Matematiikan tukikurssi. Hannu Kivimäki

Koko: px
Aloita esitys sivulta:

Download "Matematiikan tukikurssi. Hannu Kivimäki"

Transkriptio

1 Mtemtiikn tukikurssi Hnnu Kivimäki

2 Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn integrlin lskeminen 25 9 Määrätyn integrlin lskeminen sijoituksell 28 Määrätyn integrlin derivoiminen 3 Määrätyn integrlin sovelluksi 35 2 Tilvuuden j vipn ln lskeminen 36 3 Epäoleelliset integrlit 37 4 Integrlien suppeneminen 39 5 Tiheysfunktiot 44 6 Tsointegrlit 47 7 Tsointegrlin lskeminen 5 8 Tsointegrlin lskeminen monimutkisemmss joukoss 54 9 Muuttujien vihto: siirtyminen npkoordintteihin 58 2 Avruusintegrli 66 2

3 2 Avruusintegrli yli monimutkisempien lueiden Muuttujn vihto: sylinterikoordintit 7 23 Muuttujn vihto: pllokoordintit Ensimmäiseen välikokeeseen vlmistvi tehtäviä Osittisintegrointi Osmurtohjotelmi Yhden muuttujn sijoituskeino Tsointegrlit Npkoordintit Sylinterikoordintit Pllokoordintit II Toinen välikoe Usemmn muuttujn funktion rj-rvo Usemmn muuttujn funktion jtkuvuus 9 27 Osittisderivtt j grdientti 9 28 Vektorirvoiset funktiot Suunnttu derivtt 93 3 Tngenttitson yhtälö 96 3 Hessen mtriisi Kokonisdifferentili Osittisderivoinnin ketjusääntö 34 Implisiittinen derivointi 2 35 Neliömuodot 7 36 Neliömuotojen definiittisyys 9 37 Konveksius j konkvius 2 3

4 38 Loklit äärirvot 4 39 Äärirvon lskeminen joukoss 9 4 Rjoitetun äärirvon lskeminen Lgrngen menetelmällä 2 4 Differentiliyhtälöt Lineriset differentiliyhtälöt Toiseen välikokeeseen vlmistvi tehtäviä Usemmn muuttujn rj-rvo j jtkuvuus Suunnttu derivtt j tngenttitson yhtälö Osittisderivoinnin ketjusääntö Implisiittinen derivointi Neliömuodot Usemmn muuttujn funktion optimointi Differentiliyhtälöt A Rtkisut ensimmäisen välikokeen hrjoituksiin 28 A. Osittisintegrointi A.2 Osmurtohjotelmi A.3 Sijoituskeino A.4 Tsointegrlit A.5 Npkoordintit A.6 Sylinterikoordintit A.7 Pllokoordintit B Rtkisut toisen välikokeen hrjoituksiin 38 B. Usemmn muuttujn rj-rvo j jtkuvuus B.2 Suunnttu derivtt j tngenttitson yhtälö B.3 Osittisderivoinnin ketjusääntö B.4 Implisiittinen derivointi B.5 Neliömuodot B.6 Usemmn muuttujn funktion optimointi B.7 Differentiliyhtälöt

5 Os I Ensimmäinen välikoe Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x 2 + e 2x derivtt on 2x + 2e 2x, niin tämän funktion 2x + 2e 2x integrli on x 2 + e 2x. Tätä merkitään seurvsti: 2x + 2e 2x dx x 2 + e 2x. Tässä ( )dx trkoitt yksinkertisesti että luseke ( ) integroidn. Se on yhtenäinen merkintä, jonk ost j dx eivät trkoit yksinään vrsinisesti mitään, joskin dx kertoo, että integrointi suoritetn x:n suhteen. Vstvsti ( )dy trkoitt integrointi y:n suhteen. Vstvsti huomtn esimerkiksi, että x 5 dx 6 x6, kosk d dx 6 x6 x 5. Integrointi on siis helppo, jos ost rvt, minkä funktion derivtt tietty funktio on. Tvlln siis ost jo integroid, jos ost derivoid. Integrlifunktio ei kuitenkn ole yksikäsitteinen: myös funktio /6x 6 + on funktion x 5 integrlifunktio, kosk funktion /6x 6 + derivtt on x 5. Itse siss jos F(x) on funktion f (x) integrlifunktio eli dx d F(x) f (x), niin myös funktio F(x) + C on funktion f (x) integrlifunktio millä thns vkion C rvoll, kosk d (F(x) + C) f (x) + f (x). dx Esimerkki.. ( Funktion ) 4x 2 kikki integrlifunktiot ovt muoto 3 4 x3 + C, kosk d 43 dx x 3 + C 4x 2. Kosk integrointi on derivoinnin käänteistoimitus, niin jokist derivoimissääntöä vst käänteinen integroimissääntö. Otetn näistä esimerkkejä.

6 Esimerkki.2. Potenssifunktion x n derivtt on nx n. Täten x n dx n + xn+ + C. Eli kosk potenssin derivoimissääntö kertoo, että potenssi tulee eteen kertoimeksi j potenssi vähenee yhdellä, kertoo vstv integrointisääntö että potenssi ksv yhdellä j tämän yhdellä ksvneen potenssin käänteisluku tulee eteen kertoimeksi. Tästä seur esimerkiksi, että x 325 dx 326 x326 + C. Esimerkki.3. Tunnetusti logritmin ln x derivtt on /x. Täten kun x >. dx ln x + C, x Tähän mennessä käsitellyt integroinnit ovt olleet käytännössä melko suorviivisi. Hnklmpi tehtäviä ovt usein derivoinnin ketjusääntöön perustuvt integroinnit. Derivoinnin ketjusääntöhän kertoo, että yhdistetyn funktion f (g(x)) derivtt on f (g(x))g (x). Eli ulkofunktion derivtt (rvoll sisäfunktio g(x)) kert sisäfunktion derivtt. Täten tämä sääntö kertoo meille esimerkiksi, että Dx(x 2 + 6x) 2 2(x 2 + 6x) 9 (2x + 6). Täten luonnollisesti 2(x 2 + 6x) 9 (2x + 6)dx (x 2 + 6x) 2 + C, eli käytännössä tässäkään integroimissäännössä ei ole mitään uutt: se kertoo inostn että f (g(x))g (x)dx f (g(x)) + C. Käytännössä vike on huomt, että luseke 2(x 2 + 6x) 9 (2x + 6) on muoto f (g(x))g (x). Esimerkki.4. (3x 2 + 2)e x3 +2x+5 dx e x3 +2x+5 + C. 2

7 Mtemttisen nlyysin kurssilt muistuu mieleen myös, että logritmin derivoimissääntöä j ketjusääntöä voi yhdistää derivoitess funktion f (x) logritmi: Dx ln f (x) f (x) f (x). Tässä pitää muist, että logritmi on määritelty inostn, kun f (x) >. Toislt jos f (x) <, niin silloin puolestn ln( f (x)) on määritelty (kosk tällöin f (x) > ) j Täten funktion f (x) f (x) Dx ln( f (x)) f (x) f (x) f (x) f (x). integrointi tuott tuloksen ln f (x) + C, jos f (x) on positiivinen, j tuloksen ln( f (x)) + C, jos f (x) on negtiivinen. Nämä kksi tpust voi yhdistää kätevästi kirjoittmll, että f (x) dx ln f (x) + C, f (x) joss f (x) voi oll negtiivinen ti positiivinen, kunhn f (x). Kosk esimerkiksi Dx ln(x 2 + 5x + ) 2x + 5 x 2 + 5x +, niin vstv integrointi kertoo täten, että ( ) 2x + 5 x 2 dx ln x 2 + 5x + + C. + 5x + Eli jos tunnistt integroitvn funktion olevn muoto f (x), niin integrointitehtävän vstus on yksinkertisesti ln f (x) + f (x) C. Esimerkki.5. Integroidn nyt funktio 2x x 3 + x. Tämä ei itse siss ole muoto f (x)/ f (x), mutt sen huomtn olevn muoto 4 f (x)/ f (x). Kosk integrointi on linerinen opertio, tämän lusekkeen integrointi voidn suoritt helposti siirtämällä kerroin 4 eteen: Tämä trkoitt, että ( f (x) + bg(x))dx f (x)dx + b g(x)dx. 3

8 2x x 3 + x dx 4 3x 2 + x 3 + x dx 4 ln x 3 + x. Tässä vditn täydellisyyden vuoksi vielä ehto x 3 + x. Huom, että integrlifunktio F(x) on in derivoituv, kosk määritelmän mukn F (x) f (x). Anlyysin peruskurssill osoitettiin, että derivoituv funktio on in jtkuv. Tästä seur, että integrlifunktio on in jtkuv. Tästä tuloksest on pu, kun hetn ploittin määriteltyjen funktioiden integrlej, kuten ll olevss tehtävässä: Esimerkki.6. Etsitään funktion { x 2, kun x f (x) x, kun x < integrlifunktio. Aluksi integroidn funktio ploittin: funktion x 2 integrlifunktiot ovt muoto 3 x3 + C j funktion x integrlifunktiot ovt muoto 2 x2 + C 2. Täten funkion f (x) integrlifunktiot F(x) ovt muoto { 3 x 3 + C F(x), kun x 2 x2 + C 2, kun x <. Tämän integrlifunktion pitää kuitenkin oll jtkuv, kosk integrlifunktiot ovt in jtkuvi. Tämä rjoitt vkioiden C j C 2 rvoj. Jott tuo integrlifunktio olisi jtkuv, on oltv että pisteessä x nuo kksi plst yhtyvät, eli 3 x3 + C 2 x2 + C 2, kun x. Tästä seur, että on oltv C voidn ilmist muodoss: C 2. Täten hlutut integrlifunktiot F(x) { 3 x 3 + C, kun x 2 x2 + C, kun x <. Tässäkin esimerkissä tuloksen oli siis joukko integrlifunktioit: yksi integrlifunktio jokist vkion C rvo kohden. Käytännössä sdn 4

