:37:37 1/50 luentokalvot_05_combined.pdf (#38)

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download ":37:37 1/50 luentokalvot_05_combined.pdf (#38)"

Transkriptio

1 'VLTJ,)Ł /Ł :37:37 1/50 luentokalvot_05_combined.pdf (#38)

2 Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä :37:37 2/50 luentokalvot_05_combined.pdf (2/50)

3 Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta ajan funktiona. Mikä alla olevista graafeista kuvaa parhaiten kappaleeseen kohdistuvaa nettovoimaa ajan funktiona? v x t P Fx P Fx P Fx P Fx t t t t :37:37 3/50 luentokalvot_05_combined.pdf (3/50)

4 Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta ajan funktiona. Mikä alla olevista graafeista kuvaa parhaiten kappaleeseen kohdistuvaa nettovoimaa ajan funktiona? v x t P Fx P Fx P Fx P Fx t t t t :37:37 4/50 luentokalvot_05_combined.pdf (4/50)

5 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton s laws of motion) Pohjautuvat kokeellisiin havaintoihin (julk. 1687) Ovat samalla klassisen mekaniikan perusta Voimat jaetaan kontaktivoimiin (contact forces) ja pitkän kantaman voimiin (long range forces) Voima vektorisuure: sillä on suunta ja suuruus. [F] =N (newton) :37:38 5/50 luentokalvot_05_combined.pdf (5/50)

6 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä :37:38 6/50 luentokalvot_05_combined.pdf (6/50)

7 Superpositioperiaate Kappaleeseen kohdistuvien (eri) voimien yhteisvaikutus sama, kuin jos siihen kohdistuisi yksi voima, joka on voimien vektorisumma Voimatehtävien ratkaisu perustuu tähän periaatteeseen Superpositioperiaatteen käänteissovellus Kappaleen tiettyyn pisteeseen kohdistuva voima voidaan aina jakaa komponentteihin Erittäin käytännöllinen tehtävien ratkaisemisessa ~F 1 ~F ~ F y ~F ~F 2 ~F x :37:38 7/50 luentokalvot_05_combined.pdf (7/50)

8 Nettovoima eli resultantti Kaikkien kappaleeseen kohdistuvien voimien summa F net = R = X F i Voidaan aina laskea yhteen komponenteittain R x = X i F ix, R y = X i F iy, R z = X i F iz Voiman itseisarvo saadaan F net = R = q R 2 x + R 2 y + R 2 z :37:38 8/50 luentokalvot_05_combined.pdf (8/50)

9 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä :37:38 9/50 luentokalvot_05_combined.pdf (9/50)

10 Newtonin 1. laki Kappale, johon vaikuttava nettovoima on nolla (~ F net = 0), liikkuu tasaisella nopeudella ~v = ~v 0 ~a = d ~v dt = 0 Toisin sanoen sen kiihtyvyys nolla, ja sen liiketila ei muutu. Tätä kappaleen ominaisuutta pyrkiä jatkamaan liiketilaansa kutsutaan inertiaksi Newtonin 1. lakia kutsutaan usein inertian laiksi :37:38 10/50 luentokalvot_05_combined.pdf (10/50)

11 Tasapaino Kappale tasapainossa (in equilibrium), kun siihen vaikuttavien voimien resultantti on nolla X ~F net = R ~ = ~F i = 0, eli komponenttimuodossa X ~F i,k = 0 missä k = x, y, z k Huomaa, että vakionopeudella liikkuva kappale on tasapainossa i :37:38 11/50 luentokalvot_05_combined.pdf (11/50)

12 Inertiaalikoordinaatistoista Inertiaalikoordinaatisto (inertial frame of reference) tasaisella nopeudella liikkuva koordinaatisto Newtonin 1. laki voimassa vain inertiaalikoordinaatistossa Seuraus koordinaatistojen yhdenvertaisuusperiaatteesta: voiman suuruus ei saa riippua koordinaatiston valinnasta! Ei-inertiaalinen koordinaatisto kiihtyvässä liikkeessä Myös normaalikiihtyyys kiihtyvää liikettä Normaalikiihtyvyys muuttaa koordinaatiston liikesuuntaa :37:39 12/50 luentokalvot_05_combined.pdf (12/50)

