Kertausta ja täydennystä

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Kertausta ja täydennystä"

Transkriptio

1 LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin väli, jonk päätepisteinä ovt j b; tpukset = j/ti b = sllitn. [, b] on relikselin kompkti väli, jonk päätepisteinä ovt j b; tässä < b <. [, b) on relikselin puolivoin väli ( < < b ); vstvsti (, b] ( < b < ). Joukon E krkteristist funktiot merkitään χ E ; siis χ E (x) = 1, jos x E, j χ E (x) = 0, jos x E. N := T trkoitt, että jo tutulle oliolle T nnetn nimi N. Esimerkiksi f : R R, f(x) := x 2. Tätä merkintää käytetään myös muodoss T =: N. Rjoitettu vs. äärellinen: Joukko A R on rjoitettu, jos on olemss r R siten, että A [ r, r]. Joukko A R on äärellinen, jos joukko A on tyhjä ti joukoss A on äärellisen mont lkiot (A = { 1,..., n } jollekin n Z + j joillekin 1,..., n R). Vnhemmss kirjllisuudess stetn käyttää nimitystä äärellinen väli (, b), mikä trkoitt rjoitettu väliä, jonk päätepisteinä ovt j b. Tällisiss esityksissä merkintä (, b) voi trkoitt voint, suljettu ti puolivoint väliä. Funktio f : A R on rjoitettu, jos on olemss M R siten, että f(x) M kikille x A. Funktio f : A R on äärellinen, jos < f(x) < kikille x A. Lebesguen integrlin yhteydessä trksteltville funktioille sllitn toisinn rvot + j. Ero rjoitetun j äärellisen funktion välillä on syytä pitää mielessä Epäyhtälöiden säilyminen Olkoot ( j ) j=1 j (b j ) j=1 suppenevi relilukujonoj. Jos j b j kikille j Z +, niin lim j j lim j b j. Jos j < b j kikille j Z +, niin lim j j lim j b j. Jos lim j j < lim j b j, niin on olemss j 0 Z + siten, että j < b j kikille j Z +, joille j > j 0. Jos lim j j lim j b j, niin voi oll j > b j kikille j Z Ylä- j lrjt Olkoon A R epätyhjä relilukujoukko. Snotn, että A on ylöspäin rjoitettu, jos on olemss M R siten, että x M kikille x A. Siis joukko A ei ole ylöspäin rjoitettu, jos jokiselle M R on olemss x A siten, että x > M. 1 Viimeksi muutettu vi

2 1.4. RIEMANNIN INTEGRAALI vii Olkoon A epätyhjä, ylöspäin rjoitettu relilukujoukko. (i) Mikä thns luku M R, jolle x M kikille x A, on joukon A ylärj. (ii) Luku R on joukon pienin ylärj, jos () on joukon A ylärj, j (b) jos M on joukon A ylärj, niin M. Luse 1.1. Olkoon A epätyhjä, ylöspäin rjoitettu relilukujoukko. Luku R on joukon A pienin ylärj, jos j vin jos (i) x kikille x A, j (ii) kikille ε > 0 on olemss x A siten, että x > ε. Aksioom 1.2 (Täydellisyysksioom). Jokisell epätyhjällä, ylöspäin rjoitetull relilukujoukoll A on pienin ylärj. Epätyhjän, ylöspäin rjoitetun joukon A pienintä ylärj merkitään sup A. Ljennetn pienimmän ylärjn käsitettä settmll sup A =, kun A on epätyhjä, mutt ei ylöspäin rjoitettu relilukujoukko. Epätyhjälle relilukujoukolle A R käsitteet lspäin rjoitettu, lrj j suurin lrj, inf A, määritellään vstvsti. Suurimmn lrjn olemssolo seur täydellisyysksioomst. Nimittäin, inf A = sup( A), kun A := { x x A}, joukon A vstlukujen joukko. Vstvsti setetn inf A =, kun A on epätyhjä, mutt ei lspäin rjoitettu relilukujoukko. Olkoon ( n ) n=1 suppenev relilukujono j A sen rj-rvo. Asetetn b k := inf{ n n k} j c k := sup{ n n k}. Tällöin ) jono (b k ) on ksvv j sup{b k k Z + } = lim b k = A; k b) jono (c k ) on vähenevä j inf{c k k Z + } = lim c k = A. k Nämä tulokset on hrjoituksen vuoksi syytä todist Riemnnin integrli Olkoon f : [, b] R rjoitettu funktio. Välin [, b] jko on äärellinen joukko P = {[x k 1, x k ] k {1,..., n}}, missä n Z + j x 0 = < x 1 <... < x n = b. Huom: kurssill Anlyysi 2 [17] joksi kutsutn lukujono x 0 = < x 1 <... < x n = b. (Engl. prtition.) Välin [, b] merkitty jko on äärellinen joukko T = {([x k 1, x k ], t k ) k {1,..., n}}, missä n Z +, x 0 = < x 1 <... < x n = b j t k [x k 1, x k ] kikille k {1,..., n}. Merkitty jko on siis jko, missä jokinen osväli [x k 1, x k ] on merkitty ntmll siltä

3 1.4. RIEMANNIN INTEGRAALI viii piste t k. Merkittyyn jkoon T = {([x k 1, x k ], t k ) k {1,..., n}} liittyvä (tvllinen) jko P sdn unohtmll merkit t 1,..., t n, P = {[x k 1, x k ] k {1,..., n}}. (Engl. tgged prtition.) Olkoon δ > 0. Jko P = {[x k 1, x k ] k {1,..., n}} on δ-hieno, jos P := mx{x k x k 1 k {1,..., n}} < δ. Merkitty jko T on δ-hieno, jos siihen liittyvä tvllinen jko P on δ-hieno. Merkitylle jolle T käytetään sm merkintää T = P kuin tvlliselle jolle. Funktion f merkittyyn jkoon T liittyvä Riemnnin summ on R(f, T ) := f(t k )(x k x k 1 ). Riemnnin käyttämä määritelmä on seurv: funktio f on Riemnn-integroituv, jos on olemss I R siten, että jokiselle ε > 0 on olemss δ > 0 siten, että jokiselle δ-hienolle merkitylle jolle T on voimss R(f, T ) I < ε. Kurssill Anlyysi 2 funktion f Riemnn-integroituvuus määritellään l- j yläporrsfunktioiden vull (lporrsfunktio g on porrsfunktio g, jolle g f, j yläporrsfunktio on porrsfunktio h, jolle h f). Perinteisempi tp olisi käyttää Drboux n l- j yläsummi, jotk ovt trkoin vlittujen l- j yläporrsfunktioiden integrlit. Olkoon P = {[x k 1, x k ] k {1,..., n}} välin [, b] jko. Asetetn m k := inf{f(x) x [x k 1, x k ]} j M k := sup{f(x) x [x k 1, x k ]} sekä porrsfunktiot g, h: [, b] R, (1.1) (1.2) j (1.3) (1.4) g(x) = m k, kun x [x k 1, x k ) j 1 k < n, sekä g(x) = m n, kun x [x n 1, x n ], h(x) = M k, kun x [x k 1, x k ) j 1 k < n, sekä h(x) = M n, kun x [x n 1, x n ]. Näiden porrsfunktioiden integrlit ovt funktion f Drboux n l- j yläsumm, s P := g(x) dx = m k (x k x k 1 ), S P := h(x) dx = M k (x k x k 1 ). Funktion f Drboux n (ti Riemnnin) l- j yläintegrli ovt f(x) dx := l- f(x) dx := sup s P, P P f(x) dx := ylä- f(x) dx := inf P P S P, missä P on välin [, b] kikkien jkojen joukko. Snotn, että funktio f on Drboux-integroituv (kurssill Anlyysi 2 Riemnnintegroituv), jos f(x) dx = f(x) dx.