9 vin yksi rtkisu, jos rjoitetn funktion rvo tietyssä pisteessä. Jos yllä olevss esimerkissä vdittisiin vikkp, että F(3), niin silloin C eli C 9. Tällöin stisiin yksikäsitteinen integrlifunktio: F(x) { 3 x 3 9, kun x 2 x 2 9, kun x <. Tämä ehto F(3) on esimerkki lkurvost, joit tulln tpmn lisää esimerkiksi differentiliyhtälöiden yhteydessä. 2 Osittisintegrointi Mtemttisen nlyysin peruskurssill derivoitiin funktioit, jotk olivt khden funktion tuloj: esimerkiksi funktio (2x 2 + 3x + )(e x + 4x) on funktioiden 2x 2 + 3x + j e x + 4x tulo. Tällinen funktio derivoitiin tulosäännöllä, jok menee seurvsti: (2.) d dx ( f (x)g(x)) f (x)g(x) + f (x)g (x). Tällä kvll voidn lske esimerkiksi yllä olevn funktion derivtt: d ( ) (2x 2 + 3x + )(e x + 4x) (4x + 3)(e x + 4x) + (2x 2 + 3x + )(e x + 4). dx Derivoinnin tulosääntö eli yhtälö (2.) voidn luonnollisesti integroid kummltkin puolelt: d dx ( f (x)g(x)) dx f (x)g(x)dx + f (x)g (x)dx. Kosk integrointi j derivointi ovt toistens käänteistoimituksi, yllä olevn yhtälön vsemmll puolell nämä kksi toimitust kumovt toisens j koko yhtälö sdn seurvn muotoon: f (x)g(x) f (x)g(x)dx + f (x)g (x)dx. Tästä yhtälöstä voidn nyt vähentää kummltkin puolelt termi f (x)g(x)dx, jolloin sdn osittisintegroinnin kv: 5

10 (2.2) f (x)g (x) f (x)g(x) f (x)g(x)dx. Eli: hlumme integroid funktion f (x)g (x). Jos tämä integrointi ei onnistu suorn (esimerkiksi kppleess esitetyllä tvll), voidn kokeill osittisintegrointi. Tällöin lsketn ensin funktion f (x) derivtt f (x) j funktion g (x) integrli g(x). Lopuksi lsketn integrli f (x)g(x)dx, minkä jälkeen hluttu integrli sdn kvst (2.2). Esimerkki 2.. Lsketn integrli xe x dx käyttämällä osittisintegrointi. Ensinnä luonnollisesti lskettvn integrlin on oltv muoto f (x)g (x)dx. Esimerkin luseke on tätä muoto, kun xe x f (x)g (x). Käytännössä smme in vlit, kumpi osist x j e x on f (x) j kumpi on g (x). Tämä tehtävä rtke inostn, jos vlitsemme nämä seurvsti: f (x) x g (x) e x. Seurv vihe osittisintegroinniss on in lske funktiot f (x) j g(x). Nämä on tällä kert helppo lske: f (x) g(x) e x. Tällöin termi f (x)g(x) on yhtä kuin xe x. Tämän tehtävään sovellettun osittisintegroinnin kv kertoo siis seurv: f (x)g (x)dx f (x)g(x) f (x)g(x) xe x dx xe x e x dx. 6

11 Kosk tuo viimeinen termi e x dx on yhtä kuin e x, on tehtävän rtkisu seurv: xe x dx xe x e x. Tämä on vielä hyvä vrmist derivoimll yllä olevn yhtälön oike puoli (käytetään derivoinnin tulosääntöä): Eli tehtävän tulos pätee. d dx (xex e x ) e x + xe x e x xe x. Tässä esimerkissä huomsimme osittisintegroinnin pääviheet:. Vlitn kumpi integroitvn lusekkeen osist on f (x) j kumpi on g (x). 2. Lsketn f (x) j g(x). 3. Lsketn integrli f (x)g(x)dx 4. Käytetään osittisintegroinnin kv. Tämä oli yksinkertinen osittisintegrointitehtävä j kikki nämä viheet sujuivt vivtt. Seurvss esimerkissä koht 3 ei toimi suorn, vn osittisintegrointi joudutn soveltmn usen kertn. Esimerkki 2.2. Lsketn seurvksi integrli x 2 e x dx. Vlitn funktiot seurvsti: f (x) x 2 j g (x) e x, jolloin f (x) 2x j g(x) e x. Tällöin sdn osittisintegroinnin kv käyttäen: x 2 e x dx x 2 e x 2xe x dx. Tässä integrli 2xe x dx 7

12 ei ole lskettviss suorn, mutt sekin voidn lske osittisintegroinnill, mikä oikestn tehtiinkin jo (vkiot 2 ville) edellisessä esimerkissä: 2xe x dx 2 xe x dx 2(xe x e x ). x 2 e x dx x 2 e x 2xe x dx x 2 e x 2(xe x e x )dx x 2 e x 2xe x + 2e x dx. Tämän esimerkin opetus on siis, että joskus osittisintegrointi pitää sovelt usemmn kerrn smss tehtävässä. Seurv esimerkki puolestn kertoo, että joskus osittisintegrointi vtii hiemn luovuutt funktioiden f (x) j g (x) vlinnss. Esimerkki 2.3. Lsketn integrli ln xdx. Tässä funktiot f (x) j g (x) tuntuvt luksi mhdottomilt muodost, kosk integrlin sisässä näyttää olevn vin yksi funktio: ln x. Pienellä luovuudell huommme kuitenkin että tämäkin luseke voidn esittää khden funktion tulon: muodoss ln xdx, jolloin voidn vlit f (x) ln x j g (x). Nyt f (x)g(x) x ln x j f (x)g(x)dx x dx x, x jolloin ln xdx x ln x x. All olevss esimerkissä esiintyy kolms tpus, jok kohdtn usein osittisintegroitess: integrointi ei vrsinisesti tuot tulost, mutt lopult sdn luseke, jost integrli sdn pääteltyä. 8

13 Esimerkki 2.4. Integroidn nyt osittisintegroinnill e 2x sin xdx. Vlitn f (x) e 2x j g (x) sin x. Täten f (x) 2e 2x j g(x) cos x (kosk kosiinifunktion derivtt on sin x), joten e 2x sin xdx e 2x cos x 2e 2x ( cos x) e 2x cos x + 2 e 2x cos x Sovelletn nyt osittisintegrointi toiseen kertn: nyt tuohon jälkimmäisen integrliin e 2x cos x. Vlitn tässä f (x) e 2x j g (x) cos x. Täten f (x) 2e 2x j g(x) sin x j yllä olev luseke sdn seurvn muotoon: ( ) e 2x cos x + 2 e 2x cos xdx e 2x cos x + 2 e 2x sin x sin x(2e 2x dx) e 2x cos x + 2e 2x sin x 4 sin xe 2x dx. Nyt huomtn, että tähän sti stu tulos kertoo itse siss seurv: e 2x sin xdx e 2x cos x + 2e 2x sin x 4 sin xe 2x dx Tässä integrli yhtälön vsemmll puolell on sm kuin yhtälön oiken puolen viimeinen termi, joten ne voidn siirtää smlle puolelle. Tämän jälkeen integrli rtke helposti: 5 e 2x sin xdx e 2x cos x + 2e 2x sin x 4 e 2x sin xdx e 2x cos x + 2e 2x sin x e 2x sin xdx ( ) e 2x cos x + 2e 2x sin x 5 sin xe 2x dx Tiivisteenä: osittisintegrointi on derivoinnin tulosäännön käänteistoimitus 2. Sitä knntt sovelt silloin, kun f (x)g (x)dx 2 Jos et muist tentissä osittisintegroinnin kv ulko, riittää että muistt tulon derivoimissäännön, jolloin voit joht osittisintegrlin kvn tästä. 9

14 on vike lske, mutt f (x)g(x)dx on helppo lske. Kuten in integroitess, voi osittisintegroinninkin tuloksen trkist derivoimll stu luseke. 3 Osmurtohjotelm Usein integroitvn on rtionlifunktio eli funktio, jok on muoto P(x) Q(x), joss P(x) j Q(x) ovt polynomej. Tällinen rtionlifunktio on esimerkiksi x 5 + 3x + x 3 + 2x 2. Tässä knntt kiinnittää luksi huomiot polynomien steisiin: yllä osoittjn ste on 5 j nimittäjän ste on 3. Polynomin ste on siis sen korkeimmn potenssin ste. Rtionlifunktioiden integrlej lskettess on oleellist huomt ensiksi, onko osoittjn ste suurempi kuin nimittäjän ste. Yllä osoittjn ste on suurempi, kun ts funktion x 2 + 4x x 7 + 5x nimittäjän ste (eli 7) on suurempi kuin osoittjn ste (eli 2). Se onko osoittjn vi nimittäjän ste suurempi rtkisee miten näitä integrlej knntt lske. Aluksi käsittelemme tpuksen, joss nimittäjän steluku on suurempi. Esimerkki tällisest funktiost on (x 4)(x 2), jonk nimittäjän steluku on kksi, minkä voi nähdä lskemll nimittäjän lusekkeen uki. Tätä funktiot on kuitenkin mhdotont integroid suorn. Oleellist tällisess tpuksess on tutki nimittäjän nollkohti. Yllä olevll funktioll on kksi erillistä nollkoht: x 4 j x 2 2.

15 Tällisess tpuksess tuolle funktiolle voi tehdä seurvnlisen osmurtohjotelmn: (x 4)(x 2) A x 4 + A 2 x 2. Tässä A j A 2 ovt vkioit, jotk pitää rtkist. Käytännössä nämä rtkistn vlitsemll ne siten, että yllä olevn yhtälön vsen j oike puoli ovt smoj: (x 4)(x 2) A x 4 + A 2 x 2 (x 2)A (x 2)(x 4) + (x 4)A 2 (x 4)(x 2) (x 2)A + (x 4)A 2 (x 4)(x 2) A x 2A + A 2 x 4A 2. (x 4)(x 2) Tästä voidn nyt rtkist A j A 2 : täytyy päteä, että (x 4)(x 2) A x 2A + A 2 x 4A 2 (x 4)(x 2) eli että A x 2A + A 2 x 4A 2. Kosk tällä vsemmll puolell on pelkkä luku, eikä yhtään x:ää sisältävää termiä, niin on oltv että A x + A 2 x eli A + A 2. Toinen ehto, jok sdn on 2A 4A 2. Kun nämä kksi ehto yhdistetään, sdn ensimmäisestä ehdost, että A A 2, jonk voi sijoitt toiseen ehtoon j rtkist 2A 2 4A 2 eli A 2 /2, jolloin A /2. Täten tuo tehtävän rtionlifunktio voidn esittää muodoss (x 4)(x 2) A x 4 + A 2 x 2 /2 x 4 /2 x 2. Nyt tämä oike puoli on integroitviss: /2 x 4 /2 x 2 dx /2 x 4 dx /2 x 2 dx /2 ln x 4 /2 ln x 2 + C.

16 Täten tehtävän rtkisu on dx /2 ln x 4 /2 ln x 2 + C. (x 4)(x 2) Yleisesti otten kun integroitvn on rtionlifunktio f (x) P(x)/Q(x), jonk nimittäjän Q ste on suurempi kuin sen osoittjn P ste j jonk nimittäjällä on erilliset nollkohdt (Q(x) (x x )(x x 2 ) (x x n )) niin integrli sdn rtkistu jkmll tehtävän funktio ensin osmurtoihin: P(x) Q(x) A + A A n x x x x 2 x x n j rtkisemll tästä vkiot A,..., A n. Tästä sdn lopult integroimll rtkisuksi P(x) Q(x) dx A ln x x + A 2 ln x x A n ln x x n + C Esimerkki 3.. Hlutn lske integrli x 2 x dx. Nyt pitää loitt jkmll nimittäjä tekijöihin, jolloin näemme sen nollkohdt: x 2 x x(x ). Eli nimittäjän nollkohdt ovt selvästi j. Täten osmurtohjotelm on muoto x(x ) A x + A 2 x. Tästä voidn rtkist kertoimet A j A 2 vnhn mlliin: x(x ) A x + A 2 x A (x ) x(x ) + A 2x x(x ) A x A + A 2 x. x(x ) Jälleen rtkistn termit A j A 2 settmll A x A + A 2 x. Tästä seur heti, että A. Tästä ts seur, että A 2. Täten x(x ) dx x dx + x dx ln x dx + ln x + C. 2

17 Toinen osmurtotpus, jot käsittelemme, on tpus joss osoittjn steluku on suurempi kuin nimittäjän steluku. Tällinen funktio on esimerkiksi x 4 x 2 3x + 2. Tällinen polynomi pitää luksi muokt eri muotoon esimerkiksi jkokulmss. All tämä muokkus kuitenkin suoritetn hiemn eri tvll. Iden on esittää osoittj x 4 muodoss nimittäjä kert jokin luku plus jokin luku. Eli yleisesti otten hlumme esittää rtionlifunktion P(x)/Q(x) muodoss (x)q(x) + b(x) Q(x) (x) + b(x) Q(x), joss (x) j b(x) ovt polynomej j P(x) (x)q(x) + b(x). Iden on, että osmäärä b(x) olisi muodoss, joss nimittäjän steluku olisi suurempi kuin osoittjn Q(x) steluku. Funktion x 4 x 2 3x + 2 tpuksess hlumme siis lisätä osoittjn nimittäjän x 2 3x + 2 kerrottun jollkin polynomill. Kosk osoittjss on termi x 4, niin kerrotn tämä nimittäjä termillä x 2, jolloin näiden tuloss esiintyy termi x 4 : x 4 x 2 3x + 2 x2 (x 2 3x + 2) + (3x 3 2x 2 ) x 2 3x + 2 x 2 + 3x3 2x 2 x 2 3x + 2. Tuoss jälkimmäinen termi 3x 3 2x 2 vlittiin siten, että pätee yhtäsuuruus x 4 x 2 (x 2 3x + 2) + (3x 3 2x 2 ). Tämän jälkeen osoittjn tekijät jettiin erikseen nimittäjällä. Sduss funktioss on kuitenkin edelleen tekijä (3x 3 2x 2 )/(x 2 3x + 2), joss osoittjn ste ylittää nimittäjän steen. Sovelletn tähänkin sm tekniikk: esitetään sen osoittj nimittäjän kertoimen j jäännöstermin vull: 3x 3 2x 2 x 2 3x + 2 3x(x2 3x + 2) + (9x 2 6x) x 2 3x + 2 3x + 9x2 6x x 2 3x

18 Tässä vlittiin jälleen nimittäjään kerroin 3x siten että osoittjn suurin termi 3x 3 stisiin nimittäjän j termin 3x kertoimen. Termi (9x 2 6x) vlittiin siten, että pätisi 3x 3 2x 2 3x(x 2 3x + 2) + (9x 2 6x). Nyt olemme sneet lkuperäisen funktion muotoon x 4 x 2 3x + 2 x2 + 3x + 9x2 6x x 2 3x + 2. Muoktn vielä tämä viimeinen termi smll tktiikll kuntoon. Esitetään se muodoss 9x 2 6x x 2 3x + 2 9(x2 3x + 2) + (2x 8) x 2 3x + 2 2x x 2 3x + 2 Täten olemme sneet muokttu lkuperäisen funktion muotoon x 4 x 2 3x + 2 x2 + 3x x 8 x 2 3x + 2. Tämän viimeinen termi ei ole vieläkään integroitviss, mutt inkin se on tuttu tyyppiä, joss nimittäjän steluku ylittää osoittjn steluvun. Lisäksi sen nimittäjä voidn esittää tulomuodoss: x 2 3x + 2 (x )(x 2), joten luseke voidn esittää osmurtoin: 2x 8 x 2 3x + 2 A x + A 2 x 2. Tästä voidn rtkist vnhn tpn A 3 j A Täten lkuperäinen funktio sdn integroitu seurvsti: x 4 x 2 3x + 2 dx x 2 + 3x x + 24 x 2 dx 3 x x2 + 9x 3 ln x + 24 ln x 2 + C. 4 Lisää osmurtoj Tutkitn jälleen rtionlifunktion P(x)/Q(x) integrointi. Aiemmin käsittelimme tpuksen, joss nimittäjä voidn esittää muodoss Q(x) 4

19 (x x )(x x 2 ) (x x n ). Tässä siis nimittäjällä on n kpplett nollkohti: nollkohdt ovt x, x 2,..., x n, jotk olivt kikki keskenään erisuuri eli x i x j kun i j. Tällinen yhtälö stiin integroitu esittämällä se muodoss P(x) Q(x) A x x + A 2 x x A n x x n j integroimll tämän lusekkeen oike puoli. Tässä siis rtionlifunktio jettiin osmurtoihin. Nyt jtketn osmurtojen käsittelyä, mutt enää ei oletet että nimittäjän voi esittää muodoss Q(x) (x x )(x x 2 ) (x x n ), joss nollkohdt ovt erisuuri. Voi oll esimerkiksi, että integroitv rtionlifunktio on (4.3) (x 3) 2 (x 3)(x 3), jolloin nimittäjällä (x 3) 2 on kksi kert toistuv nollkoht x 3. Smoin funktioll (x )(x ) 8 on 8-kertinen nollkoht x, minkä lisäksi sillä on selvästi nollkoht x 2. Tällinen usempikertinen nimittäjän nollkoht voidn myös rtkist osmurtohjotelmll, mutt se vtii erilist osmurtohjotelm. Ensinnä pitää huomt, että yllä yhtälö (4.3) on helppo integroid, sillä Jetn nyt yhtälö osmurtoihin seurvsti: (x 3) 2 dx (x 3) 2 dx (x 3) + C x 3 + C. (x )(x 3) 2 (x )(x 3) 2 A x + A 2 x 3 + A 3 (x 3) 2. 5

20 Nyt siis khteen kertn toistuv nollkoht 3 iheutt sen, että termi x 3 esiintyy osmurtohjotelmss sekä ensimmäisessä että toisess potenssiss. Nyt yllä olevst yhtälöstä voidn rtkist tuttuun mlliin kertoimet A,A 2 j A 3 : (x )(x 3) 2 A x + A 2 x 3 + A 3 (x 3) 2 A (x 3) 2 (x )(x 3) 2 + A 2(x )(x 3) (x )(x 3) 2 + A 3(x ) (x )(x 3) 2 A (x 2 6x + 9) (x )(x 3) 2 + A 2(x 2 4x + 3) (x )(x 3) 2 + A 3(x ) (x )(x 3) 2. Tästä yhtälöstä voidn rtkist kertoimet A, A 2 j A 3 settmll osoittjt yhtä suuriksi: A (x 2 6x + 9) + A 2 (x 2 4x + 3) + A 3 (x ). Tämän yhtälön vsemmll puolell ei esiinny termejä, joss olisi kertoimen x 2 ti x. Täten on oltv esimerkiksi, että A x 2 + A 2 x 2 A + A 2. Vstvll päättelyllä sdn yhtälöryhmä Tästä sdn rtkistu kertoimet A + A 2 6A 4A 2 + A 3 9A + 3A 2 A 3 A /4 A 2 /4 A 3 /2. Täten integrointi voidn suoritt seurvsti: (x )(x 3) 2 dx /4 /4 x dx + x 3 dx + 4 ln x 4 ln x 3 2 /2 (x 3) 2 dx ( ) + C. x 3 Yllä olevll tekniikll voidn rtkist myös luseke, joss toistuvi nollkohti on enemmän kuin kksi. Esimerkiksi yhtälö (x )(x 3) 3 6

21 jetn osmurtoihin seurvsti: (x )(x 3) 3 A x + A 2 x 3 + A 3 (x 3) 2 + A 4 (x 3) 3. Yleisesti otten siis rtionlifunktio, jonk nimittäjässä on k-kertinen juuri, voidn jk osmurtoihin seurvsti: P(x) (x x )(x x 2 ) k A + A 2 A + 3 x x x x 2 (x x 2 ) A k (x x 2 ) k. Osmurtohjotelmist on nyt on käsitelty tpukset, joiss rtionlifunktion P(x)/Q(x) nimittäjä voidn esittää nollkohtiens tulon eli muodoss (x x ) (x x n ). Kuitenkin esimerkiksi funktion (x )(x 2 + ) nimittäjän tekijällä x 2 + ei ole yhtään nollkoht, kosk x 2 + > kikill x. Tällöin osmurtohjotelm s seurvn muodon: (x )(x 2 + ) A x + Bx + C x 2 +, joss A, B j C ovt relilukuj. Tällä kert nollkohdttomn termin x 2 + osmurtoon tulee termi, jok on muoto Bx + C. Tämän jälkeen lsku sujuu smn tpn kuin ikisemminkin. Esimerkki 4.. Integroidn rtionlifunktio x x 3 2x 2 + x 2. Ensinnä huomtn kokeilemll, että nimittäjän yksi nollkoht on x 2. Täten nimittäjä voidn esittää termin (x 2) j jonkin toisen termin tulon. Huomtn, että itse siss nimittäjä voidn jk tekijöihin seurvsti: x 3 2x 2 + x 2 (x 2)(x 2 + ). Täten integroitvn on funktio x (x 2)(x 2 + ). Tässä tekijällä x 2 + ei ole yhtään nollkoht. Täten osmurtohjotelm on seurv: x (x 2)(x 2 + ) A x 2 + Bx + C x

22 Tästä rtkistn seurvksi kertoimet A, B j C: x (x 2)(x 2 + ) A x 2 + Bx + C x 2 + A(x2 + ) (Bx + C)(x 2) (x 2)(x ) (x 2)(x 2 + ) Ax 2 + A (x 2)(x 2 + ) + Bx2 2Bx + Cx 2C (x 2)(x 2. + ) Asetetn jälleen smnkertoimiset termit yhtä suuriksi, jolloin sdn A 2/5 B 2/5 C /5 Täten integrointi voidn suoritt seurvll hjotelmll: x (x 2)(x 2 + ) dx 2 5 2/5 2/5x + /5 x 2 dx + x 2 dx + x 2 dx 2x 5 x 2 + dx + 5 x 2 + dx 2 5 ln x 2 5 ln x2 + + rctn x + C. 5 Tässä toisell rivillä jettiin tekijä ( 2/5x + /5)/(x 2 + ) khteen osn, joist toiseen käytettiin tulost, jonk mukn funktion /( + x 2 ) integrli on rctn x. Nyt olemme käsitelleet kikki osmurtotpukset. Rtionlifunktio P(x)/Q(x) integroidn siis seurvsti:. Jos rtionlifunktio on muoto F (x)/f(x) se voidn integroid suorn: sen integrli on ln F(x) + C. Smoin jos rtionlifunktio on muoto /(x x n ) k, se voidn integroid suorn. Kolms suorn integroitv luseke on /( + x 2 ). 2. Jos rtionlifunktio ei ole jomp kump näistä muodoist, se plutetn näihin muotoihin osmurtohjotelmn vull. Tästä on useit tpuksi: () Jos osoittjn ste on suurempi ti yhtä suuri kuin nimittäjän ste, se muoktn esimerkiksi jkokulmn vull muotoon, joss nimittäjän ste ylittää osoittjn steen. 8

23 (b) Jos nimittäjän ste ylittää osoittjn steen, rtionlifunktio esitetään osmurtojen summn. Osmurtojen trkk muoto riippuu siitä, onko nimittäjällä kuink mont nollkoht, j jos on, niin ovtko nämä nollkohdt usempikertisi vi uniikkej. Osmurtohjotelmn vull rtionlifunktio plutetn muotoon, joss se voidn esittää esimerkiksi muoto F (x)/f(x) olevien termien summn. 5 Sijoituskeino Jos integrli ei rtke tähän mennessä käsitellyillä tekniikoill, voidn integroitv luseke usein muokt rtkevn muotoon sijoittmll x:n piklle jokin muu muuttuj. Esimerkiksi integrlin x 2 + 6x + dx voi rtkist sijoituskeinoll. Muoktn luksi nimittäjä x 2 + 6x + muotoon, jost nähdään millinen sijoitus knntt tehdä. Huomtn, että x 2 + 6x + x 2 + 6x (x + 3) 2 +, joten luontev sijoitus olisi vlit t x + 3. Eli nyt tekijä x + 3 korvtn t:llä: x 2 + 6x + dx (x + 3) 2 + dx t 2 + dt Yllä sijoitettiin myös dx:n piklle dt, kosk integrointi suoritettiin lopult t:n suhteen. Nyt integrli on rtkevss muodoss, sillä integrli, jok on muoto /( + x 2 ) on rkustngenttifunktion integrli. Eli: t 2 dt rctn t + C + Sijoituskeino käyttäessä pitää muist lopuss sijoitt tkisin x:ää sisältävä luseke t:n piklle. Tässä tehtävässä siis sijoitetn t x + 3 tkisin, jolloin sdn lopullinen vstus: x 2 dx rctn(x + 3) + C. + 6x + Sijoituskeinoss siis sijoitetn jonkin x:n lusekkeen piklle t. Tyypillinen sijoitus on esimerkiksi t x eli x t 2. 9

24 Tällisen sijoituksen ide on siis tehdä integroitvst lusekkeest helposti lskettv. Sijoituskeinoss siis korvtn x lusekkeell g(t) eli jollkin t:n funktioll. Käytännössä tehtävästä etsitään x:ää sisältäviä termejä, joiden piklle olisi kätevää sijoitt t. Yllä esimerkiksi vlitsimme termin x + 3 korvttvksi t:llä, kosk se teki integroinnist helpomp. Sijoituskeino soveltviss tehtävissä ongelmn on yleensä nimen omn keksiä mikä luseke knntt korvt t:llä. Usein ensimmäinen sijoitusyritys ei tuot tulost, vn on yritettävä uudestn eri sijoituksell. Ain kun sijoitt t:n lusekkeeseen, pitää muist myös korvt dx lusekkeell g (t)dt eli funktion g derivtn j dt:n tuloll. Yllä tämä ei ollut ongelm, kosk jos t x + 3 niin x t 3 g(t) j selkeästi g (t), jolloin dx dt. Esimerkki 5.. Lsketn integrli x x + dx sijoituksell. Tässä potentilisin sijoituksin tulee mieleen t x + j t x +. Tämä tehtävä rtke kätevästi tällä jälkimmäisellä sijoituksell, joten olkoon t x +. Ensin rtkistn tästä x: t x + t 2 x + x t 2 g(t) Tästä sdn, että g (t) 2t, jolloin meidän pitää muist sijoitt dx:n piklle 2tdt. Tällöin tehdään sijoitukset x + t x t 2 j dx 2tdt jolloin luseke sdn muotoon x x + dx (t 2 )t(2tdt) 2t 4 2t 2 dt 2 5 t5 2 3 t3 + C 2

25 Lopullinen vstus sdn sijoittmll yllä t:n piklle tkisin luseke x + : x x + dx 2 5 ( x + ) ( x + ) 3 + C 2 5 (x + )5/2 2 3 (x + )3/2 + C. Yllä sijoituskeino rtkisi tehtävän melko suorn. Usein sijoituksen tuloksen kuitenkin päädytään lusekkeeseen, jot on muokttv esimerkiksi osmurroill prempn muotoon. Sijoituskeinoss j osmurroiss on siis kummsskin iden muokt integroitv lusekett helpompn muotoon. Usein lusekkeen s helpompn muotoon muullkin tvoin. Esimerkiksi jos lskettvn on integrli 2 sin x cos xdx voimme käyttää kv 2 sin x cos x sin 2x, joll integrli rtke helposti. 6 Määrätty integrli Aiemmin trkstelimme määräämätöntä integrli ( )dx, jonk hyöty on pääosin siinä, että se on derivoinnin käänteistoimitus. Nyt käsittelemme lustvsti määrättyä integrli b ( )dx. Tähän on iempn verrttun lisätty integroinnin rjt: integrointi loitetn pisteestä x j lopetetn pisteeseen x b. Eli väli (, b) on integrointiväli: funktio integroidn tältä väliltä. Määrätty integrli on hyvin kätevä käsite. Esimerkiksi jos f (x) on ei-negtiivinen funktio eli f (x), niin määrätty integrli b f (x)dx mitt funktion f j x-kselin rjoittmn lueen pint-l välillä x b. Määrätyn integrlin intuitio on se, että jos välin (, b) pituus on 2

26 (eli jos b + ), niin määrätty integrli nt funktion keskirvon tällä välillä. Esimerkiksi tiedetään, että x 2 dx 3. Kosk välin (, ) pituus on yksi, niin voimme sno, että funktion x 2 keskirvo tällä on tällä välillä on /3. Yllä huomtn, että määrätyllä integrlill on myös se hyvä puoli, että sen rvo on yksikäsitteinen. Sm ei voi sno määräämättömästä integrlist, joss on in mukn vkio C. Jos välin (, b) pituus ei ole yksi, voidn sno että määrätty integrli nt funktion keskirvon tällä välillä kerrottun välin (, b) pituudell eli luvull b : b ( ) f (x)dx Funktion f keskirvo välillä (, b) (b ). Tämän intuition vull voimme nt rvioit tietyn määrätyn integrlin rvolle. Jos tiedämme vikk, että funktio f s in rvons välillä /2 j 3/2 eli /2 f (x) 3/2, niin luonnollisesti tämän funktion keskirvo on myös tällä välillä. Kosk määrätty integrli on funktion keskirvo tietyllä välillä (, b) kerrottun tämän välin pituudell, voidn nyt sno 2 (b ) b 7 Ylä- j lsumm f (x)dx 3 (b ). 2 Määrätyn integrlin täsmällinen määritelmä vtii lsummn j yläsummn käsitteitä. Ylä- j lsumm kertovt yksinkertisesti rvion tietyn käyrän ll olevn lueen pint-llle. Oletetn nyt, että hlumme lske määrätyn integrlin f (x)dx eli hlumme lske funktion f (x) ll olevn lueen pint-ln, kun x (, ). Alsumm nt tälle pint-llle lrjn j yläsumm ā nt puolestn tälle pint-llle ylärjn, eli f (x)dx ā 22

27 Kummnkin lskeminen loitetn jkmll väli (, b) osiin. Yllä käytetty väli on (, ). Tämän voi jk osiin esimerkiksi seurvsti: (, ) (, /3] (/3, 2/3] (2/3, ) Tässä jkopisteet ovt /3 j 2/3. Ne siis jkvt välin (,) kolmeen osn. Alsumm sdn tämän jon vull lskettu kolmess osss. Vlitn ensin väliltä (, /3) funktion f (x) pienin 3 rvo tällä välillä. Olkoon tämä m. Seurvksi vlitn funktion pienin rvo väliltä (/3, 2/3). Olkoon tämä m 2. Vlitn vstvsti funktion pienin rvo välillä (2/3, ), jot merkitään m 3. Nyt näiden jkopisteiden määrittämä lsumm sdn lskettu kertomll nuo pisteet m, m 2 j m 3 kyseisten välien pituuksill (eli luvull /3): 3 m + 3 m m 3. Yläsumm sdn vstvsti lskemll funktion suurimmt rvot yllä muodostetuill väleillä. Merkitään näitä suurimpi rvoj M, M 2 j M 3. Näistä sdn lskettu yläsumm kvll ā 3 M + 3 M M 3. Esimerkki 7.. Lsketn integrlille 2 x 2 dx ylä- j lsumm. Ensin pitää päättää välin (2, 3) jkopisteet. Vlitn pisteiksi 4/3 j 5/3, jolloin smme siis kolme väliä. Ensin pitäisi lske funktion pienemmät j suurimmt rvot näillä väleillä. Tämä on helppo, kosk f on välillä (2, 3) idosti ksvv funktio: suurin rvo on siis in välin oikess päätepisteessä j pienin rvo on ts vsemmss päätepisteessä. Täten lsummn kv on 3 f () + 3 f (4/3) + 3 f (5/3) / / , Jos funktio ei svut minimiä tällä välillä, vlitn infimum minimin semest: m inf{ f (x) : x (, /3)}. 23

28 Vstvsti yläsummn kv on ā 3 f (4/3) + 3 f (5/3) + 3 f (2) 3 6/ / , Todellisuudess tuo määrätty integrli on rvoltn 7/3 2, 33. Tässä tehtävässä nähtiin myös esimerkki siitä, että lsumm on in pienempi kuin yläsumm, kun ts itse määrätty integrli on näiden khden välissä. Yllä joimme välin vin kolmeen osn. Jko voi kuitenkin tihentää vlitsemll enemmän j enemmän jkopisteitä. Tällöin tämän jon määrittämät ylä- j lsummt lähestyvät toisin j niiden ntm rvio funktion rjoittmn ln pint-llle on yhä prempi. Tämän tki määrätty integrli määritellään ylä- ti lsummien rj-rvon, kun tuot jko tihennetään rjtt, eli kun jkopisteitä vlitn yhä enemmän j enemmän. Tästä määritelmästä nähdään myös, miksi määrätty integrli voidn tulkit keskirvon, kun integrointivälin pituus on. Jos jkopisteitä on luksi vikk 5, on lsumm 5 m + 5 m m m m 5 5 (m + m 2 + m 3 + m 4 + m 5 ). Toisin snottun lsumm on funktion viiden rvon keskirvo. Jos jko tihennetään, niin funktiost otetn keskirvoj, joss on mukn yhä enemmän j enemmän funktion pisteitä. Esimerkiksi jos jkopisteitä on, sdn lsumm m i. i Täten määrätyn integrlin tulkint keskirvon on oikeutettu. Tästä nähdään myös, että määrätty integrli on siis eräänlinen summ. 24

29 8 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin b f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:. Mikäli f (x) on ei-negtiivinen eli f (x), niin määrätty integrli nt funktion f (x) j x-kselin välissä olevn lueen pint-ln välillä (, b). 2. Määrätty integrli b f (x)dx on funktion f (x) keskirvo välillä (, b) kerrottun tämän välin pituudell eli luvull b. Funktion f (x) määräämätön integrli f (x)dx määriteltiin puolestn ilmn vstvnlist intuitiot: se on inostn lskusääntö, jok on derivoinnin käänteistoimitus. Eli esimerkiksi ( x x 2 ) dx 4 x4 + rctn x + C. Määräämätön integrli j määrätty integrli kuitenkin liittyvät toisiins kiinteästi, kuten näiden nimistäkin voi päätellä. Merkitään ll määräämätöntä integrli f (x)dx merkinnällä F(x). Eli F(x) f (x)dx. Täten esimerkiksi jos f (x) x 3, niin F(x) (/4)x 4 + C. Integrlilskennn pääluse snoo, että määrätyt integrlit voi lske määräämättömien integrlien vull: b f (x)dx F(b) F(). Eli: hlutn lske funktion f (x) määrätty integrli välillä (, b). Tämä sdn lskemll luksi funktion f määräämätön integrli F(x) j ktsomll, mikä sen rvo on pisteessä j mikä sen rvo on pisteessä b. Esimerkki 8.. Hlutn lske määrätty integrli 4 3 x2 dx. Integrlilskennn pääluseen mukn: 4 3 x 2 dx F(4) F(3), 25

30 joss F on funktion x 2 määräämätön integrli eli F(x) (/3)x 3 + C. Täten 4 x 2 dx F(4) F(3) 3 ( C ) ( ) C Toisin snottun funktion x 2 määrätty integrli välillä (3, 4) on 37/3 2, 3. Huom yllä, että vkio C häviää määrättyä integrli lskettess. Näin käy in, joten sitä on turh pitää lskuss mukn. Huom edellisessä esimerkissä, että tulos 4 3 x2 dx 2, 3 kertoo, että funktion x 2 keskimääräinen rvo välillä (3, 4) on 2,3. Toinen tulkint on, että tämän funktion j x kselin väliin jää pint-l, jok on suuruudeltn 2,3 välillä (3, 4). Esimerkki 8.2. Lsketn b ex dx. Kosk e x on om integrlins, niin b e x dx F(b) F() e b e. Huom, että tässä vkiot C ei pidetty lskuss mukn. Määrätyn integrlin lskemist helpott käytännössä, jos käytämme nottion F(b) F() semest merkintää b. Täten siis esimerkiksi b b ( ) (3x + )dx 3 ( 3 2 b2 + b 2 x2 + x ) ( ) Kuten yllä minitsimme, määrätyn integrlin voi nähdä keskirvon ti pint-ln. Tästä tulkinnst seur hyödyllisiä sovelluksi. Seurvss esimerkissä käytetään lisäksi tieto b f (x)dx + b eli integroinnin linerisuutt. g(x)dx 26 b ( f (x) + g(x)) dx,

31 Esimerkki 8.3. Lske käyrien y x 2 j y x sekä suorien x j x 2 reunustmn lueen pint-l. Rtkisu. Kuten tunnettu, pint-ln voi lske integrlin b f (x)dx. Kosk reunustmss on suort x j x 2, niin vlitn integroinnin päätepisteiksi j b 2. Lisäksi tiedetään. Integrli b x2 dx nt käyrän y x 2 j x-kselin välissä olevn lueen pint-ln. Merkitään tätä l A. 2. Integrli b xdx nt suorn y x j x-kselin välissä olevn lueen pint-ln. Merkitään tätä l B. 3. Välillä (, 2) pätee x 2 > x, eli käyrä y x 2 on suorn y x yläpuolell. Täten käyrien y x 2 j y x välissä olevn lueen pint-l sdn erotuksen A B. Eli erotuksen b x 2 dx b xdx b (x 2 x)dx. Tästä seur, että käyrien y x 2 j y x reunustmn lueen pint-l välillä (, 2) sdn integroimll erotus x 2 x integrointirjoill j b 2: 2 (x 2 2 ( x)dx 3 x3 ) 2 x2 ( ) ( 2 3 ) Eli käyrien y x 2 j y x sekä suorien x j x 2 reunustmn lueen pint-l on 5/6. Esimerkki 8.4. Lske käyrien y x 2 j y x sekä suorien x j x 2 reunustmn lueen pint-l. Rtkisu. Integrointiväli on nyt (, 2). Huomtn, että välillä (, ) pätee x > x 2, mutt välillä (, 2) ts pätee x 2 > x. Käyrien välistä pint-l 27

32 lskiess pitää in vähentää korkemmll olevst käyrästä mtlmmll olev käyrä, joten tämä tehtävä on lskettv khdess osss. Välillä (, ) pätee x > x 2, joten integroidn erotus x x 2 tällä välillä: (x x 2 )dx ( 2 x2 ) 3 x3 Välillä (, 2) pätee x 2 > x, joten integroidn tällä välillä puolestn erotus x 2 x: 2 (x 2 2 ( ) x)dx ( x3 2 x2 ) ( 3 2 Täten käyrien y x 2 j y x sekä suorien x j x 2 reunustmn lueen pint-l on /6 + 5/6. ) 9 Määrätyn integrlin lskeminen sijoituksell Aiemmin lskimme määräämättömiä integrlej sijoituksell x g(t). Siinä siis integroitvn lusekkeen muuttuj x korvttiin sijoituksell g(t) j vstvsti termi dx korvttiin termillä g (t)dt. Määrätyn integrlin lskeminen tällä tvll on peritteess smnlist, mutt integroinnin rjt j b pitää myös muunt. Esimerkki 9.. Lsketn nyt integrli x x + dx. Tehdään luksi sijoitus t x +, jolloin x t j dx dt. Integrointilusekkeeseen tehdään nyt nämä sijoitukset, mutt pitää huomt että 28

33 sijoituksen tki myös integroinnin rjt muuttuvt. Integrointirjt j b on määritelty muuttujn x suhteen j nyt siirrytään muuttujn t x +. Täten jos x, niin t j jos x, niin t. Integrointirjojen j b piklle tulevt täten uudet rjt c j d. Tällöin integrli sdn muotoon x x + dx (t ) tdt t 3/2 t /2 dt ( 2 5 t5/2 2 ) 3 t3/2 4 5 Seurvksi käsitellään trigonometristen funktioiden integroimist sijoituskeinoll. Määritellään luksi trigonometrisen funktiot yksikköympyrän vull. Trkstelln ll olev kuv. Huom ensinnä, että kuvss pätee Pythgorn luse 2 + b 2 c 2 eli hypotenuusn neliö on yhtä kuin kteettien neliöiden summ: + t 2 t x Eli pätee ( + t 2 ) t 2. Toislt kosk kulmn x sini on määritelmän mukn sen vstisen sivun j hypotenuusn suhde, pätee sin x t + t 2. 29

34 Vstvsti kulmn kosiini on sen kulmn viereisen sivun j hypotenuusn suhde, joten cos x. + t 2 Tngentti puolestn on kulmn vstisen j viereisen sivun suhde eli kuvss tn x t. Näitä tietoj voi käyttää sovellettess sijoitust t tn x. Tätä sijoitust käytetään integrleihin, jotk ovt muoto Tällöin tehdään korvukset Esimerkki 9.2. Integroidn + b sin 2 x + c cos 2 x dx. sin 2 x t2 + t 2 j cos 2 x + t 2. π/4 π/4 4 3 sin 2 x dx. Tehdään sijoitus tn x t. Täten x rctn t, joten dx dt/( + t 2 ). Termin sin 2 x piklle puolestn sijoitetn termi t 2 /( + t 2 ). Myös integroinnin rjt muuttuvt: kun x π/4, niin tn x j kun x π/4, niin tn x. Tehdään kikki nämä sijoitukset: π/4 π/4 4 3 sin 2 x dx 4 3(t 2 /( + t 2 )) 4( + t 2 ) 3t 2 dt 4 + t 2 dt. ( dt ) + t 2 Tämä integrli näyttää nyt kohtlisen yksinkertiselt. Huomtn, että 3

35 tämä sdn lskettu rkustngenttifunkion vull: ( ) 4 + t 2 dt 4 + (t/2) 2 dt ( ) 2 rctn(t/2) (rctn(/2) rctn( /2)) 2 2 rctn(/2). Tässä viimeinen yhtäsuuruus perustuu siihen, että rctn( /2) rctn(/2). Sijoituskeino käytettäessä pitää siis tehdä seurvt korvukset:. Muuttuj x sisältävät termit pitää korvt termillä g(t). 2. Termi dx pitää korvt termillä g (t)dt. 3. Integroinnin rjt pitää korvt uusill rjoill. Määrätyn integrlin derivoiminen Tutkitn nyt määrättyä integrli, jonk ylärj on muuttuj x. Tutkitn siis integrli x f (t)dt. Tämä integrli on nyt muuttujn x funktio, joten voidn merkitä F(x) x f (t)dt. Esimerkki tällisest funktiost on F(x) x (t 2 + t)dt. Huom, että tämä on nimenomn muuttujn x funktio, eikä muuttujn t funktio. Muuttuj t häviää integroitess, joten yhtä hyvin voitisiin kirjoitt F(x) x (c 2 + c)dc, 3

36 eli tuo integrlin sisässä olev kirjin ei ole lskennn knnlt oleellinen. f (t)dt de- Integrlilskennn toinen pääluse kertoo, että integrlin x rivtt muuttujn x suhteen on funktio f (x): d x f (t) f (x). dx Tämän tuloksen voi tulkit intuitiivisesti, kun muist, että määrätyn integrlin voi tulkit pint-ln. Derivtt d x dx f (t) siis kertoo, kuink funktion f (x) j x-kselin väliin jäävän lueen pint-l muuttuu, kun siirrytään hiemn oikelle eli ksvtetn rgumentti x hiemn. Vstus on, että l muuttuu funktion f rvon verrn. Tämä on sikäli intuitiivist, kosk kyseinen pint-l muuttuu pljon, jos f (x) on suuri luku j vähän jos f (x) on pieni luku. Esimerkki.. Lske derivtt F (x), kun F(x) x (t 2 + t)dt. Rtkisu. Integrlilskennn pääluseen mukn x F (x) d (t 2 + t)dt dx x 2 + x. Seurvss esimerkissä käytetään tieto x f (t)dt x f (t)dt, eli jos integrointirjojen järjestystä viht, niin integrli kertoutuu luvull. Esimerkki.2. Lske derivtt F (x), kun F(x) x ln tdt. Rtkisu. Integrlilskennn pääluseen mukn d ln tdt d dx x dx ln x. x ln tdt 32

37 Siispä lrjll olev muuttuj x on helppo plutt ylärjlle. Hiemn enemmän ongelmi tuott integrlin x 2 f (t)dt lskeminen, sillä tässä ylärjn ei ole muuttuj x, vn tämän muuttujn funktio x 2. Tästä tilnteest selvitään kuitenkin sopivll nottioll: merkitään F(x 2 ) x 2 f (t)dt, eli nyt merkitään, että lskettv integrli on jonkin muuttujn F rvo pisteessä x 2. Täten siis F(x) x f (t)dt. Derivoinnin ketjusäännön perusteell pätee d dx F(x2 ) 2xF (x 2 ), eli yhdistetyn funktion derivtt sdn sisäfunktion x 2 j ulkofunktion F derivttojen tulon. Tästä seur, että d x 2 dx f (t)dt 2x f (x 2 ), joss siis 2x on sisäfunktion x 2 derivtt j f (x 2 ) on ulkofunktion F(x) derivtt rvioitun pisteessä x 2. Esimerkki.3. Derivoi funktio F(x 2 ) x 2 cos tdt. Rtkisu. Ketjusäännön j integroinnin pääluseen mukn d x 2 cos tdt 2x cos x 2. dx Jos integroinnin rjn on jokin muu funktio kuin x 2, selvitään tästäkin ketjusäännön yksinkertisell sovelluksell. 33

38 Esimerkki.4. Derivoi funktio sin x ln tdt. Rtkisu. Merkitään ensinnä tätä integrli funktion F rvon pisteessä sin x: F(sin x) sin x ln tdt. Tässä siis sisäfunktio on sin x. Tämän derivtt on tunnetusti cos x. Nyt voidn jälleen sovelt ketjusääntöä: d sin x ln tdt cos x ln sin x. dx Yllä todettiin, että muuttuj x s esiintyä joko integroinnin l- ti ylärjll. Se voi kuitenkin esiintyä kummllkin rjll yhtä ik. Tämä ei tuot lskuihin ongelmi, kosk integrlin voi in jk osiin: x x f (t)dt x x f (t)dt + x f (t)dt + f (t)dt x f (t)dt. Integrlin x f (t)dt voi derivoid jälleen ketjusäännöllä: merkitään Täten Tämän perusteell F( x) x f (t)dt. d F( x) f ( x). dx d x f (t)dt d x f (t)dt + d dx x dx dx f ( x) + f (x). x f (t)dt Esimerkki.5. Derivoi x 3 x e t2 dt. 34

39 Rtkisu. Jetn tämä integrli ensin khteen osn: x 3 x e t2 dt e t2 + x x x 3 e t2 x 3 e t2 + Näistä kummnkin integrointi sujuu nyt kätevästi ketjusäännöllä: e t2. d x 3 e t2 dt d x e t2 dt + d x 3 e t2 dx x dx dx e ( x)2 + 3x 2 e (x3 ) 2 e x2 + 3x 2 e x6. Määrätyn integrlin sovelluksi Määrätyllä integroinnill on runssti sovelluksi, jotk perustuvt siihen, että integrli esittää pint-l. Tloustieteessä esimerkiksi kuluttjn ylijäämä on khden käyrän välissä olev pint-l, joten sen voi lske määrättynä integrlin. Integrlill voi lske pitsi loj, myös tilvuuksi. Tyypillinen sovellus on seurv: jokin käyrä y f (x) pyörähtää x-kselin ympäri tietyllä välillä (, b). Tällisell pyörähdyskppleell on tilvuus, jok on helppo lske integrlin vull: sen kv on π b ( f (x)) 2 dx, eli kyseisen tilvuuden s integroimll f : neliön pyörähdysvälillä (, b) j kertomll tuloksen π:llä. Esimerkki.. Käyrä y x 2 + pyörähtää x-kselin ympäri välillä (, ). Lske syntyneen kppleen tilvuus. 35

40 Rtkisu. Kyseinen tilvuus sdn integrlin π (x 2 + ) 2 dx π (x 4 + 2x 2 + )dx π ( 5 x x3 + x) π( ) 28 5 π. 2 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss jokin käyrä y f (x) pyörähtää x-kselin ympäri jollkin välillä x b. Tällisen kppleen tilvuus A stiin lskettu kvll A π b ( f (x)) 2 dx. Toislt määrätyn integrlin vull voi lske myös tällisen pyörähtämällä syntyneen kppleen vipn l. Tämä l B sdn lskettu kvll b B 2π f (x) + ( f (x)) 2 dx. Esimerkki 2.. Käyrä f (x) + x pyörähtää x-kselin ympäri välillä x 2. Syntyneen kppleen tilvuus A sdn lskettu yllä esitetyllä kvll: A π π π π π b ( f (x)) 2 dx ( + x) 2 dx ( + 2x + x 2) dx (x + x x3 ) (( ) ( + + )) π. 36

41 Vstvsti syntyneen pyörähdyskppleen vipn l B sdn lskettu seurvsti: b B 2π f (x) + ( f (x)) 2 dx 2π x + dx 2π ( + x) 2dx 2 2 2π (x + 2 x2 ) 2 ( ) 5 2π 5 2π. 2 Tässä itseisrvot voitiin poist, kosk + x on positiivinen tutkitull välillä x 2. 3 Epäoleelliset integrlit Tähän mennessä lsketut integrlit ovt olleet hyvin käyttäytyviä eli muoto b f (x)dx, joss j b ovt olleet relilukuj. Tällinen integrli on ollut yleensä kohtuullisen suorviivisesti lskettviss: jos f (x) on jtkuv funktio, niin yllä olev tyyppiä olev integrli on in olemss eli voidn kirjoitt b f (x)dx A, eli integrli b f (x)dx on jokin reliluku A. Tässä oleellist siis on, että f on jtkuv funktio välillä [, b] j että j b ovt relilukuj. Tällöin tämä integrli on olemss eli f on integroituv välillä [, b]. Ennen kuin etenemme, on syytä ymmärtää intuitiivisesti miksi yllä olev tyyppiä olev integrli on in olemss. Tämän voi perustell sillä, että integrli voidn ymmärtää käyrän j x-kselin välissä olevn lueen pint-ln. Jos piirrät jtkuvn funktion f jollekin äärelliselle välille [, b], niin tämän funktion j x-kselin välissä on in pkoll äärellinen 37

42 pint-l. Täten jtkuv funktio on integroituv äärellisellä välillä. Nyt tutkimme tpust, joss f :n jtkuvuus ti :n j b:n äärellisyys eivät enää päde. Tyyppiesimerkki tälläisestä integrlist on x 2 dx. Tässä siis toisen integrointirjn on ääretön. Onko tämä integrli olemss? Tämä riippuu intuitiivisesti siitä, onko käyrän y /x 2 j x- kselin välissä olevn lueen pint-l ääretön vi äärellinen välillä x [, [. Tätä ei voi kuitenkn päättää ennen kuin tiedetään, miten tällinen integrli lsketn. Määritellään siis epäoleellinen integrli seurvnlisen rj-rvon: M f (x)dx lim f (x)dx. M Tässä määritelmässä siis hlutn lske integrli äärettömyydessä. Tämä tphtuu siten, että lsketn luksi integrli M f (x)dx, j nnetn tämän jälkeen integroinnin ylärjn ksv rjtt eli otetn rj-rvo M lim f (x)dx. M Tämä on siis määritelmän mukn sm si kuin integrli äärettömyydessä eli M lim f (x)dx f (x)dx. M Nyt voimme lske epäoleellisen integrlin x 2 dx. Merkitään siis integroinnin ylärj kirjimell M j nnetn tämän ylä- 38

43 rjn ksv rjtt: dx lim x2 M lim M lim M M x 2 dx M ( ) x ( M ) ( ) lim M ( M ). Täten tämä integrli on siis olemss j täten käyrän y /x 2 j x- kselin välissä olevn lueen pint-l välillä [, [ on yksi. Epäoleellinen integrli lsketn täsmälleen smll tekniikll kuin yllä, jos integroitv on funktio jok on epäjtkuv integroimisvälillä. Esimerkki tälläisestä integrlist on Nyt funktio /x on epäjtkuv nollss, joten tämä integrli määritellään jälleen rj-rvon: x. dx lim x x dx. 4 Integrlien suppeneminen Yllä lskettiin esimerkkinä integrli dx. x2 Tässä siis epäoleellinen integrli oli olemss. Näin ei kuitenkn in käy. Tämä huomtn lskemll esimerkiksi funktion /x integrli vä- 39

44 lillä [, ] dx lim x M lim M M M x dx ln x lim (ln M ln ) M, eli kyseinen integrli on ääretön. Toisin snottun siis funktion /x j x-kselin välissä olev pint-l on ääretön välillä [, [. Jos integrli f (x)dx on rvoltn jokin reliluku, snotn että se suppenee. Jos tämä epäoleellinen integrli puolestn ei ole reliluku (vn esimerkiksi ääretön ti miinus ääretön), niin kyseinen integrli hjntuu. Usein hjntumisen ti suppenemisen voi päättää yksinkertisesti lskemll epäoleellisen integrlin, kuten ll olevss esimerkissä. Esimerkki 4.. Tutki suppeneeko vi hjntuuko xe x2 dx. Rtkisu. Integrli näyttää lkuun siltä, että siinä trvitsisi käyttää osittisintegrointi, mutt tämä itse siss sujuu helpommin, sillä integroitv luseke xe x2 on itse siss melkein muoto f (x) f (x), joss f (x) e x2 : xe x2 dx lim M lim M lim M M M xe x2 dx ( 2 ) e x2 ( 2 e M2 ( 2 e ) ( /2) /2. ) 4

45 Usein integroitv funktiot ei kuitenkn voi suorn lske. Tällinen on esimerkiksi integrli e x2 dx, jot ei voi suorn lske siitä yksinkertisest syystä, että tähän lskuun trvittv määräämätöntä integrli e x2 dx ei ole olemss. Tämän j monet muut ei-negtiivisten funktioiden integrlit voi kuitenkin osoitt suppeneviksi mjornttiperitteen vull. Tätä peritett käytetään, kun hlutn osoitt että integrli 4 b f (x)dx. on olemss. Muistetn luksi, että integrli on pint-l. Hlumme siis osoitt, että jokin pint-l on äärellinen. Oletetn nyt, että löydetään jokin integrli b g(x)dx jok on suurempi kuin f :n integrli: b f (x)dx b g(x)dx. Jos tämä integrli b g(x)dx on nyt olemss äärellisenä, niin integrli b f (x)dx on myös pkoll olemss: pint-l b f (x)dx on äärellisenä olemss, kosk se on pienempi kuin pint-l b g(x)dx, jok on myös äärellisenä olemss. Oletetn siis että seurvt seikt pätevät:. 2. f (x) f (x) g(x) kun x [, b] 3. Integrli on äärellisenä olemss. b 4 Tässä b voi oll myös j voi oll. g(x)dx 4

46 Tällöin pätee b f (x)dx b g(x)dx j integrli b f (x) suppenee mjornttiperitteen nojll. Mjornttiperitteess siis etsitään suurempirvoinen integrli, jok suppenee. Esimerkki 4.2. Osoit, että suppenee. e x2 dx Rtkisu. Nyt f (x) e x2. Tämä funktio on in positiivinen, joten siihen voi mhdollisesti sovelt mjornttiperitett. Hlutn löytää tätä suurempirvoinen funktio g(x), jonk integrli suppenee. Välillä [, ] pätee e x2 e x e x e x. Täten funktioksi g voidn vlit g(x) e x. Tämän integrli on helppo lske: Eli e x dx lim M lim M M M e x dx ( e x ) lim M ( e M ( e )) e. e x2 dx e x dx e, joten esimerkin integrli suppenee mjornttiperitteen nojll. Nyt kun mjornttiperite on käsitelty, on helppo rvt mistä on kyse minornttiperitteess. Tässä trkstelln jälleen kht funktiot f j g, jotk ovt kumpikin ei-negtiivisi j joille pätee b g(x)dx b f (x)dx 42

47 j lisäksi oletetn, että integrli b g(x)dx hjntuu. Tällöin minornttiperitteen nojll myös integrli b f (x)dx hjntuu5. Eli intuitiivisesti jteltun funktion f j x-kselin välinen pint-l on ääretön, kosk tämä l on suurempi kuin funktion g j x-kselin välinen pint-l, jok on ääretön. Minornttiperitett käytetään seurvsti:. Hlutn todist, että jokin integrli b f (x)dx hjntuu. 2. Etsitään funktio g, jok on pienempi kuin f eli g(x) f (x) j jonk integrli b g(x)dx hjntuu. 3. Tällöin integrli b f (x)dx hjntuu. Esimerkki 4.3. Osoit minornttiperitteen vull, että integrli hjntuu. 2 x dx Rtkisu. Nyt f (x) x. Pitäisi löytää tätä funktiot pienempi funktio g, jonk integrli hjntuu välillä [2, ]. Helppo tp löytää pienempi funktio on ksvtt osoittj yhdellä: >. x x Eli nyt etsimämme funktio on g(x) / x. Tämän integrli voidn lske jälleen suorviivisesti: 2 x dx lim M lim M M 2 M 2 x dx 2 x lim M (2 M 2 2). 5 Tämä perite seur itse siss suorn mjornttiperitteest: jos f suppenisi, niin silloin mjornttiperitett voisi sovelt j myös g suppenisi. 43

48 Täten kosk x < x, niin integrli x hjntuu. 5 Tiheysfunktiot Kuten jo usen kertn on todettu, integrlill voi lske loj j tilvuuksi. Yksi määrätyn integrlin tärkeimpiä sovelluksi on lisäksi se, että sillä voi lske tphtumien todennäköisyyksiä. Tämän sovelluksen käyttäminen vtii kuitenkin tiheysfunktion käsitettä. Tiheysfunktio on mtemttisesti jteltun mikä thns ei-negtiivisi rvoj sv funktio, jok integroituu relikselill lukuun yksi eli jolle pätee f (x)dx j f (x). Grfisesti tulkittun tiheysfunktio on siis funktio, jok on jtkuvsti x- kselin yläpuolell (ti x-kselill) j jonk ll olevn lueen pint-l on yksi. Tiheysfunktion ide on seurv: jos stunnismuuttujll X on tiheysfunktio f (x), niin tätä tiheysfunktiot integroimll voi lske todennäköisyyksiä. Jos merkitään P( X b) todennäköisyyttä, että stunnismuuttuj X s rvon välillä [, b], niin tämän todennäköisyyden voi lske integroimll stunnismuuttujn tiheysfunktion f (x) tällä välillä: P( X b) b f (x)dx. All oleviss esimerkeissä käytetään lisäksi seurv integrointisääntöä : jos funktio f (x) on jollkin välillä [i, j] noll eli pätee f (x), x [i, j], niin myös tämän funktion integrli välillä [i, j] on noll eli j f (x). Trkstelln nyt funktiot f (x), jok on määritelty ploittin: { e x, kun x [, b] f (x) muulloin. i 44

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

Sarjaratkaisun etsiminen Maplella

Sarjaratkaisun etsiminen Maplella Srjrtkisun etsiminen Mplell Olkoon trksteltvn ensimmäisen kertluvun differentiliyhtälö: > diffyht:= diff(y(x, x=1y(x^; d diffyht := = dx y( x 1 y( x Tälle pyritään etsimään srjrtkisu origokeskisenä potenssisrjn.

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 12 1 Eksponenttifuntio Palautetaan mieliin, että Neperin luvulle e pätee: e ) n n n ) n n n n n ) n. Tästä määritelmästä seuraa, että eksponenttifunktio e x voidaan

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

2.1 Vaillinaiset yhtälöt

2.1 Vaillinaiset yhtälöt .1 Villiniset yhtälöt Yhtälö, jok sievenee muotoon x + bx + c = 0 (*) on yleistä normlimuoto olev toisen steen yhtälö. Tämän rtkiseminen ei olekn enää yhtä meknist kuin normlimuotoisen ensisteen yhtälön

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN 3..07 VEKTOREILLA LASKEMINEN YHTEENLASKU VEKTORIT, MAA Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

4 DETERMINANTTI JA KÄÄNTEISMATRIISI

4 DETERMINANTTI JA KÄÄNTEISMATRIISI 4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.

Lisätiedot

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella

8.4 Gaussin lause Edellä laskettiin vektorikentän v = rf(r) vuo R-säteisen pallon pinnan läpi, tuloksella H 8.3.2 uontegrlt: vektoreden pntntegrlt Tvllsn tpus pntntegrlest on lske vektorkentän vuo pnnn läp: Trkstelln pnt j sllä psteessä P (x, y, z olev pnt-lkot d. Määrtellään vektorlnen pnt-lko d sten, että

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT Lyhyt mtemtiikk YO-vlmennus 8. mliskuut 00 LYHYEN MATEMATIIKAN SIMULOITU YO-KOE RATKAISUT. Trkstelln yhtälöpri, polynomin sievennöstä j lusekkeeseen sijoittmist. ) Rtkistn jälkimmäisestä yhtälöstä x, jolle

Lisätiedot

3.5 Kosinilause. h a c. D m C b A

3.5 Kosinilause. h a c. D m C b A 3.5 Kosiniluse Jos kolmiost tunnetn kksi sivu j näien välinen kulm, sinilusett on sngen vike sovelt kolmion rtkisemiseen. Luse on työklun vuton myös kolmion kulmien rtkisemiseen tpuksess, jolloin kolmion

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

2.2 Monotoniset jonot

2.2 Monotoniset jonot Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 26 Kierros 3, 25. 29. tmmikuut Demonstrtiotehtävien rtkisut D: Ldi epädeterministinen äärellinen utomtti, jok test onko nnetun inäärijonon kolmnneksi viimeinen merkki,

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

Suorat, käyrät ja kaarevuus

Suorat, käyrät ja kaarevuus Suort, käyrät j krevuus Jukk Tuomel Professori Mtemtiikn litos, Joensuun yliopisto Suor? Tämä kirjoitus on eräänlinen jtko Timo Tossvisen suorn määritelmää koskevn kirjoitukseen Solmun numeross 2/2002.

Lisätiedot

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa

8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa 8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi: kurssikerta 10 Matematiikan tukikurssi: kurssikerta 10 1 Newtonin menetelmä Oletetaan, että haluamme löytää funktion f(x) nollakohan. Usein tämä tehtävä on mahoton suorittaa täyellisellä tarkkuuella, koska tiettyjen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2 Tietojenkäsittelyteori Kevät 2 Kierros,. 5. helmikuut Demonstrtiotehtävien rtkisut D: Sievennä seurvi säännöllisiä lusekkeit (so. konstruoi yksinkertisemmt lusekkeet smojen kielten kuvmiseen): ()

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti

Lisätiedot

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa Luku 5. Integrli Merkitsemme seurvss [, b]:llä lukusuorn suljettu väliä { R : b}. Olkoon f välillä [, b] määritelty funktio. Snomme, että välillä [, b] määritelty funktio g on funktion f integrlifunktio

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Funktion monotonisuus Derivoituva funktio f on aidosti kasvava, jos sen derivaatta on positiivinen eli jos f (x) > 0. Funktio on aidosti vähenevä jos sen derivaatta

Lisätiedot

Vakioiden variointi kolmannen kertaluvun yhtälölle

Vakioiden variointi kolmannen kertaluvun yhtälölle Vkioiden vriointi kolmnnen kertluvun yhtälölle Olkoon trksteltvn kolmnnen kertluvun linerinen epähomogeeninen differentiliyhtälö > diffyht:= (-1)*diff(y(), $3)-*diff(y(), $2)+diff(y(), )=ep(^2); diffyht

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 5 Tasointegraalin laskeminen iemmin tutkimme ylä- ja alasummien antamia arvioita tasointegraalille f (x, ydxdy. Tässä siis funktio f (x, y integroidaan muuttujien x

Lisätiedot

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014

763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 1 Kevät 2014 763333A KIINTEÄN AINEEN FYSIIKKA Rtkisut 1 Kevät 014 1. Tehtävä: Lske, kuink mont hilpistettä on yksikkökopiss ) yksinkertisess kuutiollisess, b) tkk:ss j c) pkk:ss. (Ot huomioon, että esimerkiksi yksikkökopin

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali

integraali Integraalifunktio Kaavoja Integroimiskeinoja Aiheet Linkkejä Integraalifunktio Kaavoja Integroimiskeinoja Määrätty integraali integraali 1 Matta-projekti(Aalto yliopisto): Integraali (http://matta.hut.fi/matta2/isom/html/isomli8.html ) Johdatus korkeakoulumatematiikkaan (Tampereen teknillinen korkeakoulu): Integraali (http://matwww.ee.tut.fi/jkkm/integraa/integ01.htm

Lisätiedot

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)

Lisätiedot

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30

Digitaalinen videonkäsittely Harjoitus 5, vastaukset tehtäviin 25-30 Digitlinen videonkäsittely Hrjoitus 5, vstukset tehtäviin 5-30 Tehtävä 5. ) D DCT sdn tekemällä ensin D DCT kullekin riville, j toistmll D DCT tuloksen sdun kuvn srkkeill. -D N-pisteen DCT:, k 0 N ( k),

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita.

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 5 Demonstraatiotehtävien ratkaisut. ja kaikki a Σ ovat säännöllisiä lausekkeita. T-79.8 Syksy 22 Tietojenkäsittelyteorin perusteet Hrjoitus 5 Demonstrtiotehtävien rtkisut Säännölliset lusekkeet määritellään induktiivisesti: j kikki Σ ovt säännöllisiä lusekkeit. Mikäli α j β ovt säännöllisiä

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus

Rekursioyhtälön ratkaisutapa #1: iteratiivinen korvaus NodeCount(v /* lskee solmun v lipuun solmujen lukumäärän */ if solmu v on null return 0 else return + NodeCount(v.left + NodeCount(v.right Rekursio: lgoritmi kutsuu itseään Usein hjot j hllitse -perite:

Lisätiedot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto: 4 Reaalifunktiot 4. Funktion monotonisuus Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x ja x on voimassa ehto: "jos x < x, niin f (x

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min

missä t on matkaan raosta varjostimelle kuluva aika. Jos suihkun elektronien liikemäärä x- sunnassa on p x,on min y0min 0min S-11446 Fysiikk IV (Sf), I Välikoe 154 1 Elektronisuihku, joss elektronien noeus on v, suu kohtisuorsti rkoon, jonk leveys on d Ron läi kuljettun elektronit osuvt etäisyydellä D olevn vrjostimeen Mikä

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

Differentiaalilaskenta 1.

Differentiaalilaskenta 1. Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteori Kevät 2016 Kierros 5, 8. 12. helmikuut Demonstrtiotehtävien rtkisut D1: Hhmolusekkeet ovt esimerkiksi UN*X-järjestelmien tekstityökluiss käytetty säännöllisten lusekkeiden

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 Korkeamman asteen derivaatat Tutkitaan nyt funktiota f, jonka kaikki derivaatat on olemassa. Kuten tunnettua, funktion toista derivaattaa pisteessä x merkitään f (x).

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011

Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on

Oletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä

Lisätiedot

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L )

L 0 L. (a) Entropian ääriarvo löydetään derivaatan nollakohdasta, dl = al 0 L ) 76638A Termofysiikk Hrjoitus no. 6, rtkisut syyslukukusi 014) 1. Trkstelln L:n pituist nuh, jonk termodynmiikn perusreltio on de = d Q + d W = T ds + F dl, 1) missä F on voim, joll nuh venytetään reversiibelisti

Lisätiedot

Matematiikan tukikurssi, kurssikerta 4

Matematiikan tukikurssi, kurssikerta 4 Matematiikan tukikurssi, kurssikerta 4 1 Raja-arvo äärettömyydessä Tietyllä funktiolla f() voi olla raja-arvo äärettömyydessä, jota merkitään f(). Tämä tarkoittaa, että funktio f() lähestyy jotain tiettyä

Lisätiedot

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =

Lisätiedot

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia. 2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x

Lisätiedot

3 Mallipohjainen testaus ja samoilutestaus

3 Mallipohjainen testaus ja samoilutestaus Tietojenkäsittelytiede 24 Joulukuu 2005 sivut 8 21 Toimittj: Jorm Trhio c kirjoittj(t) Historiljennus mllipohjisess testuksess Timo Kellomäki Tmpereen teknillinen yliopisto Ohjelmistotekniikn litos 1 Johdnto

Lisätiedot

5 Differentiaalilaskentaa

5 Differentiaalilaskentaa 5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.

Lisätiedot

ANALYYSI 2. Tero Kilpeläinen

ANALYYSI 2. Tero Kilpeläinen ANALYYSI Tero Kilpeläinen 3 Teksti sisältää muistiinpnoj vuosin j 3 pidetystä kurssist. Tämän pketin trkoitus on tuke omien muistiinpnojen teko, ei korvt niitä. Mtemtiikk oppii prhiten itse kirjoitten

Lisätiedot

ANALYYSI 3. Tero Kilpeläinen

ANALYYSI 3. Tero Kilpeläinen ANALYYSI 3 Tero Kilpeläinen Luentomuistiinpnoj syksyltä 2005 20. lokkuut 2005 Sisältö 1. Esitietoj 2 1.1. Riemnn-integrli............................ 2 1.2. Derivtt................................. 4 1.3.

Lisätiedot

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista Differentili- j integrlilskent 1: tiivistelmä j oheislukemist Pekk Alestlo 4. syyskuut 2014 Tähdellä merkityt kohdt on trkoitettu lähinnä oheislukemistoksi. Lisäksi mukn on joitkin lukiot kertvi kohti,

Lisätiedot

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti

Lisätiedot

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut 0. Kertausta Luvut, lukujoukot (tavalliset) N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut Rationaaliluvut n/m, missä n,m Z Reaaliluvut R muodostavat jatkumon fysiikan lukujoukko Kompleksiluvut C:z

Lisätiedot

2 INTEGRAALILASKENTAA 2.1 MÄÄRÄTTY INTEGRAALI

2 INTEGRAALILASKENTAA 2.1 MÄÄRÄTTY INTEGRAALI 37 INTEGRAALILASKENTAA.1 MÄÄRÄTTY INTEGRAALI Trstell ploitti jtuv j rjoitettu (siis ei ääretötä) futiot f ( ) välillä [, ] (s. uv) Jet väli [, ] :ää h-levyisee os h j meritää h, missä 0,1,,..., Joo liittyvä

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44,

601 Olkoon tuntematon kateetti a ja tuntemattomat kulmat α ja β Ratkaistaan kulmat. 8,4 = 12. Ratkaistaan varjon pituus x. 14 x = 44, Pyrmidi 3 Geometri tehtävien rtkisut sivu 08 60 Olkoon tuntemton kteetti j tuntemttomt kulmt j β Rtkistn kulmt. 8,4 cos 8,4 cos 45,579... 46 β 90 60 4 Rtkistn vrjon pituus 3 44,470... 44 Rtkistn kteetti.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 7 1 Useamman muuttujan funktion raja-arvo Palautetaan aluksi mieliin yhden muuttujan funktion g(x) raja-arvo g(x). x a Tämä raja-arvo kertoo, mitä arvoa funktio g(x)

Lisätiedot

4 Integrointimenetelmiä

4 Integrointimenetelmiä 4 Integrointimenetelmiä 4. Määräämätön integraali Määritelmä 4.. Olkoon funktio f jatkuva välillä I. Tällöin funktion f integraalifunktioiden (välillä I) joukkoa sanotaan funktion f määräämättömäksi integraaliksi

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.

Sinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio. Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto

Integroimistekniikkaa 1/5 Sisältö ESITIEDOT: integraalifunktio, määrätty integraali, derivointisäännöt Hakemisto Integroimistekniikk /5 Sisältö Sijoitsmenettely Annetn fnktion integrlifnktiot lskettess fnktiot pyritään mntmn siten, että tlos voidn tnnist jonkin lkeisfnktion derivtksi. Usein mntminen jodtn tekemään

Lisätiedot

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014

Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014 Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan

Lisätiedot

S Fysiikka IV (ES) Tentti RATKAISUT. 1,0*10 m. Kineettinen energia saadaan kun tästä vähennetään lepoenergia: 2

S Fysiikka IV (ES) Tentti RATKAISUT. 1,0*10 m. Kineettinen energia saadaan kun tästä vähennetään lepoenergia: 2 S-11436 ysiikk V (ES) Tentti 175001 RATKASUT 1 Tutkittess pieniä kohteit on tutkimukseen käytettävien ltojen llonpituuden oltv yleensä enintään 1/10 os kohteen ulottuvuudest (esim hlkisijst) Lske trvittv

Lisätiedot

Matemaatiikan tukikurssi

Matemaatiikan tukikurssi Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon

Lisätiedot