13 Massa Mikäli kappaleeseen vaikuttavien voimien resultantti 6= 0, kappale kiihtyvässä liikkeessä =) Kappaleen vauhti tai nopeuden suunta muuttuu Kokeellisesti havaittu, että nettovoima ~ F net = ~ R ja kiihtyvyys ~a samansuuntaisia vektoreita Tämän seurauksena tietylle kappaleelle nettovoiman ja kiihtyvyyden suhde vakio Vakiota kutsutaan massaksi m = F net a :37:39 13/50 luentokalvot_05_combined.pdf (13/50)

14 Newtonin 2. laki Kappaleeseen vaikuttavien voimien resultantti on (inertiaalikoordinaatistossa) X ~F net = R ~ = ~F i = m~a, eli komponenttimuodossa X ~F i,k = ma k missä k = x, y, z k i! Huomaa, että m~a ei ole voima se on seuraus voimasta :37:39 14/50 luentokalvot_05_combined.pdf (14/50)

15 Massa vs. paino Massa kuvaa kappaleen inertiaominaisuutta Paino on voima, joka kappaleeseen kohdistuu gravitaatiokentässä Maan pinnan lähellä painon ~w ja massan m välillä pätee ~w = m~g Kokeissa on todettu, että inertiaali- ja gravitaatiomassat ovat ainakin 12 numeron tarkkuudella samat :37:39 15/50 luentokalvot_05_combined.pdf (15/50)

16 Newtonin 3. laki Kun kaksi kappaletta vuorovaikuttaa, ne kohdistavat toisiinsa yhtäsuuret, mutta vastakkaissuuntaiset voimat (voima ja vastavoima) F ~ AB = F ~ BA Huomaa, että kappaleiden ei tarvitse olla kosketuksissa Newtonin 3. laki pätee myös pitkän kantaman voimille Huomaa, että voima ja vastavoima kohdistuvat eri kappaleisiin ~F F ~ ~F ~F :37:39 16/50 luentokalvot_05_combined.pdf (16/50)

17 Jännitys Jos samaan kappaleeseen kohdistuu kaksi samansuuruista, mutta vastakkaissuuntaista voimaa, kappale jännityksessä Kappale vetojännityksessä (tension), kun kyseessä vetovoimat Työntövoimien tapauksessa kappale puristusjännityksessä (compression) ~F 2 = F ~ 1 ~F :37:39 17/50 luentokalvot_05_combined.pdf (17/50)

18 Vapaakappalekuvio Free body diagram Kuvio, jossa vain tarkasteltava kappale (tai sen osa) ja kaikki siihen kohdistuvat voimat Kappaleen ympäristöä ei piirretä vapaakappalekuvioon ~F ~N ~w 2 ~w 1 ~F Kappale VKK 1 VKK :37:40 18/50 luentokalvot_05_combined.pdf (18/50)

19 Konseptitesti 2 Kysymys Viereisessä kuvassa on vaijerilla kahdesta pisteestä kytketty massa. Mitkä kuvan voimista pitää ottaa mukaan massan vapaakappalekuvioon? 1. Jännitys T 1 2. Jännitys T 2 3. Jännitys T 3 4. Kaikki kuvan voimat 5. Gravitaatio T 2 m T 1 mg T :37:40 19/50 luentokalvot_05_combined.pdf (19/50)

20 Konseptitesti 2 Kysymys Viereisessä kuvassa on vaijerilla kahdesta pisteestä kytketty massa. Mitkä kuvan voimista pitää ottaa mukaan massan vapaakappalekuvioon? 1. Jännitys T 1 2. Jännitys T 2 3. Jännitys T 3 4. Kaikki kuvan voimat 5. Gravitaatio T 2 m T 1 mg T :37:40 20/50 luentokalvot_05_combined.pdf (20/50)

21 Esimerkki Piirrä parin kanssa vapaakappalekuviot allaolevasta kuvasta. VKK 1 : jossa massaan 1 vaikuttavat voimat ja VKK 2 : massaan 2 vaikuttavat voimat. m 1 m :37:40 21/50 luentokalvot_05_combined.pdf (21/50)

22 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä :37:40 22/50 luentokalvot_05_combined.pdf (22/50)

23 Hiukkasen tasapaino Tasapainotilassa hiukkanen on levossa tai liikkuu vakionopeudella inertiaalikoordinaatistossa, jolloin hiukkaseen vaikuttava nettovoima on X ~F i = 0, ~F i = 0 ~F net = X i Tasapainoehdot voidaan kirjoittaa komponenteittain X ~F k,i = 0, missä k = x, y, z i i :37:40 23/50 luentokalvot_05_combined.pdf (23/50)

24 Tasapainotehtävien ratkaisu 1. Piirrä yksinkertaistettu kuva tilanteesta (kappaleet, kulmat,... ) 2. Piirrä vapaakappalekuvio tilanteesta tärkeä 3. Mieti kappaleeseen kohdistuvat vuorovaikutukset (kontaktivoimat, köydet, painovoima), älä piirrä kappaleen itsensä aiheuttamia voimia 4. Valitse probleemaan sopiva koordinaatisto 5. Jaa voimat komponentteihin (muista etumerkit!) 6. Kirjoita tasapainoyhtälöt 7. Jos tarvitaan, jatka kohdasta 2 muille kappaleille 8. Ratkaise yhtälöt ja tarkista ratkaisu :37:40 24/50 luentokalvot_05_combined.pdf (24/50)

25 Esimerkki jatkuu Äsken piirtämiesi vapaakappalekuvioiden pohjalta, määritä parisi kanssa systeemin tasapainoehdot. m 1 m :37:41 25/50 luentokalvot_05_combined.pdf (25/50)

26 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä :37:41 26/50 luentokalvot_05_combined.pdf (26/50)

27 Konseptitesti 3 Kysymys Viereisessä kuvassa kappaletta B vedetään vaakasuunnassa voimalla F, jolloin molemmat kappaleet liikkuvat vaakasuunnassa toisiinsa kiinnittyneinä. A B Pöytä Kappaleen B ja pöydän välissä on kitkaa. Jos kappaleet liikkuvat vakionopeudella, F 1. B kohdistaa A:han vaakasuuntaisen voiman vasemmalle 2. B kohdistaa A:han vaakasuuntaisen voiman oikealle 3. B ei kohdista vaakasuoraa voimaa A:han 4. Ei riittävästi informaatiota päätöksen tekemiseen :37:41 27/50 luentokalvot_05_combined.pdf (27/50)

28 Konseptitesti 3 Kysymys Viereisessä kuvassa kappaletta B vedetään vaakasuunnassa voimalla F, jolloin molemmat kappaleet liikkuvat vaakasuunnassa toisiinsa kiinnittyneinä. A B Pöytä Kappaleen B ja pöydän välissä on kitkaa. Jos kappaleet liikkuvat vakionopeudella, F 1. B kohdistaa A:han vaakasuuntaisen voiman vasemmalle 2. B kohdistaa A:han vaakasuuntaisen voiman oikealle 3. B ei kohdista vaakasuoraa voimaa A:han 4. Ei riittävästi informaatiota päätöksen tekemiseen :37:41 28/50 luentokalvot_05_combined.pdf (28/50)

29 Tukivoimat Kun kappale lepää esim tasolla, kohdistuu siihen tukivoima (voima, joka pitää sen paikoillaan) Tukivoima voidaan esittää kontaktitasoa vastaan kohtisuoran normaalivoiman ~ N sekä tason suuntaisen kitkavoiman (friction) ~ f summana Tasapaino =) ~ N + ~ f = ~w :37:41 29/50 luentokalvot_05_combined.pdf (29/50)

30 Liikekitka Kun kappale on kontaktissa toisen kanssa tai liikkuu väliaineessa, kohdistuu siihen liikettä vastustavia kitkavoimia Esim. kun kappale on kontaktissa toisen kanssa ja liikkuu sen suhteen, vaikuttaa kappaleeseen ns. liikekitka (kinetic friction) f k = µ k N, missä µ k on liikekitkakerroin (coefficient of kinetic friction) Pyörivälle kappaleelle voidaan määritellä vierintäkitka (rolling friction) ja vierintäkitkakerroin µ r vastaavasti f r = µ r N, :37:41 30/50 luentokalvot_05_combined.pdf (30/50)

31 Lepokitka Kun kappale on levossa alustaansa nähden, puhutaan lepokitkasta Lepokitka esitetään lähtökitkakertoimen (coefficient of static friction) µ s avulla f s apple µ s N Lepokitka saavuttaa maksiminsa juuri ennen kuin kappale lähtee liikkeelle Jos kappaleeseen ei vaikuta muita tason suuntaisia voimia, lepokitka on nolla F, f µ s N µ k N F = F 0 t f t :37:42 31/50 luentokalvot_05_combined.pdf (31/50)

32 Esimerkki jatkuu Ratkaise äsken johtamistasi tasapainoehdoista minimikitkakerroin, jotta massat pysyvät paikoillaan silloinkin kun m 2 6= m 1 sin. y x ~N ~T x ~T m 1 m 2 ~w 1 ~w 2 VKK 1 VKK :37:42 32/50 luentokalvot_05_combined.pdf (32/50)

33 Hiukkasen dynamiikka Jos kappale ei ole tasapainossa, käytetään Newtonin 2. lakia ~F net = m~a On kuitenkin muistettava, että m~a ei ole voima, eikä sitä piirretä vapaakappalekuvioon Muutoin tehtävien ratkaisuperiaate sama kuin tasapainotehtävissä :37:42 33/50 luentokalvot_05_combined.pdf (33/50)

34 Esimerkki Tehtävä Henkilö, jonka massa on 50.0 kg, seisoo vaa an päällä hississä. Jos hissin kiihtyvyys on 2.0 m s 2 ylöspäin, niin mitä vaaka näyttää? VKK y F sp w a y Ratkaisu a y = 2.0ms 2, m = 50.0 kg Olkoon ~ F sp on vaa an henkilöön kohdistama voima, jolloin henkilö liikeyhtälö on y : X F y = F sp w = ma y =) F sp = m(a y + g) =590 N F ps = F sp = 590 N eli vaaka näyttää noin 60 kg. Mitä tapahtuu, kun hissin vauhti tasaantuu? :37:42 34/50 luentokalvot_05_combined.pdf (34/50)

35 Väliaineen vastus Kappaleeseen kohdistuu sen liikettä vastustava kitkavoima sen kulkiessa väliaineen läpi Eräs tällainen kitkavoima on ilmanvastus, joka on pienillä nopeuksilla suoraan verrannollinen nopeuteen ~ f = k ~v Suuremmilla nopeuksilla ilmanvastus on verrannollinen nopeuden neliöön ~ f = Dv 2 ~e T Vastustava kitkavoima johtuu pohjimmiltaan siitä, että kappale joutuu liikkuessaan siirtämään oman tilavuutensa verran väliainetta, joka vastustaa sitä "tahmeudellaan" :37:42 35/50 luentokalvot_05_combined.pdf (35/50)

36 Konseptitesti 4 Kysymys Kivi heitetään ilmaan. Ilma kohdistaa kiveen kitkavoiman ilmanvastuksen muodossa. Aika, joka kivellä menee lakipisteensä saavuttamiseen on 1. Suurempi kuin 2. Yhtäsuuri kuin 3. Pienempi kuin aika, joka siltä menee laskeutumiseen lakipisteestä lähtökorkeudelle. Syksy :37:42 36/50 luentokalvot_05_combined.pdf (36/50)

37 Konseptitesti 4 Kysymys Kivi heitetään ilmaan. Ilma kohdistaa kiveen kitkavoiman ilmanvastuksen muodossa. Aika, joka kivellä menee lakipisteensä saavuttamiseen on 1. Suurempi kuin 2. Yhtäsuuri kuin 3. Pienempi kuin aika, joka siltä menee laskeutumiseen lakipisteestä lähtökorkeudelle. Syksy :37:43 37/50 luentokalvot_05_combined.pdf (37/50)

38 Simulaatio: ilmanvastus v :37:43 38/50 luentokalvot_05_combined.pdf (38/50)

39 Yleinen liike väliaineessa Kun kappale putoaa väliaineessa, sen liikeyhtälö pystysuunnassa on X F y = mg +( kv) =ma Lopullista nopeutta, jonka kappale saavuttaa, kutsutaan lopputai tasapainonopeudeksi (terminal velocity) v t Loppunopeus saadaan merkitsemällä a = 0 mg = kv t =) v t = mg k :37:43 39/50 luentokalvot_05_combined.pdf (39/50)

40 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä :37:43 40/50 luentokalvot_05_combined.pdf (40/50)

41 Dynamiikka ympyräliikkeessä Tasaisessa ympyräliikkeessä normaalikiihtyvyys a rad = v 2 R, missä R on ympyrän säde, on vakio Newtonin toisen lain mukaan myös hiukkaseen vaikuttava nettovoima on itseisarvoltaan vakio F net = ma rad = m v 2 Voiman suunta ei ole vakio, vaan osoittaa kohti ympyrän keskipistettä R :37:43 41/50 luentokalvot_05_combined.pdf (41/50)

42 Esimerkki Tehtävä Pieni kappale, jonka massa on 1.0 kg ja joka on sidottu 0.6 m pituisen köyden päähän, pyörii 60 kierrosta minuutissa pystytasossa. Laske köysivoiman suuruus, kun 1. kapple on ympyräradan korkeimmassa kohdassa 2. kappale on radan alimmassa kohdassa 3. köysi on vaakasuorassa Mikä pitää olla kappaleen vauhti radan ylimmässä kohdassa, jotta köysi pysyisi vielä suorana? :37:43 42/50 luentokalvot_05_combined.pdf (42/50)

43 Ratkaisu! = /min 60 s min 1 = 6.28 s 1, a N = v 2 R =!2 R a) X F y = mg T 1 = ma y = m! 2 R =) T 1 = m! 2 R mg = 14 N b) X F y = mg + T 2 = m! 2 R =) T 2 = m! 2 R + mg = 33 N c) X F x = T 3 = m! R =) T 3 = m! 2 R = 24 N d) X F y = mg = m!2 R =) v = p Rg = 2.4ms :37:44 43/50 luentokalvot_05_combined.pdf (43/50)

44 Esimerkki Tehtävä Laske kiertoheilurin kiertoaika, kun heilurin kulma ja langan pituus tunnetaan. L R VKK y T x m w Ratkaisu X X F x = T sin = ma x = ma rad F y = T cos mg = :37:44 44/50 luentokalvot_05_combined.pdf (44/50)

45 Ratkaisu X X F x = T sin = ma x = ma rad F y = T cos mg = 0 =) T = mg cos =) P = 2 R v = = m v 2 R =) v = p Rg tan = 2 R P s s 2 R R L sin p = 2 = 2 Rg tan g tan g tan s L cos = 2 g :37:44 45/50 luentokalvot_05_combined.pdf (45/50)

46 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä :37:44 46/50 luentokalvot_05_combined.pdf (46/50)

47 Johdanto Esimerkiksi kahden kappaleen törmäyksissä on vaikea määrittää minkäsuuruiset ja -suuntaiset voimat vaikuttavat kappaleisiin Tällaisia ongelmia on usein helpointa käsitellä impulssin (impulse) ja liikemäärän (momentum) avulla Ratkaistaan käyttäen liikemäärän säilymisen periaatetta Vaikuttavia voimia ei tällöin tarvitse edes tuntea :37:44 47/50 luentokalvot_05_combined.pdf (47/50)

48 Newtonin toinen laki Newtonin toinen laki (N-II) m-massaiselle kappaleelle Kiihtyvyys on ~a = dv/dt! N-II voidaan lausua muodossa X ~F = ~ F net = m~a = m d ~v dt = d(m ~v) dt Yhtälö ~ F net = m~a ei ole Newtonin toinen laki yleisimmässä muodossaan Siinä on jo oletettu, että kappaleen massa säilyy vakiona Määritellään seuraavaksi liikemäärä, jonka avulla N-II voidaan yleistää :37:45 48/50 luentokalvot_05_combined.pdf (48/50)

49 Liikemäärä Määritellään kappaleen liikemääräksi ~p = m~v Liikemäärä Liikemäärä on vektori, jolla sama suunta kuin nopeusvektorilla. Liikemäärä voidaan lausua komponenteittain p x = mv x, p y = mv y ja p z = mv z :37:45 49/50 luentokalvot_05_combined.pdf (49/50)

50 Newtonin 2. lain yleinen muoto Liikemäärän avulla lausuttuna Newtonin toinen laki saadaan muotoon ~F net = d ~p dt = Kappaleeseen vaikuttava nettovoima on yhtä suuri kuin kappaleen liikemäärän muutos ajan suhteen Voimassa vain inertiaalikoordinaatistoissa. Yleisempi kuin ~ F net = m~a, koska voidaan käyttää myös silloin kun massa muuttuu liikkeen aikana (raketti) :37:45 50/50 luentokalvot_05_combined.pdf (50/50)

Luento 7: Voima ja Liikemäärä

Luento 7: Voima ja Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta

Lisätiedot

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä

Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait

Lisätiedot

Luento 5: Voima ja Liikemäärä

Luento 5: Voima ja Liikemäärä Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton

Lisätiedot

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto

Fysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure

Lisätiedot

g-kentät ja voimat Haarto & Karhunen

g-kentät ja voimat Haarto & Karhunen g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.

Lisätiedot

Luvun 5 laskuesimerkit

Luvun 5 laskuesimerkit Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Kitka ja Newtonin lakien sovellukset

Kitka ja Newtonin lakien sovellukset Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka

Lisätiedot

Luento 5: Käyräviivainen liike

Luento 5: Käyräviivainen liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta

Lisätiedot

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä

Luento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon

Lisätiedot

Luento 6: Liikemäärä ja impulssi

Luento 6: Liikemäärä ja impulssi Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste

Lisätiedot

Luento 10: Työ, energia ja teho

Luento 10: Työ, energia ja teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin

Lisätiedot

Massakeskipiste Kosketusvoimat

Massakeskipiste Kosketusvoimat Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)

Lisätiedot

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2

Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,

Lisätiedot

Luento 8: Liikemäärä ja impulssi

Luento 8: Liikemäärä ja impulssi Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Ajankohtaista Konseptitesti 1 ÄLÄ KOKEILE TÄTÄ KOTONA! Kysymys

Lisätiedot

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat

Lisätiedot

4 Kaksi- ja kolmiulotteinen liike

4 Kaksi- ja kolmiulotteinen liike Mansfield and O Sullivan: Understandin physics, painos 1999, kpl 4. Näitä löytyy myös Youn and Freedman: University physics -teoksen luvuissa 4, osin myös luvuissa 3 ja 5. 4 Kaksi- ja kolmiulotteinen liike

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino

Lisätiedot

VUOROVAIKUTUS JA VOIMA

VUOROVAIKUTUS JA VOIMA VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Nyt kerrataan! Lukion FYS5-kurssi

Nyt kerrataan! Lukion FYS5-kurssi Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle

Lisätiedot

Nopeus, kiihtyvyys ja liikemäärä Vektorit

Nopeus, kiihtyvyys ja liikemäärä Vektorit Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero

Lisätiedot

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI

NEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike

Lisätiedot

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen

VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä

Lisätiedot

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima

Lisätiedot

Kpl 2: Vuorovaikutus ja voima

Kpl 2: Vuorovaikutus ja voima Kpl 2: Vuorovaikutus ja voima Jos kaksi eri kappaletta vaikuttavat toisiinsa jollain tavalla, niiden välillä on vuorovaikutus Kahden kappaleen välinen vuorovaikutus saa aikaan kaksi vastakkaista voimaa,

Lisätiedot

Lineaarialgebra MATH.1040 / voima

Lineaarialgebra MATH.1040 / voima Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.

Lisätiedot

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia

Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat

Lisätiedot

Liikemäärä ja voima 1

Liikemäärä ja voima 1 Liikemäärä ja voima 1 Tällä luennolla tavoitteena Kinematiikan ongelma ja sen ratkaisu: Miten radan ja nopeuden saa selville, jos kappaleen kiihtyvyys tunnetaan? Analyyttinen ratkaisu Liikemäärän, voiman

Lisätiedot

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012

Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1

KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen

Lisätiedot

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä

Liike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan

Lisätiedot

2.3 Voiman jakaminen komponentteihin

2.3 Voiman jakaminen komponentteihin Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.

Lisätiedot

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r

Derivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.

Lisätiedot

RAK Statiikka 4 op

RAK Statiikka 4 op RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis

on hidastuvaa. Hidastuvuus eli negatiivinen kiihtyvyys saadaan laskevan suoran kulmakertoimesta, joka on siis Fys1, moniste 2 Vastauksia Tehtävä 1 N ewtonin ensimmäisen lain mukaan pallo jatkaa suoraviivaista liikettä kun kourun siihen kohdistama tukivoima (tässä tapauksessa ympyräradalla pitävä voima) lakkaa

Lisätiedot

Luvun 8 laskuesimerkit

Luvun 8 laskuesimerkit Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20

Lisätiedot

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki

2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen

Lisätiedot

Työ ja kineettinen energia

Työ ja kineettinen energia Työ ja kineettinen energia Kaikki mekaniikan probleemat voidaan periaatteessa ratkaista Newtonin lakien avulla, liikeyhtälöistä. Työ- ja energiakäsitteiden käyttöönottaminen kuitenkin yksinkertaistaa monia

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

ELEC-A3110 Mekaniikka (5 op)

ELEC-A3110 Mekaniikka (5 op) ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia

Lisätiedot

5.9 Voiman momentti (moment of force, torque)

5.9 Voiman momentti (moment of force, torque) 5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa

Lisätiedot

Luento 9: Pyörimisliikkeen dynamiikkaa

Luento 9: Pyörimisliikkeen dynamiikkaa Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami

Lisätiedot

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike

Gravitaatio ja heittoliike. Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike Gravitaatio ja heittoliike Gravitaatiovoima Numeerisen ratkaisun perusteet Heittoliike KERTAUS Newtonin lait Newtonin I laki Kappale, johon ei vaikuta voimia/voimien summa on nolla, ei muuta liiketilaansa

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa

RTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset

Lisätiedot

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4

Kertauskysymyksiä. KPL1 Suureita ja mittauksia. KPL2 Vuorovaikutus ja voima. Avain Fysiikka KPL 1-4 Kertauskysymyksiä KPL1 Suureita ja mittauksia 1. Suure on kappaleen ominaisuus, joka voidaan jollain tavalla mitata 2. Mittayksiköksi, tai lyhyemmin yksiköksi 3. Si-järjestelmä on kansainvälinen mittayksikköjärjestelmä

Lisätiedot

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen

FYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN

Lisätiedot

Liike pyörivällä maapallolla

Liike pyörivällä maapallolla Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa

Lisätiedot

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan

Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Voimakuvioita kirja Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Kirja lattialla Kirja, jota painetaan kepillä Kirja, jota painetaan seinään Kirja,

Lisätiedot

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,

AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan

Lisätiedot

6 Monen kappaleen vuorovaikutukset (Many-body interactions)

6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6 Monen kappaleen vuorovaikutukset (Many-body interactions) 6.1 Newtonin III laki Voimme laskea kappaleen liiketilan Newtonin II lain avulla, jos tunnemme kaikki kappaleeseen vaikuttavat voimat. Jos kappaleita

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän

Lisätiedot

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015.

Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Jakso 3: Dynamiikan perusteet Näiden tehtävien viimeinen palautus- tai näyttöpäivä on keskiviikko 5.8.2015. Tässä jaksossa harjoittelemme Newtonin toisen lain soveltamista. Newtonin toinen laki on yhtälön

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän

Lisätiedot

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen)

Fysiikan lisäkurssin tehtävät (kurssiin I liittyvät, syksy 2013, Kaukonen) 1. Ylöspäin liikkuvan hissin, jonka massa on 480 kg, nopeus riippuu ajasta oheisen kuvion mukaisesti. Laske kannatinvaijeria jännittävä voima liikkeen eri vaiheissa. (YO, S 84) 0-4s: 4,9 kn, 4..10s: 4,7

Lisätiedot

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)

Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman

Lisätiedot

Erityinen suhteellisuusteoria (Harris luku 2)

Erityinen suhteellisuusteoria (Harris luku 2) Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Fysiikan perusteet ja pedagogiikka (kertaus)

Fysiikan perusteet ja pedagogiikka (kertaus) Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta

Lisätiedot

Luento 13: Periodinen liike

Luento 13: Periodinen liike Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation

Lisätiedot

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N

= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää

Lisätiedot

Luento 11: Periodinen liike

Luento 11: Periodinen liike Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile

Lisätiedot

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4

766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä

Lisätiedot

Luento 9: Potentiaalienergia

Luento 9: Potentiaalienergia Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2015 Mikro- ja nanotekniikan

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2013 Insinöörivalinnan fysiikan koe 29.5.2013, malliratkaisut A1 Ampumahiihtäjä ampuu luodin vaakasuoraan kohti maalitaulun keskipistettä. Luodin lähtönopeus on v 0 = 445 m/s ja etäisyys maalitauluun s = 50,0 m. a) Kuinka pitkä on luodin lentoaika? b) Kuinka kauaksi

Lisätiedot

Luento 2: Liikkeen kuvausta

Luento 2: Liikkeen kuvausta Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä

Lisätiedot

2.11 Väliaineen vastus

2.11 Väliaineen vastus Jokainen, joka on taistellut eteenpäin kohti kovaa vastatuulta tai yrittänyt juosta vedessä, tietää omasta kokemuksestaan, että väliaineella todellakin on vastus. Jos seisoo vain hiljaa paikoillaan vaikkapa

Lisätiedot

3.4 Liike-energiasta ja potentiaalienergiasta

3.4 Liike-energiasta ja potentiaalienergiasta Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle / MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,

Lisätiedot

Luento 7: Pyörimisliikkeen dynamiikkaa

Luento 7: Pyörimisliikkeen dynamiikkaa Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET

SMG-4500 Tuulivoima. Ensimmäisen luennon aihepiirit. Ilmavirtojen liikkeisiin vaikuttavat voimat TUULEN LUONNONTIETEELLISET PERUSTEET SMG-4500 Tuulivoima Ensimmäisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtojen liikkeisiin vaikuttavat voimat 1 TUULEN LUONNONTIETEELLISET PERUSTEET Tuuli on ilman liikettä suhteessa maapallon pyörimisliikkeeseen.

Lisätiedot

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).

on radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1). H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika

Lisätiedot

Luento 12: Keskeisvoimat ja gravitaatio

Luento 12: Keskeisvoimat ja gravitaatio Luento 12: Keskeisvoimat ja gravitaatio Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja esimerkkejä Ajankohtaista Luennon sisältö Gravitaatio Liike keskeisvoimakentässä Keplerin lait Laskettuja

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Pietarsaaren lukio Vesa Maanselkä

Pietarsaaren lukio Vesa Maanselkä Fys 9 / Mekaniikan osio Liike ja sen kuvaaminen koordinaatistossa Newtonin lait Voimavektorit ja vapaakappalekuvat Työ, teho,työ-energiaperiaate ja energian säilymislaki Liikemäärä ja sen säilymislaki,

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen

Lisätiedot

Luvun 10 laskuesimerkit

Luvun 10 laskuesimerkit Luvun 10 laskuesimerkit Esimerkki 11.1 Sigge-serkku tasapainoilee sahapukkien varaan asetetulla tasapaksulla puomilla, jonka pituus L = 6.0 m ja massa M = 90 kg. Sahapukkien huippujen välimatka D = 1.5

Lisätiedot

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat!

Havainnoi mielikuviasi ja selitä, Panosta ajatteluun, selvitä liikkeen salat! Parry Hotteri tutki näkymättömiä voimia kammiossaan Hän aikoi tönäistä pallon liikkeelle pöydällä olevassa ympyrän muotoisessa kourussa, joka oli katkaistu kuvan osoittamalla tavalla. Hän avasi Isaac Newtonin

Lisätiedot