Johdatus reaalifunktioihin P, 5op

Koko: px
Aloita esitys sivulta:

Download "Johdatus reaalifunktioihin P, 5op"

Transkriptio

1 Johdtus relifunktioihin P, 5op Os 3 Pekk Slmi 19. lokkuut 2015 Pekk Slmi FUNK 19. lokkuut / 48

2 Integrlit 1 Määrätty integrli = oike integrli: esim. 1 0 x 2 dx = reliluku 2 Määräämätön integrli = derivtn käänteisopertio: esim. x 2 dx = joukko funktioit Pekk Slmi FUNK 19. lokkuut / 48

3 Anti-derivtt eli määräämätön integrli Määräämätön integrointi on dierentiliyhtälön rtkisu. Esimerkiksi funktion f (x) = x 3 integrli x 3 dx on dierentiliyhtälön g (x) = x 3 rtkisu g(x). Toisin snoen mitkä ovt kikki funktiot g(x), joiden derivtt on x 3. Rtkisu on 1 4 x 4 + C, missä C R on vkio. Pekk Slmi FUNK 19. lokkuut / 48

4 Perustelu edelliseen Välirvoluseen seuruksen stiin että g (x) = h (x) jollin välillä jos j vin jos g(x) = h(x) + C jollin C R. Integroinniss on siis tehtävänä keksiä jokin rtkisu g(x) yhtälölle g (x) = f (x) jolloin f (x) dx := g(x) + C nt kikki rtkisut, kun integroimisvkio C käy läpi kikki reliluvut. Pekk Slmi FUNK 19. lokkuut / 48

5 Esimerkki Esimerkki Lske sin x dx. Pekk Slmi FUNK 19. lokkuut / 48

6 Integrlej Derivoimissäännöistä sdn integroimissääntöjä. Seurvt kvt pätevät väleillä, joill funtiot ovt hyvin määriteltyjä. 1 x r dx = x r+1 r C kun r R, r 1 2 e x dx = e x + C 3 1 x dx = log x + C 4 sin x dx = cos x + C 5 cos x dx = sin x + C 6 1 dx = rcsin x + C 1 x dx = rctn x + C 1 + x 2 Pekk Slmi FUNK 19. lokkuut / 48

7 Integrlin linerisuus Derivtn ominisuuksist (f + g) = f + g j (cf ) = cf seur, että (f ) (x) + g(x) dx = f (x) dx + g(x) dx j cf (x) dx = c f (x) dx. Pekk Slmi FUNK 19. lokkuut / 48

8 Sisäfunktion huomiointi Ketjusäännön nojll (f g) (x) = f ( g(x) ) g (x), joten f ( g(x) ) g (x) dx = (f g)(x) + C. Huom että esimerkiksi integrlin e x 2 dx lskeminen ei onnistu, kosk sisäfunktion x 2 derivtt puuttuu. Pekk Slmi FUNK 19. lokkuut / 48

9 Esimerkkejä Esimerkki Integroi xe x 2 dx. Esimerkki Integroi f (x) = x x Esimerkki Integroi sin x cos x dx. Pekk Slmi FUNK 19. lokkuut / 48

10 Trigonometrisi integrlej Trigonometriset kvt ovt hyödyllisiä integrlej lskettess. Erityisesti cos 2x = cos 2 x sin 2 x = 2 cos 2 x 1 = 1 2 sin 2 x. Esimerkki Lske sin 2 x dx. Esimerkki Lske sin 2 x cos 2 x dx. Pekk Slmi FUNK 19. lokkuut / 48

11 Osittisintegrointi Tulon derivoimiskvn mukn (fg) (x) = f (x)g(x) + f (x)g (x). Rtkisemll f (x)g(x) j integroimll sdn f (x)g(x) dx = f (x)g(x) f (x)g (x) dx. Esimerkki Lsketn xe x dx. Vlitn f (x) = e x kvn nojll j g(x) = x, jolloin f (x) = e x, g (x) = 1 j yllä olevn xe x dx = xe x 1 e x dx = xe x e x + C. Tätä tekniikk kutsutn osittisintegroinniksi. Pekk Slmi FUNK 19. lokkuut / 48