4 1.4. RIEMANNIN INTEGRAALI ix Drboux n l- j yläsummien s P j S P käytöstä kätevän tekee se, että jos jko tihennetään (eli jkopisteitä x j lisätään), niin lsummt ksvvt j yläsummt pienenevät, t.s. jos P P, niin s P s P j S P S P. Jos jkoon P liitetään porrsfunktiot (1.1) (1.4) j jkoon P vstvll tvll porrsfunktiot g j h, niin g g j h h. Drboux n l- j yläsummt ovt peräisin J. G. Drboux lt vuodelt Drboux n esitys jtkuvn funktion Riemnn-integroituvuudelle lienee ensimmäinen kunnollinen todistus väitteelle. Usein nsio ensimmäisestä todistuksest nnetn Augustin Cuchylle (1823), mutt Cuchyll ei ollut vielä käytössään tulost, että suljetull välillä jtkuv funktio on tsisesti jtkuv. Cuchy kuitenkin käytti todistuksessn nimenomn tsist jtkuvuutt. Tämän tärkeän tuloksen todisti Heinrich Heine vuonn Bernhrd Riemnn käytti nimeään kntvi Riemnnin summi integrlins määrittelyyn vuonn Cuchyn käyttämä määritelmä, jok ensimmäisenä perustui äärellisten summien rj-rvojen eikä epämääräisten infinitesimlien käyttöön, oli muuten sm kuin Riemnnill, mutt merkit eli pisteet t k vlittiin jkopisteistä, f(x k 1 )(x k x k 1 ). Kurssilt Anlyysi 2 knntt kerrt (ti todist suorn): Luse 1.3. Olkoon f : [, b] R rjoitettu funktio. Tällöin funktio f on Riemnnintegroituv, jos j vin jos f on Drboux-integroituv. Yksi muoto Riemnn-integroituvuudelle on seurv porrsfunktiojonojen vull ilmistu luse. Tämä on hyvä todist kertuksen vuoksi, sillä Lebesguen integrli tulln käsittelemään juuri porrsfunktiojonojen vull. Luse 1.4. Olkoot f : [, b] R rjoitettu funktio j (P j ) j=1 jono välin [, b] jkoj siten, että P j 0, kun j. Olkoot g j j h j jko P j vstvt, kvojen (1.1) (1.4) vull määritellyt l- j yläporrsfunktio. ) Jos f on Riemnn-integroituv välillä [, b], niin b) Jos lim j g j = lim lim j j g j = lim h j = j h j =: I, niin f Riemnn-integroituv välillä [, b] j f(x) dx. f(x) dx = I. Seurv tulos on yksi muoto Anlyysin perusluseest, ehkä se tvllisin: Luse 1.5. Olkoon f : [, b] R Riemnn-integroituv. Kikille x [, b] setetn Tällöin ) F on jtkuv; F (x) = x f(t) dt.

5 1.4. RIEMANNIN INTEGRAALI x b) jos f on jtkuv pisteessä x, niin F on derivoituv pisteessä x j F (x) = f(x). Seurv derivtn j integrlin välistä yhteyttä selvittävä tulos lienee vähemmän tunnettu, vikk sen todistus onkin vrsin helppo. Tuloksen kuneutt lisää se, että siinä ei tehdä mitään turhi oletuksi: jott derivtt voitisiin integroid, pitää sen oll integroituv! Luse 1.6. Olkoon F : [, b] R derivoituv funktio siten, että derivtt F on Riemnn-integroituv välillä [, b]. Tällöin F (x) dx = F (b) F (). Todistus knntt käydä läpi hrjoitustehtävänä. Muist Riemnn-integroituvuus Riemnnin summien vull j differentililskennn välirvoluse: F (x k ) F (x k 1 ) = F (t k )(x k x k 1 ). Näin vlitulle merkitylle jolle Riemnnin summ on R(F, T ) = F (b) F (). Riemnnin integrlin määritelmästä seur, että jos f on Riemnn-integroituv, niin integrlin pproksimoimiseen voidn käyttää mitä thns riittävän tiheää jko j mitä thns jkoväleiltä vlittuj pisteitä t k. Erityisesti voidn käyttää tsvälistä jko x k = + k (b )/n, 0 k n, j pisteitä t k = x k 1, 1 k n. Siis, jos f on Riemnn-integroituv, niin ( f + (k 1) b n ) b n f(x) dx, kun n. Integrlikäsitteen helpottmiseksi sttisi houkutukseksi muodostu seurv määritelmä (siis Riemnnin integrlin sijst, ei sen rinnll): Rjoitettu funktio f : [, b] R on N-integroituv välillä [, b] (N = niivi?), jos seurv rj-rvo on olemss: lim n ( f + (k 1) b n ) b k. Jos f on N-integroituv, niin yllä olev luku merkitään N- f(x) dx j kutsutn funktion f N-integrliksi. Jott integrlist olisi jotin hyötyä, pitäisi sillä oll hyödyllisiä ominisuuksi. Esimerkiksi: jos c (, b) j f on N-integroituv kummllkin osvälillä [, c] j [c, b], niin tällöin f on N-integroituv välillä [, b] j N- f(x) dx = N- c f(x) dx + N- c f(x) dx. Pitääkö tämä väite pikkns? Entä miten muut tutut tulokset (linerisuus yms) ovt voimss N-integrlille? Ehkä luonnollisempi vihtoehto integrlikäsitteeksi olisi Anlyysin perusluseest mieleen johtuv Integrlifunktio-integrli: Olkoon f : [, b] R nnettu funktio. Snotn, että f on IF-integroituv, jos on olemss derivoituv funktio F : [, b] R

6 IF RIEMANNIN INTEGRAALI xi siten, että F (x) = f(x) kikille x [, b] (päätepisteissä toispuoleiset derivtt). Jos f on IF-integroituv, setetn funktion f IF-integrliksi f(x) dx := x=b x= F (x) := F (b) F (), Kosk derivointi on tvllisesti helpomp kuin integrlifunktion etsiminen, on derivoimll helppo määrätä iso tulukko IF-integroituvi funktioit j niiden integrlej (näinhän tehdään kurssill Anlyysi 2). Anlyysin perusluseen nojll jokinen jtkuv funktio f : [, b] R on IF-integroituv. Mutt Anlyysin perusluse todistetn tvllisesti Riemnnin integrlin vull. Entä jos integrlilskent hluttisiin yksinkertist korvmll Riemnnin integrli IF-integrlill? Miten tällöin (ilmn Riemnnin integrlin käsitettä) osoitetn, että jokinen jtkuv funktio on IF-integroituv? Luse 1.7 (Jtkuvien funktioiden välirvoluse). Olkoon f : [, b] R jtkuv funktio. Tällöin f svutt jokisen suurimmn rvons M := sup f([, b]) j pienimmän rvons m := inf f([, b]) välisen rvon, t.s. f([, b]) = [m, M]. Luse 1.8 (Differentililskennn välirvoluse). Olkoon f : [, b] R jtkuv funktio, jok on derivoituv voimell välillä (, b). Tällöin on olemss ξ (, b) siten, että f(b) f() = f (ξ) (b ). Luse 1.9 (Derivttojen välirvoluse). Olkoon f : [, b] R jtkuv funktio, jok on derivoituv voimell välillä (, b), j joll on äärelliset toispuoliset derivtt f (+) j f (b ) välin päätepisteissä, f f(x) f() (+) := lim, f f(x) f(b) (b ) := lim. x + x x b x b Oletetn, että f (+) f (b ). Olkoon c vlittu lukujen f (+) j f (b ) välistä. Tällöin on olemss ξ (, b) siten, että f (ξ) = c. Todistuside. Olkoon g : [, b] R, f(x) f() g(x) =, kun < x b, j g() = f (+). x Funktio g on jtkuv, joten jtkuvien funktioiden välirvoluseen nojll se svutt jokisen päätepisteissä smiens rvojen f (+) j (f(b) f())/(b ) välisen rvon josskin välin [, b] pisteessä. Olkoon y lukujen f (+) j (f(b) f())/(b ) välissä j x [, b] siten, että g(x) = y. Oletetn, että x > (tpus x = jää hrjoitustehtäväksi). Differentililskennn välirvoluseen nojll on olemss ξ (, x) siten, että g(x) = (f(x) f())/(x ) = f (ξ). Siis f svutt kikki lukujen f (+) j (f(b) f())/(b ) väliset rvot välillä (, b). Vstvll tvll, trkstelemll funktiot : [, b] R, f(x) f(b) h(x) =, kun x < b, j g(b) = f (b ), x b nähdään, että f svutt jokisen lukujen (f(b) f())/(b ) j f (b ) välisen rvon josskin välin (, b) pisteessä.

7 1.5. JOUKKO- JA FUNKTIO-OPPIA xii Luse Olkoon f : [, b] R jtkuv funktio, jok on derivoituv voimell välillä (, b). Oletetn, että derivtll f on oikenpuolinen rj-rvo d pisteessä x =, d = lim x + f (x). Tällöin funktioll f on oikenpuolinen derivtt pisteessä x = j f (+) = d. Muistettkoon, että funktio f : [, b] R on derivoituv pisteessä c (, b), jos j vin jos funktioll f on pisteessä x = c molemmt toispuoliset derivtt f (c+) j f (c ) j f (c+) = f (c ). Edellisestä luseest seur, että jos funktio f on derivoituv välillä (, b), mutt f ei ole jtkuv pisteessä x = c, niin derivtll f ei ole jompkump (ti kumpkn) toispuoleist rj-rvo f (c+) ti f (c ). Derivtn epäjtkuvuudet eivät siis voi oll hyppäysepäjtkuvuuksi. Luse 1.11 (Integrlilskennn välirvoluse). Olkoon f : [, b] R jtkuv funktio. Tällöin on olemss ξ [, b] siten, että f(x) dx = f(ξ) (b ) Joukko- j funktio-oppi Joukkojen äärellisille yhdisteille j leikkuksille pätee: (i) (A 1 A 2 ) B = (A 1 B) (A 2 B) (ii) (A 1 A 2 ) B = (A 1 B) (A 2 B) (iii) B \ (A 1 A 2 ) = (B \ A 1 ) (B \ A 2 ) (iv) B \ (A 1 A 2 ) = (B \ A 1 ) (B \ A 2 ) (v) B \ (B \ A 1 ) = A 1, jos A 1 B Numeroituvsti äärettömät j yleiset yhdisteet j leikkukset: Olkoot I indeksijoukko j jokiselle i I A i nnettu joukko. Tällöin A i := {x on olemss i I siten, että x A i }, i I A i := {x x A i kikille i I}. i I Näille on voimss (i) ( i I A ) i B = i I (A i B) (ii) ( i I A ) i B = i I (A i B) (iii) B \ ( i I A ) i = i I (B \ A i) (iv) B\ ( i I A ) i = i I (B \ A i) Olkoon A j, j Z +, nnettu jono joukkoj. Asetetn B 1 := A 1 j B k := A k \ k 1 j=1 Tällöin joukot B k ovt preittin pistevierit j n n B k = kikille n Z +, sekä A k A j, kun k > 1. B k = A k.

8 1.5. JOUKKO- JA FUNKTIO-OPPIA xiii Huom, että jos joukot A j muodostvt ksvvn jonon (eli A 1 A 2 A 3... ), niin B k = A k \ A k 1, kun k > Olkoot X j Y epätyhjiä joukkoj j f : X Y nnettu kuvus sekä A, A 1, A 2 X j B, B 1, B 2 Y nnettuj osjoukkoj. Tällöin (i) f(a 1 A 2 ) = f(a 1 ) f(a 2 ) (ii) f(a 1 A 2 ) f(a 1 ) f(a 2 ) (iii) A f 1 (f(a)) (iv) f(f 1 (B)) B (v) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ) (vi) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ) (vii) f 1 (Y \ B) = X \ f 1 (B) Olkoot X j Y epätyhjiä joukkoj j f : X Y nnettu kuvus. Tällöin f(f 1 (B)) = B kikille osjoukoille B Y, jos j vin jos f on surjektio Olkoot X j Y epätyhjiä joukkoj j f : X Y nnettu kuvus. Tällöin seurvt ehdot ovt yhtäpitäviä: (i) f on injektio; (ii) f(a 1 A 2 ) = f(a 1 ) f(a 2 ) kikille osjoukoill A 1, A 2 X; (iii) A = f 1 (f(a)) kikille osjoukoill A X; (iv) f(a 1 \ A 2 ) = f(a 1 ) \ f(a 2 ) kikille osjoukoill A 1, A 2 X, joille A 2 A Olkoot A j, j N, numeroituvi joukkoj. Tällöin niiden yhdiste on numeroituv. j N A j

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia. 2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 +

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 + I. INTEGRAALILASKENTA Arkhimedes (287 22 e.kr.) prbelin segmentin pint-l Newton (642 727) j Leibniz (646 76) keksivät diff.- j int.-lskennn Cuhy (789 857) ε, δ Riemnn (826 866) Riemnnin integrli Lebesgue

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

Lebesguen integraali - Rieszin määritelmä

Lebesguen integraali - Rieszin määritelmä Lebesguen integrli - Rieszin määritelmä Tru Lehtonen Mtemtiikn pro grdu-tutkielm Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kevät 216 Tiivistelmä Jyväskylän Yliopisto Lehtonen, Tru Puliin: Lebesguen

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 2009 Sisältö Relilukujen peruskäsitteitä 2 Lukujonoist 3 2. Lukujonon rj-rvo....................... 3 2.2 Monotoniset jonot......................... 7 2.3 Osjonot..............................

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

Analyysi B. Derivaatta ja integraali. Pertti Koivisto

Analyysi B. Derivaatta ja integraali. Pertti Koivisto Anlyysi B Derivtt j integrli Pertti Koivisto Kevät 7 Alkusnt Tämä moniste on trkoitettu oheislukemistoksi Tmpereen yliopistoss pidettävälle kurssille Anlyysi B. Monisteen tvoitteen on tuke luentojen seurmist,

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

Lebesguen integraali

Lebesguen integraali LUKU 3 Lebesguen integrli Seurvss esitettävä määritelmä Lebesguen integrlille ei ole Lebesguen lkuperäinen. Vuoden 1904 luennoissn [23] hän kuitenkin setti tvoitteeksi, että integrlill olisi ominisuus:

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

R(f, T ) := f(t k )(x k x k 1 ).

R(f, T ) := f(t k )(x k x k 1 ). Lebesguen tp määritellä mitt j integrli Lebesguen 1 itsensä lunperin käyttämä määritelmä mitlle j ennenkikke mitllisuuden käsitteelle poikke jonkinverrn nykyisin tvnomisest määrittelytvst. Ensinnäkin,

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit TAMPEREEN YLIOPISTO Pro grdu -tutkielm Annik Heinonen Newtonin, Riemnnin j Henstock-Kurzweilin integrlit Informtiotieteiden yksikkö Mtemtiikk Helmikuu 2013 Sisältö 1 Johdnto 1 2 Newtonin integrli 2 2.1

Lisätiedot

ANALYYSIN TEORIA A JA B

ANALYYSIN TEORIA A JA B ANALYYSIN TEORIA A JA B Kikki luseit ei ole muotoiltu smll tvll kuin luennoill. Ilmoit virheistä yms osoitteeseen mikko.kngsmki@ut. (jos et ole vrm, onko kyseessä virhe, niin ilmoit mieluummin). 1. Yleistä,

Lisätiedot

ANALYYSI 2. Tero Kilpeläinen

ANALYYSI 2. Tero Kilpeläinen ANALYYSI Tero Kilpeläinen 3 Teksti sisältää muistiinpnoj vuosin j 3 pidetystä kurssist. Tämän pketin trkoitus on tuke omien muistiinpnojen teko, ei korvt niitä. Mtemtiikk oppii prhiten itse kirjoitten

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

Luku I on funktion f Riemannin integraali välillä [a, b] ja sitä merkitään b

Luku I on funktion f Riemannin integraali välillä [a, b] ja sitä merkitään b 1. Lebesguen tp määritellä mitt j integrli Lebesguen 1 itsensä lunperin käyttämä määritelmä mitlle j ennenkikke mitllisuuden käsitteelle poikke jonkinverrn nykyisin tvnomisest määrittelytvst. Ensinnäkin,

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

Riemann-integraalin ja mittaintegraalin vertailua

Riemann-integraalin ja mittaintegraalin vertailua Riemnn-integrlin j mittintegrlin vertilu Pro grdu -tutkielm Pii Tskinen Mtemttisten tieteiden litos Oulun yliopisto Kevät 216 Sisältö Johdnto 3 1 Esitietoj 5 1.1 Välijost............................. 5

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Analyyttinen lukuteoria

Analyyttinen lukuteoria Anlyyttinen lukuteori Johdnto Kuten yltä näkyy, tämän luentomonisteen kttm luentosrj on nimeltään Anlyyttinen lukuteori, vikkkin opintorekisteribyrokrttisist syistä opintojkso knt nimeä Lukuteori 3. Näin

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto Fkultet/Sektion Fculty Litos Institution Deprtment Mtemttis-luonnontieteellinen Tekijä Förfttre Author Antti Khri Työn

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto x 3. a x 1. x 4 x 11. x 2

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto x 3. a x 1. x 4 x 11. x 2 ANALYYSI 2 Cmill Hollnti _ M M x x 2 x 3 x 4 x b Tmpereen yliopisto 200 2 Sisältö. Preliminäärejä 3 2. Riemnn-integrli 5 2.. Pint-lt j porrsfunktiot....................... 5 2... Pint-l rj-rvon.......................

Lisätiedot

ANALYYSI 3. Tero Kilpeläinen

ANALYYSI 3. Tero Kilpeläinen ANALYYSI 3 Tero Kilpeläinen Luentomuistiinpnoj syksyltä 2005 20. lokkuut 2005 Sisältö 1. Esitietoj 2 1.1. Riemnn-integrli............................ 2 1.2. Derivtt................................. 4 1.3.

Lisätiedot

Analyysi III S

Analyysi III S Anlyysi III 800624S Sisältö sitietoj 5 Riemnn integroinnin rjt 6 Luku 1. Mittteori 7 1. Algebr j σ-lgebr 7 2. Mitt 8 3. Ulkomitt j mitlliset joukot 11 4. Ulkomitn konstruointi 14 5. Lebesguen ulkomitt

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Konvergenssilauseita

Konvergenssilauseita LUKU 4 Konvergenssilauseita Lause 4.1 (Monotonisen konvergenssin lause). Olkoon (f n ) kasvava jono Lebesgueintegroituvia funktioita. Asetetaan f(x) := f n (x). Jos f n

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Sarjojen tasainen suppeneminen

Sarjojen tasainen suppeneminen Srjojen tsinen suppeneminen Pro grdu -tutkielm Krist Mikkonen 165274 Itä-Suomen yliopisto Fysiikn j mtemtiikn litos 19. mrrskuut 2013 Sisältö 1 Johdnto 1 2 Lukujonoist j srjoist 2 2.1 Lukujoukoist...........................

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka B 2014

Mika Hirvensalo. Insinöörimatematiikka B 2014 Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Viikon aiheet. Pinta-ala

Viikon aiheet. Pinta-ala info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

Numeerinen integrointi.

Numeerinen integrointi. Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

Analyysin peruslause

Analyysin peruslause LUKU 10 Analyysin peruslause 10.1. Peruslause I Aiemmin Cantorin funktion ψ kohdalla todettiin, että analyysin peruslause II ei päde: [0,1] ψ (x) dm(x) < ψ(1) ψ(0). Kasvavalle funktiolle analyysin peruslauseesta

Lisätiedot

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa Integrlilskennst lukioss j lukion oppikirjsrjoiss Mtemtiikn pro grdu -tutkielm Mikko Huttunen Helsingin yliopisto 14. mliskuut 2013 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto

Lisätiedot

Korkeamman kertaluvut derivaatat

Korkeamman kertaluvut derivaatat LUKU 4 Korkemmn kertluvut derivtt Derivtn määritelmän mukn differentioituv kuvust f : U F voidn pproksimoid ffiinill kuvuksell, f(x + u f(x + Df(xu. Jos f on khdesti differentioituv, voidn derivtt pproksimoid

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa Sisältö MS-AX Differentili- j integrlilskent Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä myös täydentäviä esimerkkejä, kosk

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Analyyttiset funktiot ja integrointiteorian alkeita

Analyyttiset funktiot ja integrointiteorian alkeita Anlyyttiset funktiot j integrointiteorin lkeit 6. helmikuut 2006 isältö 1 Kertust 1 2 Anlyyttiset funktiot 2 2.1 Anlyyttiset funktiot tsoll................... 2 2.2 Monogeeniset funktiot vruudess R n.............

Lisätiedot

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko

Lisätiedot

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista Differentili- j integrlilskent 1: tiivistelmä j oheislukemist Pekk Alestlo 4. syyskuut 2014 Tähdellä merkityt kohdt on trkoitettu lähinnä oheislukemistoksi. Lisäksi mukn on joitkin lukiot kertvi kohti,

Lisätiedot

Tasaväli-integraali. Mikko Rautiainen. matematiikan Pro Gradu-tutkielma

Tasaväli-integraali. Mikko Rautiainen. matematiikan Pro Gradu-tutkielma Tsväli-itegrli Mikko Rutiie mtemtiik Pro Grdu-tutkielm Jyväskylä yliopisto Mtemtiik j tilstotietee litos Kesä 2006 Sisältö Johdto 2 I Tsväli-itegrli: teori 3 1 Peruskäsitteitä 3 2 Tsväliporrsfuktio määrätty

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

5.1. Reaalifunktioiden määräämätön integraali

5.1. Reaalifunktioiden määräämätön integraali MAT-3430 Lj mtemtiikk 3 TTY 00 Risto Silvennoinen Luku 5. Integrli 5.. Relifunktioien määräämätön integrli Integrlifunktio Derivoinnin käänteistoimituksen on vstt kysymykseen "Mikä on se funktio, jonk

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Monikulmion pinta-ala ylioppilaille

Monikulmion pinta-ala ylioppilaille Solmu 3/9 Monikulmion pint-l lioppilille Mik Koskenoj Mtemtiikn j tilstotieteen litos Helsingin liopisto Tehtävä. Kuusikulmion M kärjet ovt tson pisteissä (, ), (3, ), (, ), (4, 3), (, ) j (, ). Lske M:n

Lisätiedot

Funktiojonon tasainen suppeneminen

Funktiojonon tasainen suppeneminen TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen

Lisätiedot

Määrätty integraali. Markus Helén. Mäntän lukio

Määrätty integraali. Markus Helén. Mäntän lukio Määrätty integraali Markus Helén Pinta-ala Monikulmio on tasokuvio, jota rajoittaa suljettu, itseään leikkaamaton murtoviiva. Monikulmio voidaan aina jakaa kolmioiksi. Alueen pinta-ala on näiden kolmioiden

Lisätiedot

1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on

1.1. Joukon Jordanin sisältö. Reaaliakselin kompaktin välin [t 0, t m ] jako on 1. Jordan-joukot Yksinkertaisuuden (ja havainnollisuuden vuoksi) seuraavassa tarkastellaan vain tason osajoukkoja, vaikka päättelyt voitaisiin helposti siirtää yleiseen n-ulotteiseen euklidiseen avaruuteen

Lisätiedot

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 4. Mtemtiikk II Mrkus Hrju Mtemttiset tieteet Näyttömtemtiikktilst I Numerointi trvitsevt, pljon til vtivt ti muust syystä tärkeät kvt j lusekkeet tulee sijoitt omlle rivilleen ns. näyttömtemtiikktiln.

Lisätiedot

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 4. Mtemtiikk II Mrkus Hrju Mtemttiset tieteet Näyttömtemtiikktilst I Numerointi trvitsevt, pljon til vtivt ti muust syystä tärkeät kvt j lusekkeet tulee sijoitt omlle rivilleen ns. näyttömtemtiikktiln.

Lisätiedot

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja

Laskennan mallit (syksy 2010) 1. kurssikoe, ratkaisuja 582206 Lskennn mllit (syksy 2010) 1. kurssikoe, rtkisuj 1. [2+2+2 pistettä] Säännöllisissä lusekkeiss on käytetty tuttu lyhennysmerkintää Σ = ( ). () merkkijonot, joiden kksi ensimmäistä merkkiä ovt joko

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot