C yksinkertinen prmetriesitys. Käytännössä täytyy ensin etsiä kren yksinkertinen prmetriesitys! γ : [, b] C surjektio j injektio γ : [, b] R m (ploittin) C 1 -polku Kun C R m on yksinkertinen kri j f : C R m on jtkuv, niin kren C suunnisus (=polkujen kulkusuunt) on vlittv ennen funktion f kri-integrlin lskemist. (Muutoin kri-intgrlin merkki vihtuisi eri poluill). Kun suunnistus on C +, niin funktion f kri-integrli fds = f(γ(t)) γ (t)dt, C + missä γ : [, b] R m on kren C + yksinkertinen prmetriesitys.

19 Yksinkertisen kren yleistys sdn liimmll kren päätepisteet yhteen, jolloin päädytään yksinkertiseen suljettuun käyrään. Jtkuvn funktion f : C R kriintegrli yli yksinkertisen suljetun käyrän C on fds = f(γ(t)) γ (t) dt, C missä γ : [, b] R m on suljetun käyrän C yksinkertinen prmetriesitys (γ([, b]) = C, injektio välillä [, b) ploittin C 1 ). Jtkuvn funktion f : C R m integrli yli suunnistetun yksinkertisen suljetun käyrän C + on f ds = f(γ(t)) γ (t)dt, C + missä γ : [, b] R m on C + :n yksinkertinen prmetriesitys (surjektio, injektio välillä [, b), ploittin C 1, suunnistus).

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon

Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä Olkoot γ : [a, b] R m paloittain C 1 -polku välin [a, b] jaon Polkuintegraali yleistyy helposti paloitain C 1 -poluille. Määritelmä 4.1.3. Olkoot : [a, b] R m paloittain C 1 -polku välin [a, b] jaon P = {a = t 1 < < t k = b} ja joukko D R m sellainen, että ([a, b])

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Kertausta ja täydennystä

Kertausta ja täydennystä LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

Viikon aiheet. Pinta-ala

Viikon aiheet. Pinta-ala info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 +

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 + I. INTEGRAALILASKENTA Arkhimedes (287 22 e.kr.) prbelin segmentin pint-l Newton (642 727) j Leibniz (646 76) keksivät diff.- j int.-lskennn Cuhy (789 857) ε, δ Riemnn (826 866) Riemnnin integrli Lebesgue

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

Analyyttiset funktiot ja integrointiteorian alkeita

Analyyttiset funktiot ja integrointiteorian alkeita Anlyyttiset funktiot j integrointiteorin lkeit 6. helmikuut 2006 isältö 1 Kertust 1 2 Anlyyttiset funktiot 2 2.1 Anlyyttiset funktiot tsoll................... 2 2.2 Monogeeniset funktiot vruudess R n.............

Lisätiedot

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia. 2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Greenin ja Stokesin lauseet

Greenin ja Stokesin lauseet TAMPEREEN YLIOPISTO Pro Grdu -tutkielm Niin Oksmn Greenin j Stokesin luseet Informtiotieteiden yksikkö Mtemtiikk Toukokuu 212 Tmpereen yliopisto Informtiotieteiden yksikkö OKSMAN, NIINA: Greenin j Stokesin

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 2009 Sisältö Relilukujen peruskäsitteitä 2 Lukujonoist 3 2. Lukujonon rj-rvo....................... 3 2.2 Monotoniset jonot......................... 7 2.3 Osjonot..............................

Lisätiedot

Lebesguen integraali - Rieszin määritelmä

Lebesguen integraali - Rieszin määritelmä Lebesguen integrli - Rieszin määritelmä Tru Lehtonen Mtemtiikn pro grdu-tutkielm Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kevät 216 Tiivistelmä Jyväskylän Yliopisto Lehtonen, Tru Puliin: Lebesguen

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

Monikulmion pinta-ala ylioppilaille

Monikulmion pinta-ala ylioppilaille Solmu 3/9 Monikulmion pint-l lioppilille Mik Koskenoj Mtemtiikn j tilstotieteen litos Helsingin liopisto Tehtävä. Kuusikulmion M kärjet ovt tson pisteissä (, ), (3, ), (, ), (4, 3), (, ) j (, ). Lske M:n

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

Johdatus fraktaaliderivaattoihin ja niiden sovelluksiin

Johdatus fraktaaliderivaattoihin ja niiden sovelluksiin Jodtus frktliderivttoiin j niiden sovelluksiin Hnn Hlinen Mtemtiikn pro grdu Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kesä 4 Tiivistelmä: Hnn Hlinen, Jodtus frktliderivttoiin j niiden sovelluksiin

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

Numeerinen integrointi.

Numeerinen integrointi. Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Analyysi B. Derivaatta ja integraali. Pertti Koivisto

Analyysi B. Derivaatta ja integraali. Pertti Koivisto Anlyysi B Derivtt j integrli Pertti Koivisto Kevät 7 Alkusnt Tämä moniste on trkoitettu oheislukemistoksi Tmpereen yliopistoss pidettävälle kurssille Anlyysi B. Monisteen tvoitteen on tuke luentojen seurmist,

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Suorat, käyrät ja kaarevuus

Suorat, käyrät ja kaarevuus Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto Fkultet/Sektion Fculty Litos Institution Deprtment Mtemttis-luonnontieteellinen Tekijä Förfttre Author Antti Khri Työn

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin Ludtur MAA rtkisut kertushrjoituksiin Integrlifunktio. ) Jokin integrli funktio on esimerkiksi F( ) b) Kikki integrlifunktiot F( ) + C, missä C on vkio Vstus: ) F( ) b) F( ) + C, C on vkio. Kikki integrlifunktiot

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

Riemann-integraalin ja mittaintegraalin vertailua

Riemann-integraalin ja mittaintegraalin vertailua Riemnn-integrlin j mittintegrlin vertilu Pro grdu -tutkielm Pii Tskinen Mtemttisten tieteiden litos Oulun yliopisto Kevät 216 Sisältö Johdnto 3 1 Esitietoj 5 1.1 Välijost............................. 5

Lisätiedot

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.

peitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko. Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,

Lisätiedot

Analyysi III S

Analyysi III S Anlyysi III 800624S Sisältö sitietoj 5 Riemnn integroinnin rjt 6 Luku 1. Mittteori 7 1. Algebr j σ-lgebr 7 2. Mitt 8 3. Ulkomitt j mitlliset joukot 11 4. Ulkomitn konstruointi 14 5. Lebesguen ulkomitt

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt

Lisätiedot

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön.

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön. I.6. Sijoitusmenettely A. Integrlifunktiot Integrlifunktiot etsittäessä on sopiv derivoimissääntö luettv tkperin. funktion voi trkist derivoimll. Sijoitusmenettely perustuu ketjusääntöön. Löydetyn 6..

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

Cantorin joukon suoristuvuus tasossa

Cantorin joukon suoristuvuus tasossa Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten .4.8 intintegrli. He krtion z x + y sylinterin x + y y sisäpuolelle jäävän osn pint-l käyttämällä npkoordinttej x r cosθ j y r sinθ jolloin epäyhtälö x + y y on r sinθ. Rtkisu: Symmetrin nojll voidn trkstell

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

Korkeamman kertaluvut derivaatat

Korkeamman kertaluvut derivaatat LUKU 4 Korkemmn kertluvut derivtt Derivtn määritelmän mukn differentioituv kuvust f : U F voidn pproksimoid ffiinill kuvuksell, f(x + u f(x + Df(xu. Jos f on khdesti differentioituv, voidn derivtt pproksimoid

Lisätiedot

ANALYYSI II A Matemaattisten tieteiden laitos Luentomoniste työn alla: viimeksi muutettu

ANALYYSI II A Matemaattisten tieteiden laitos Luentomoniste työn alla: viimeksi muutettu ANALYYSI II 800322A Mtemttisten tieteiden litos Luentomoniste työn ll: viimeksi muutettu 13.11.2006 Sisältö Alkusnt Suosituksi opiskelutvoist iii iii Luku 1. Usen muuttujn funktioist: jtkuvuus 1 1. Merkinnät

Lisätiedot

ANALYYSI II A Matemaattisten tieteiden laitos Luentomoniste työn alla: viimeksi muutettu

ANALYYSI II A Matemaattisten tieteiden laitos Luentomoniste työn alla: viimeksi muutettu ANALYYI II 800322A Mtemttisten tieteiden litos Luentomoniste työn ll: viimeksi muutettu 13.11.2006 Alkusnt isältö Luku 1. Usen muuttujn funktioist: jtkuvuus 1 1. Merkinnät y.m. 1 2. j-rvoist 2 3. Kuvuksen

Lisätiedot

Lebesguen integraali

Lebesguen integraali LUKU 3 Lebesguen integrli Seurvss esitettävä määritelmä Lebesguen integrlille ei ole Lebesguen lkuperäinen. Vuoden 1904 luennoissn [23] hän kuitenkin setti tvoitteeksi, että integrlill olisi ominisuus:

Lisätiedot