12 Lisää osittisintegrointi Esimerkki Lske x 2 sin x dx. Esimerkki Lske x 3 e x 2 dx. Pekk Slmi FUNK 19. lokkuut / 48

13 Rtionlifunktion integrointi Esimerkki Lske 1 x 2 dx kun 1 < x < 1. 1 Ei void suorn integroid logritmiksi kosk sisäfunktion derivtt puuttuu. Kirjoitetn 1 x 2 1 = 1 (x + 1)(x 1) = 1/2 x /2 x 1. Nyt 1 1/2 1/2 x 2 1 dx = x + 1 dx + x 1 dx = 1 2 log x log x 1 + C. 2 Pekk Slmi FUNK 19. lokkuut / 48

14 Yleisempiä osmurtohjotelmi Osmurtohjotelm sdn rtkisemll tuntemttomt A j B yhtälöstä cx + d (x x 1 )(x x 2 ) = A + B. x x 1 x x 2 Jos nimittäjässä on kksinkertinen nollkoht, käytetään hjotelm P(x) (x x 1 ) 2 (x x 2 ) = A B + x x 1 (x x 1 ) + C. 2 x x 2 (missä P(x):n ste 2). Jos nimittäjässä on toisen steen joton tekijä, käytetään hjotelm P(x) (x 2 + cx + d)(x x 1 ) = Ax + B x 2 + cx + d + C. x x 1 (missä P(x):n ste 2). Nämä esimerkit yleistyvät luonnollisell tvll. Pekk Slmi FUNK 19. lokkuut / 48

15 Integrli (määrätty) eli merkillä vrustettu pint-l Funktion f (x) integrli välin [, b] yli on funktion f (x) grn j x-kselin välin [, b] väliin jäävä pint-l missä x-kselin yläpuoliset osiot svt merkin + j lpuoliset merkin. f (x) dx = vihreä l ornssi l Pekk Slmi FUNK 19. lokkuut / 48

16 Positiivisen funktion integrlin määritelmän ide Funktion f (x) 0 kuvjn j x-kselin väliin jäävä pint-l määritellään pproksimoimll suorkulmioiden vull (nk. Riemnnin integrli). f (x) f (x) b b Ornssin lueen l nt lrjn integrlille; ornssin j vihreän lueen yhteisl nt ylärjn. Tihentämällä jko sdn trkemmt l- j ylärjt, j jos näillä on yhteinen rj-rvo, niin snotn, että f on integroituv (välillä [, b]). Yhteistä rj-rvo kutsutn f :n integrliksi yli välin [, b] j merkitään f (x) dx. Pekk Slmi FUNK 19. lokkuut / 48

17 Funktion jko positiiviseen j negtiiviseen osn Olkoon f : [, b] R. Määritellään kikill x [, b] jolloin f + f (x) + f (x) (x) = mx{f (x), 0} = 2 f f (x) f (x) (x) = mx{ f (x), 0} = 2 f (x) = f + (x) f (x) j f (x) = f + (x) + f (x). f (x) f (x) f + (x) f (x) Pekk Slmi FUNK 19. lokkuut / 48

18 Integrli kun f ei välttämättä positiivinen Olkoon f : [, b] R. Nyt f (x) = f + (x) f (x) kikill x [, b]. Huom että f + (x) 0 j f (x) 0 kikill x [, b]. Jos f + j f ovt integroituvi, niin snotn että myös f on integroituv j setetn f (x) dx := f + (x) dx f (x) dx. Pekk Slmi FUNK 19. lokkuut / 48

19 Huomutuksi Integrli voi merkitä myös lyhemmin Kun > b, niin määritellään f. f = b f. Tällöin pätee sääntö kikill, b R. f = b f Pekk Slmi FUNK 19. lokkuut / 48

20 Jtkuvt funktiot ovt integroituvi Luse Jos funktio f : [, b] R on rjoitettu j sillä on äärellinen määrä epäjtkuvuuskohti, niin f on integroituv. Seurus Jokinen jtkuv funktio f : [, b] R on integroituv. Pekk Slmi FUNK 19. lokkuut / 48

21 Integrlin linerisuus Integrlin määritelmästä seur, että j ( f (x) + g(x) ) dx = cf (x) dx = c f (x) dx + f (x) dx, kun f j g ovt integroituvi funktioit j c R vkio. g(x) dx Pekk Slmi FUNK 19. lokkuut / 48

22 Integrlifunktion j määrätyn integrlin yhteys 1 Luse (Anlyysin perusluse, versio 1) Olkoon f : [, b] R jtkuv funktio. Funktion f kertymäfunktio on F (x) = x f (t) dt, x [, b]. Tällöin funktio F on jtkuv j F (x) = f (x) kikill x ], b[. F (x) f (x) x x + h F (x + h) F (x) = ornssi l f (x)h (f jtkuv) F (x + h) F (x) = f (x) h = F (x) = f (x) Pekk Slmi FUNK 19. lokkuut / 48

23 Anlyysin perusluseen sovellus Määritellään funktio F : R R settmll F (x) = x 0 e t2 dt, x R. Anlyysin perusluseen nojll F on derivoituv j F (x) = e x 2. Siis funktioll e x 2 on olemss integrlifunktio F, vikk emme oskn esittää sitä lkeisfunktioiden vull. Huomutus Usein logritmifunktio määritellään settmll log x = x 1 1 dt, x > 0, t j sitten eksponenttifunktio määritellään logritmin käänteisfunktion. Pekk Slmi FUNK 19. lokkuut / 48

24 Integrlifunktion j määrätyn integrlin yhteys 2 Luse (Anlyysin perusluse, versio 2) Olkoot f, F : [, b] R sellisi jtkuvi funktioit, että f (x) = F (x) kikill x ], b[. Tällöin f (x) dx = F (b) F (). Jos siis F on funktion f jokin integrlifunktio, niin määrätty integrli voidn lske sijoituksell funktioon F : f = / b F. Pekk Slmi FUNK 19. lokkuut / 48

25 Esimerkkejä Esimerkki Lske 5π/6 sin x 1 π/6 2 dx. Esimerkki Lske 0 1 x x 2 + x 2 dx. Pekk Slmi FUNK 19. lokkuut / 48

26 Positiivisuus Määritelmän mukn f (x) 0 kikill x [, b] = f (x) dx 0. (oletten että f on integroituv). Tästä seur että jos f j g ovt integroituvi, niin f (x) g(x) kikill x [, b] = f (x) dx g(x) dx. Erityisesti jos m f (x) M kikill x [, b], niin m(b ) f (x) dx M(b ). Pekk Slmi FUNK 19. lokkuut / 48

27 Arviointi Lisäksi f (x) dx f (x) dx kosk f (x) f (x) f (x) kikill x [, b] = f (x) dx f (x) dx f (x) dx. Pekk Slmi FUNK 19. lokkuut / 48

28 Arviointiesimerkki Arvioidn integrli 1 e x 2 dx. 0 Nyt x 2 2x 1 (kosk (x 1) 2 0), joten 1 e x 2 dx e 2x 1 dx Toislt 1 e x 2 dx Todellinen rvo on noin e x dx Pekk Slmi FUNK 19. lokkuut / 48

29 Osittisintegrointi määrätylle integrlille Anlyysin perusluseen nojll / b f (x)g(x) = (fg) (x) dx = ( f (x)g(x) + f (x)g (x) ) dx. Tästä sdn osittisintegrointikv määrätylle integrlille: f (x)g(x) dx = / b f (x)g(x) f (x)g (x) dx. Esimerkki Lske π x cos 2 x dx. 0 Pekk Slmi FUNK 19. lokkuut / 48

30 Muuttujnvihto Luse Olkoot g : [, b] R jtkuv funktio, jonk derivtt g : ], b[ R on jtkuv, j f jtkuv funktio, jonk määrityslue sisältää g :n kuvjoukon. Tällöin f ( g(x) ) g (x) dx = g(b) f (u) du. g() Tämä kv on helpoint muist tulkitsemll se muuttujnvihdoksi: u = g(x) du = du dx dx = g (x) dx x : b u : g() g(b) Menetelmä toimii myös määräämättömässä integrliss, jolloin integroimisrjojen uudelleen lskemisen j sijoittmisen sijn tehdään tkisinsijoitus (u x). Pekk Slmi FUNK 19. lokkuut / 48

31 Integrointi sijoittmll Esimerkki Lsketn sin x x dx j π 2 0 sin x x dx. Esimerkki Lsketn 1 sijoituksell x = cos t. 1 1 x 2 dx y x Pekk Slmi FUNK 19. lokkuut / 48

32 Epäoleelliset integrlit Olkoon f : ], b] R sellinen, että f ei ole rjoitettu (pisteen lähellä) mutt c f (x) dx on olemss kikill c >. Esimerkiksi f (x) = 1/ x, = 0. Tällöin määritellään mikäli rj-rvo on olemss. f (x) dx = lim c + c f (x) dx Vstvsti määritellään f (x) dx = lim c b jos b on ongelmkoht (singulriteetti). c f (x) dx Pekk Slmi FUNK 19. lokkuut / 48

33 Esimerkkejä Esimerkki Määrää 1 Esimerkki 0 1 x dx. Määrää x 2 dx. 1 x 1 x 2 1 Pekk Slmi FUNK 19. lokkuut / 48 1

34 Integrli äärettömyyteen Olkoon f : [, [ R sellinen funktio, että R f (x) dx on olemss kikill R >. Tällöin määritellään R f (x) dx = lim f (x) dx R mikäli rj-rvo on olemss. Vstvsti määritellään f = lim R R f j f = lim lim R1 R2 R 2 R1 f. Pekk Slmi FUNK 19. lokkuut / 48

35 Esimerkki Esimerkki Lske e x dx. 0 Pekk Slmi FUNK 19. lokkuut / 48

36 Kompleksiluvut Määritellään imginriyksikkö i settmll i = 1. Toisin snoen päätämme, että meillä on luku i, jok ei ole reliluku mutt on rtkisu yhtälölle x = 0. Kompleksilukujen joukko on C = {x + iy x, y R}. Jokinen kompleksiluku voidn esittää yksikäsitteisesti muodoss x + iy (jos siis z C niin on olemss yksikäsitteiset x j y, joille z = x + iy ). Pekk Slmi FUNK 19. lokkuut / 48

37 Geometrinen tulkint Geometrisesti kompleksiluvut tulkitn tsoksi. Kompleksiluku z = x + iy vst tson piste (x, y). y (x, y) x + iy i 1 i 1 x 2 i Pekk Slmi FUNK 19. lokkuut / 48

38 Kompleksilukujen lskusäännöt Kompleksiluvulle pätevät smt yhteen-, vähennys-, kerto- j jkolskusäännöt kuin reliluvuille, sillä lisäyksellä että i 2 = 1 (mikä seur suorn i:n määritelmästä). Esimerkki (3 2i)( 5 + i) = i Pekk Slmi FUNK 19. lokkuut / 48

39 Reli- j imginriost Olkoon z = x + iy kompleksiluku missä x, y R. Reliluku x kutsutn luvun z reliosksi j merkitään Re z j reliluku y kutsutn luvun z imginriosksi j merkitään Im z. Esimerkki Re(3 + 2i) = 3 j Im(3 + 2i) = 2. Huom että Re z j Im z ovt relilukuj kikill z C. Pekk Slmi FUNK 19. lokkuut / 48

40 Kompleksikonjugtti eli liittoluku Kompleksiluvun z = x + iy kompleksikonjugtti on z = x iy. Toisin snoen Re z = Re z j Im z = Im z. Geometrisesti kompleksikonjugointi z z on peilus x-kselin suhteen. y 1 i2 = 1 + i2 z = x + iy x z = x iy 1 i2 Pekk Slmi FUNK 19. lokkuut / 48

41 Lskusääntöjä Yhtälöiden z = Re z + i Im z z = Re z i Im z nojll Re z = z + z 2 Im z = z z 2 Lisäksi kompleksiluvuille z j w pätee lskusäännöt z + w = z + w z w = z w z = z. Pekk Slmi FUNK 19. lokkuut / 48

42 Polynomin juuret Luse (Algebrn perusluse) Olkoon P(x) = n x n + n 1x n x + 0 n-steinen kompleksikertoiminen polynomi eli 0, 1,..., n C j n 0. Tällöin polynomill P(x) on tekijöihin jko P(x) = n (x z 1 )(x z 2 )... (x z n ) missä z 1, z 2,..., z n ovt P:n juuret (sm luku voi mhdollisesti esiintyä usesti). Huom että erityisesti tämä koskee myös relikertoimisi polynomej. Pekk Slmi FUNK 19. lokkuut / 48

43 Esimerkki Esimerkki x = (x i)(x + i) Esimerkki x 2 2x + 3 = (x 1 + i 2)(x 1 i 2) Pekk Slmi FUNK 19. lokkuut / 48

44 Modulus eli itseisrvo Kompleksiluvun itseisrvo on z = x 2 + y 2, z = x + iy (x, y R). Huom että z on vektorin (x, y) Euklidinen pituus. z = x + iy θ z x y On helppo todet että z 2 = z z. Pekk Slmi FUNK 19. lokkuut / 48

45 Eksponenttifunktio Kompleksiselle eksponenttifunktiolle z e z e iθ = cos θ + i sin θ pätee Eulerin kv: (θ R). Tämän voi tässä ott osksi kompleksisen eksponenttifunktion määritelmää: e z = e x+iy := e x (cos y + i sin y) (z = x + iy C). Kompleksiselle eksponentifunktiolle pätee e z+w = e z e w e z = e z Pekk Slmi FUNK 19. lokkuut / 48

46 Yksikköympyrä kompleksiluvuill i = e iπ/2 e iθ = cos θ + i sin θ 1 = e iπ sin θ 0 θ cos θ 1 = e 0 i = e i3π/2 Pekk Slmi FUNK 19. lokkuut / 48

47 Npkoordintit Kompleksiluvut on usein kätevää esittää npkoordinteiss: Huom, että jos z 0, niin löydetään θ. z = x + iy = z cos θ + i z sin θ = z e iθ z z on yksikköympyrän piste j siten z = x + iy = z e iθ θ z x y Npkoordinttiesitys nt kompleksilukujen tulolle geometrisen tulkinnn: z w = z e iθz w e iθw = ( z w )e i(θz +θw ). Pekk Slmi FUNK 19. lokkuut / 48

48 Trigonometriset kvt Eulerin kvn nojll cos(x + y) + i sin(x + y) = e i(x+y) = e ix e iy = (cos(x) + i sin(x)) (cos(y) + i sin(y)) = cos(x) cos(y) sin(x) sin(y) + i(sin(x) cos(y) + cos(x) sin(y)) jost sdn cos(x + y) = cos(x) cos(y) sin(x) sin(y) sin(x + y) = sin(x) cos(y) + cos(x) sin(y). Vstvsti yhtälöstä e i2x = ( e ix) 2 voi joht kksinkertisten kulmien kvt. Pekk Slmi FUNK 19. lokkuut / 48

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

Viikon aiheet. Pinta-ala

Viikon aiheet. Pinta-ala info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Numeerinen integrointi.

Numeerinen integrointi. Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun

Lisätiedot

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 +

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 + I. INTEGRAALILASKENTA Arkhimedes (287 22 e.kr.) prbelin segmentin pint-l Newton (642 727) j Leibniz (646 76) keksivät diff.- j int.-lskennn Cuhy (789 857) ε, δ Riemnn (826 866) Riemnnin integrli Lebesgue

Lisätiedot

2 Epäoleellinen integraali

2 Epäoleellinen integraali ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

Pinta-alan laskeminen

Pinta-alan laskeminen Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

Integraalilaskenta. Määrätty integraali

Integraalilaskenta. Määrätty integraali 9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia. 2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x

Lisätiedot

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

Kertausta ja täydennystä

Kertausta ja täydennystä LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

Analyysi B. Derivaatta ja integraali. Pertti Koivisto

Analyysi B. Derivaatta ja integraali. Pertti Koivisto Anlyysi B Derivtt j integrli Pertti Koivisto Kevät 7 Alkusnt Tämä moniste on trkoitettu oheislukemistoksi Tmpereen yliopistoss pidettävälle kurssille Anlyysi B. Monisteen tvoitteen on tuke luentojen seurmist,

Lisätiedot

Pertti Koivisto. Analyysi B

Pertti Koivisto. Analyysi B Pertti Koivisto Anlyysi B TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 TAMPERE 8 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 JOULUKUU 8 Pertti Koivisto Anlyysi

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka B 2014

Mika Hirvensalo. Insinöörimatematiikka B 2014 Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, os II G. Gripenberg Alto-yliopisto 9. helmikuut 16 G. Gripenberg (Alto-yliopisto MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, 9. helmikuut

Lisätiedot

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto Integroimistekniikk /5 Sisältö Sijoitsmenettely Annetn fnktion integrlifnktiot lskettess fnktiot pyritään mntmn siten, että tlos voidn tnnist jonkin lkeisfnktion derivtksi. Usein mntminen jodtn tekemään

Lisätiedot

Lebesguen integraali - Rieszin määritelmä

Lebesguen integraali - Rieszin määritelmä Lebesguen integrli - Rieszin määritelmä Tru Lehtonen Mtemtiikn pro grdu-tutkielm Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kevät 216 Tiivistelmä Jyväskylän Yliopisto Lehtonen, Tru Puliin: Lebesguen

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista Differentili- j integrlilskent 1: tiivistelmä j oheislukemist Pekk Alestlo 4. syyskuut 2014 Tähdellä merkityt kohdt on trkoitettu lähinnä oheislukemistoksi. Lisäksi mukn on joitkin lukiot kertvi kohti,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa

Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön.

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön. I.6. Sijoitusmenettely A. Integrlifunktiot Integrlifunktiot etsittäessä on sopiv derivoimissääntö luettv tkperin. funktion voi trkist derivoimll. Sijoitusmenettely perustuu ketjusääntöön. Löydetyn 6..

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

5.1. Reaalifunktioiden määräämätön integraali

5.1. Reaalifunktioiden määräämätön integraali MAT-3430 Lj mtemtiikk 3 TTY 00 Risto Silvennoinen Luku 5. Integrli 5.. Relifunktioien määräämätön integrli Integrlifunktio Derivoinnin käänteistoimituksen on vstt kysymykseen "Mikä on se funktio, jonk

Lisätiedot

Pertti Koivisto. Analyysi C

Pertti Koivisto. Analyysi C Pertti Koivisto Anlyysi C TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 68/28 TAMPERE 28 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 68/28 JOULUKUU 28 Pertti Koivisto Anlyysi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan määrittää

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

S Fysiikka III (EST), Tentti

S Fysiikka III (EST), Tentti S-114.137 Fysiikk III (ES), entti 30.8.006 1. Lämpövoimkone toteutt oheisen kuvn Crnotin prosessi. Koneess on työineen yksi mooli ideliksu. Lske yksitomisen ksun kierroksen ikn tekemän työn suhde kksitomisen

Lisätiedot

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto x 3. a x 1. x 4 x 11. x 2

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto x 3. a x 1. x 4 x 11. x 2 ANALYYSI 2 Cmill Hollnti _ M M x x 2 x 3 x 4 x b Tmpereen yliopisto 200 2 Sisältö. Preliminäärejä 3 2. Riemnn-integrli 5 2.. Pint-lt j porrsfunktiot....................... 5 2... Pint-l rj-rvon.......................

Lisätiedot

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa Luku 5. Integrli Merkitsemme seurvss [, b]:llä lukusuorn suljettu väliä { R : b}. Olkoon f välillä [, b] määritelty funktio. Snomme, että välillä [, b] määritelty funktio g on funktion f integrlifunktio

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

Analyysin perusteet kauppatieteilijöille P

Analyysin perusteet kauppatieteilijöille P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2017 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

ANALYYSI 3. Tero Kilpeläinen

ANALYYSI 3. Tero Kilpeläinen ANALYYSI 3 Tero Kilpeläinen Luentomuistiinpnoj syksyltä 2005 20. lokkuut 2005 Sisältö 1. Esitietoj 2 1.1. Riemnn-integrli............................ 2 1.2. Derivtt................................. 4 1.3.

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

Monikulmion pinta-ala ylioppilaille

Monikulmion pinta-ala ylioppilaille Solmu 3/9 Monikulmion pint-l lioppilille Mik Koskenoj Mtemtiikn j tilstotieteen litos Helsingin liopisto Tehtävä. Kuusikulmion M kärjet ovt tson pisteissä (, ), (3, ), (, ), (4, 3), (, ) j (, ). Lske M:n

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2 Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.

HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia. HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen

Lisätiedot

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa Integrlilskennst lukioss j lukion oppikirjsrjoiss Mtemtiikn pro grdu -tutkielm Mikko Huttunen Helsingin yliopisto 14. mliskuut 2013 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa

1 Määritelmä ja perusominaisuuksia. 2 Laskutoimitukset kompleksiluvuilla. 3 Reaaliluvut ja kompleksiluvut. 4 Kompleksilukujen algebraa 1 ja perusominaisuuksia 2 Laskutoimitukset kompleksiluvuilla 3 Reaaliluvut ja kompleksiluvut Matematiikan peruskurssi KP3 I OSA 1: Johdatus kompleksilukuihin 4 Kompleksilukujen algebraa 5 Kompleksitaso

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista. JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot