Luento 7: Voima ja Liikemäärä. Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä
|
|
- Ville-Veikko Heikkilä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 1 / 36
2 Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton s laws of motion) Pohjautuvat kokeellisiin havaintoihin (julk. 1687) Ovat samalla klassisen mekaniikan perusta Voimat jaetaan kontaktivoimiin (contact forces) ja pitkän kantaman voimiin (long range forces) Voima vektorisuure: sillä on suunta ja suuruus. [F] = N (newton) 2 / 36
3 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 3 / 36
4 Superpositioperiaate Kappaleeseen kohdistuvien (eri) voimien yhteisvaikutus sama, kuin jos siihen kohdistuisi yksi voima, joka on voimien vektorisumma Voimatehtävien ratkaisu perustuu tähän periaatteeseen Superpositioperiaatteen käänteissovellus Kappaleen tiettyyn pisteeseen kohdistuva voima voidaan aina jakaa komponentteihin Erittäin käytännöllinen tehtävien ratkaisemisessa F 1 F F y F F 2 F x
5 Nettovoima eli resultantti Kaikkien kappaleeseen kohdistuvien voimien summa F net = R = F i Voidaan aina laskea yhteen komponenteittain R x = i F ix, R y = i F iy, R z = i F iz Voiman itseisarvo saadaan F net = R = R 2 x + R 2 y + R 2 z 5 / 36
6 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 6 / 36
7 Newtonin 1. laki Kappale, johon vaikuttava nettovoima on nolla ( F net = 0), liikkuu tasaisella nopeudella v = v 0 a = d v = 0 dt Toisin sanoen sen kiihtyvyys nolla, ja sen liiketila ei muutu. Tätä kappaleen ominaisuutta pyrkiä jatkamaan liiketilaansa kutsutaan inertiaksi Newtonin 1. lakia kutsutaan usein inertian laiksi 7 / 36
8 Tasapaino Kappale tasapainossa (in equilibrium), kun siihen vaikuttavien voimien resultantti on nolla F net = R = F i = 0, eli komponenttimuodossa F i,k = 0 missä k = x, y, z k Huomaa, että vakionopeudella liikkuva kappale on tasapainossa i 8 / 36
9 Inertiaalikoordinaatistoista Kertausta maanantailta Inertiaalikoordinaatisto (inertial frame of reference) tasaisella nopeudella liikkuva koordinaatisto Newtonin 1. laki voimassa vain inertiaalikoordinaatistossa Seuraus koordinaatistojen yhdenvertaisuusperiaatteesta: voiman suuruus ei saa riippua koordinaatiston valinnasta! Ei-inertiaalinen koordinaatisto kiihtyvässä liikkeessä Myös normaalikiihtyyys kiihtyvää liikettä Normaalikiihtyvyys muuttaa koordinaatiston liikesuuntaa 9 / 36
10 Massa Mikäli kappaleeseen vaikuttavien voimien resultantti 0, kappale kiihtyvässä liikkeessä = Kappaleen vauhti tai nopeuden suunta muuttuu Kokeellisesti havaittu, että nettovoima F net = R ja kiihtyvyys a samansuuntaisia vektoreita Tämän seurauksena tietylle kappaleelle nettovoiman ja kiihtyvyyden suhde vakio Vakiota kutsutaan massaksi m = F net a 10 / 36
11 Newtonin 2. laki Kappaleeseen vaikuttavien voimien resultantti on (inertiaalikoordinaatistossa) F net = R = F i = m a, eli komponenttimuodossa F i,k = ma k missä k = x, y, z k i! Huomaa, että m a ei ole voima se on seuraus voimasta 11 / 36
12 Massa vs. paino Massa kuvaa kappaleen inertiaominaisuutta Paino on voima, joka kappaleeseen kohdistuu gravitaatiokentässä Maan pinnan lähellä painon w ja massan m välillä pätee w = m g Kokeissa on todettu, että inertiaali- ja gravitaatiomassat ovat ainakin 12 numeron tarkkuudella samat Käsitteellinen ero!
13 Newtonin 3. laki Kun kaksi kappaletta vuorovaikuttaa, ne kohdistavat toisiinsa yhtäsuuret, mutta vastakkaissuuntaiset voimat (voima ja vastavoima) F AB = F BA Huomaa, että kappaleiden ei tarvitse olla kosketuksissa Newtonin 3. laki pätee myös pitkän kantaman voimille Huomaa, että voima ja vastavoima kohdistuvat eri kappaleisiin F F F F
14 Jännitys Jos samaan kappaleeseen kohdistuu kaksi samansuuruista, mutta vastakkaissuuntaista voimaa, kappale jännityksessä Kappale vetojännityksessä (tension), kun kyseessä vetovoimat Työntövoimien tapauksessa kappale puristusjännityksessä (compression) Mitä tapahtuisi jos voimat olisivat vastakkaissuuntaiset, mutta erisuuruiset? F 2 = F 1 F 1 14 / 36
15 Vapaakappalekuvio Free body diagram Kuvio, jossa vain tarkasteltava kappale (tai sen osa) ja kaikki siihen kohdistuvat voimat Kappaleen ympäristöä ei piirretä vapaakappalekuvioon F N w 1 F w 2 Kappale VKK 1 VKK 2
16 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 16 / 36
17 Hiukkasen tasapaino Tasapainotilassa hiukkanen on levossa tai liikkuu vakionopeudella inertiaalikoordinaatistossa, jolloin hiukkaseen vaikuttava nettovoima on F i = 0, F i = 0 F net = i Tasapainoehdot voidaan kirjoittaa komponenteittain F k,i = 0, missä k = x, y, z i i 17 / 36
18 Tasapainotehtävien ratkaisu Kertausta lukiosta 1. Piirrä yksinkertaistettu kuva tilanteesta (kappaleet, kulmat,... ) 2. Piirrä vapaakappalekuvio tilanteesta tärkeä 3. Mieti kappaleeseen kohdistuvat vuorovaikutukset (kontaktivoimat, köydet, painovoima), älä piirrä kappaleen itsensä aiheuttamia voimia 4. Valitse probleemaan sopiva koordinaatisto 5. Jaa voimat komponentteihin (muista etumerkit!) 6. Kirjoita tasapainoyhtälöt 7. Jos tarvitaan, jatka kohdasta 2 muille kappaleille 8. Ratkaise yhtälöt ja tarkista ratkaisu 18 / 36
19 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 19 / 36
20 Tukivoimat Kun kappale lepää esim tasolla, kohdistuu siihen tukivoima (voima, joka pitää sen paikoillaan) Tukivoima voidaan esittää kontaktitasoa vastaan kohtisuoran normaalivoiman N sekä tason suuntaisen kitkavoiman (friction) f summana Tasapaino = N + f = w 20 / 36
21 Liikekitka Kun kappale on kontaktissa toisen kanssa tai liikkuu väliaineessa, kohdistuu siihen liikettä vastustavia kitkavoimia Esim. kun kappale on kontaktissa toisen kanssa ja liikkuu sen suhteen, vaikuttaa kappaleeseen ns. liikekitka (kinetic friction) f k = µ k N, missä µ k on liikekitkakerroin (coefficient of kinetic friction) Pyörivälle kappaleelle voidaan määritellä vierintäkitka (rolling friction) ja vierintäkitkakerroin µ r vastaavasti f r = µ r N, 21 / 36
22 Lepokitka Kun kappale on levossa alustaansa nähden, puhutaan lepokitkasta Lepokitka esitetään lähtökitkakertoimen (coefficient of static friction) µ s avulla f s µ s N Lepokitka saavuttaa maksiminsa juuri ennen kuin kappale lähtee liikkeelle Jos kappaleeseen ei vaikuta muita tason suuntaisia voimia, lepokitka on nolla F, f µ s N µ k N F = F 0 t f t 22 / 36
23 Hiukkasen dynamiikka Jos kappale ei ole tasapainossa, käytetään Newtonin 2. lakia F net = m a On kuitenkin muistettava, että m a ei ole voima, eikä sitä piirretä vapaakappalekuvioon Muutoin tehtävien ratkaisuperiaate sama kuin tasapainotehtävissä 23 / 36
24 Väliaineen vastus Kappaleeseen kohdistuu sen liikettä vastustava kitkavoima sen kulkiessa väliaineen läpi Eräs tällainen kitkavoima on ilmanvastus, joka on pienillä nopeuksilla suoraan verrannollinen nopeuteen F = k v Suuremmilla nopeuksilla ilmanvastus on verrannollinen nopeuden neliöön F = Dv 2 e T Vastustava kitkavoima johtuu pohjimmiltaan siitä, että kappale joutuu liikkuessaan siirtämään oman tilavuutensa verran väliainetta, joka vastustaa sitä "tahmeudellaan" 24 / 36
25 Yleinen liike väliaineessa Kun kappale putoaa väliaineessa, sen liikeyhtälö pystysuunnassa on Fy = mg + ( kv) = ma Lopullista nopeutta, jonka kappale saavuttaa, kutsutaan loppu- tai tasapainonopeudeksi (terminal velocity) v t Loppunopeus saadaan merkitsemällä a = 0 mg = kv t = v t = mg k 25 / 36
26 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 26 / 36
27 Dynamiikka ympyräliikkeessä Tasaisessa ympyräliikkeessä normaalikiihtyvyys missä R on ympyrän säde, on vakio a rad = v 2 R, Newtonin toisen lain mukaan myös hiukkaseen vaikuttava nettovoima on itseisarvoltaan vakio F net = ma rad = m v 2 Voiman suunta ei ole vakio, vaan osoittaa kohti ympyrän keskipistettä R 27 / 36
28 Esimerkki Tehtävä Pieni kappale, jonka massa on 1.0 kg ja joka on sidottu 0.6 m pituisen köyden päähän, pyörii 60 kierrosta minuutissa pystytasossa. Laske köysivoiman suuruus, kun 1. kapple on ympyräradan korkeimmassa kohdassa 2. kappale on radan alimmassa kohdassa 3. köysi on vaakasuorassa Mikä pitää olla kappaleen vauhti radan ylimmässä kohdassa, jotta köysi pysyisi vielä suorana? 28 / 36
29 Ratkaisu ω = 2π 60 1/min 60 s min 1 = 6.28 s 1, a N = v 2 R = ω2 R a) F y = mg T 1 = ma y = mω 2 R = T 1 = mω 2 R mg = 14 N b) F y = mg + T 2 = mω 2 R = T 2 = mω 2 R + mg = 33 N c) F x = T 3 = mω R = T 3 = mω 2 R = 24 N d) F y = mg = mω2 R = v = Rg = 2.4 m s 1 29 / 36
30 Esimerkki YF Ch YF Ch !"#$%&''# ()*!"#$%&''# ()* YF Ex Laske kiertoheilurin kiertoaika, kun Tehtävä heilurin kulma ja langan pituus tunnetaan. YF Ex Laske kiertoheilurin kiertoaika, kun VKK heilurin kulma ja langan pituus y tunnetaan. L T VKK R Laske kiertoheilurin kiertoaika, kun heilurin y L kulma ja langan pituus tunnetaan. T m x: F sin R x T max ma x rad y: Fy T cos mg 0 m Ratkaisu mg T cos x: Fx T sin max ma S Fysiikka I (AUT, BIO, EST, TLT) M. Sopanen rad 2007 y: Fy T cos mg 0 F w x = T sin β = ma x = ma rad F mg y = T cos β mg = 0 T cos S Fysiikka I (AUT, BIO, EST, TLT) M. Sopanen / 36 w x
31 Ratkaisu Fx = T sin β = ma x = ma rad Fy = T cos β mg = 0 = T = mg cos β = m v 2 R = P = 2πR v = 2πR Rg tan β = 2π = v = Rg tan β = 2πR P R g tan β = 2π L sin β g tan β = 2π L cos β g 31 / 36
32 Luennon sisältö Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 32 / 36
33 Johdanto Esimerkiksi kahden kappaleen törmäyksissä on vaikea määrittää minkäsuuruiset ja -suuntaiset voimat vaikuttavat kappaleisiin Tällaisia ongelmia on usein helpointa käsitellä impulssin (impulse) ja liikemäärän (momentum) avulla Ratkaistaan käyttäen liikemäärän säilymisen periaatetta Vaikuttavia voimia ei tällöin tarvitse edes tuntea 33 / 36
34 Newtonin toinen laki Newtonin toinen laki (N-II) m-massaiselle kappaleelle Kiihtyvyys on a = dv/dt N-II voidaan lausua muodossa F = F net = m a = m d v dt = d(m v) dt Yhtälö F net = m a ei ole Newtonin toinen laki yleisimmässä muodossaan Siinä on jo oletettu, että kappaleen massa säilyy vakiona Määritellään seuraavaksi liikemäärä, jonka avulla N-II voidaan yleistää 34 / 36
35 Liikemäärä Määritellään kappaleen liikemääräksi p = m v Liikemäärä Liikemäärä on vektori, jolla sama suunta kuin nopeusvektorilla. Liikemäärä voidaan lausua komponenteittain p x = mv x, p y = mv y ja p z = mv z 35 / 36
36 Newtonin 2. lain yleinen muoto Liikemäärän avulla lausuttuna Newtonin toinen laki saadaan muotoon F net = d p dt = Kappaleeseen vaikuttava nettovoima on yhtä suuri kuin kappaleen liikemäärän muutos ajan suhteen Voimassa vain inertiaalikoordinaatistoissa. Yleisempi kuin F net = m a, koska voidaan käyttää myös silloin kun massa muuttuu liikkeen aikana (raketti)
Luento 5: Voima ja Liikemäärä
Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Johdanto Dynamiikka tutkii voimia ja niiden aiheuttamaa liikettä Newtonin liikelait (Newton
LisätiedotLuento 7: Voima ja Liikemäärä
Luento 7: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvaajassa on kuvattu kappaleen nopeutta
Lisätiedot:37:37 1/50 luentokalvot_05_combined.pdf (#38)
'VLTJ,)Ł /Ł 2015-09-21 13:37:37 1/50 luentokalvot_05_combined.pdf (#38) Luento 5: Voima ja Liikemäärä Superpositio Newtonin lait Tasapainotehtävät Kitkatehtävät Ympyräliike Liikemäärä 2015-09-21 13:37:37
LisätiedotFysiikan perusteet. Voimat ja kiihtyvyys. Antti Haarto
Fysiikan perusteet Voimat ja kiihtyvyys Antti Haarto.05.01 Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure
LisätiedotSuhteellinen nopeus. Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää
3.5 Suhteellinen nopeus Matkustaja P kävelee nopeudella 1.0 m/s pitkin 3.0 m/s nopeudella etenevän junan B käytävää P:n nopeus junassa istuvan toisen matkustajan suhteen on v P/B-x = 1.0 m/s Intuitio :
Lisätiedotg-kentät ja voimat Haarto & Karhunen
g-kentät ja voimat Haarto & Karhunen Voima Vuorovaikutusta kahden kappaleen välillä tai kappaleen ja sen ympäristön välillä (Kenttävoimat) Yksikkö: newton, N = kgm/s Vektorisuure Aiheuttaa kappaleelle
LisätiedotVedetään kiekkoa erisuuruisilla voimilla! havaitaan kiekon saaman kiihtyvyyden olevan suoraan verrannollinen käytetyn voiman suuruuteen
4.3 Newtonin II laki Esim. jääkiekko märällä jäällä: pystysuuntaiset voimat kumoavat toisensa: jään kiekkoon kohdistama tukivoima n on yhtäsuuri, mutta vastakkaismerkkinen kuin kiekon paino w: n = w kitka
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotKitka ja Newtonin lakien sovellukset
Kitka ja Newtonin lakien sovellukset Haarto & Karhunen Tavallisimpia voimia: Painovoima G Normaalivoima, Tukivoima Jännitysvoimat Kitkavoimat Voimat yleisesti F f T ja s f k N Vapaakappalekuva Kuva, joka
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Esimerkki 5.1 Moottori roikkuu oheisen kuvan mukaisessa ripustuksessa. a) Mitkä ovat kahleiden jännitykset? b) Mikä kahleista uhkaa katketa ensimmäisenä? Piirretäänpä parit vapaakappalekuvat.
LisätiedotMonissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta
8 LIIKEMÄÄRÄ, IMPULSSI JA TÖRMÄYKSET Monissa fysiikan probleemissa vaikuttavien voimien yksityiskohtia ei tunneta Tällöin dynamiikan peruslain F = ma käyttäminen ei ole helppoa tai edes mahdollista Newtonin
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen
LisätiedotSTATIIKKA. TF00BN89 5op
STATIIKKA TF00BN89 5op Sisältö: Statiikan peruslait Voiman resultantti ja jako komponentteihin Voiman momentti ja voimapari Partikkelin ja jäykän kappaleen tasapainoyhtälöt Tukivoimat Ristikot, palkit
LisätiedotLuento 6: Liikemäärä ja impulssi
Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste
LisätiedotLuento 8: Liikemäärä ja impulssi. Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä
Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä 1 / 46 Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike
LisätiedotFysiikka 1. Dynamiikka. Voima tunnus = Liike ja sen muutosten selittäminen Physics. [F] = 1N (newton)
Dynamiikka Liike ja sen muutosten selittäminen Miksi esineet liikkuvat? Physics Miksi paikallaan oleva 1 esine lähtee liikkeelle? Miksi liikkuva esine hidastaa ja pysähtyy? Dynamiikka käsittelee liiketilan
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.2.2016 Susanna Hurme Tervetuloa kurssille! Mitä on statiikka? Mitä on dynamiikka? Miksi niitä opiskellaan? Päivän aihe: Voiman käsite ja partikkelin tasapaino
LisätiedotFysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
Lisätiedot4 Kaksi- ja kolmiulotteinen liike
Mansfield and O Sullivan: Understandin physics, painos 1999, kpl 4. Näitä löytyy myös Youn and Freedman: University physics -teoksen luvuissa 4, osin myös luvuissa 3 ja 5. 4 Kaksi- ja kolmiulotteinen liike
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotLuento 3: Käyräviivainen liike
Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike 2015-09-14 13:50:32 1/40 luentokalvot_03_combined.pdf (#36) Luennon
LisätiedotVUOROVAIKUTUS JA VOIMA
VUOROVAIKUTUS JA VOIMA Isaac Newton 1642-1727 Voiman tunnus: F Voiman yksikkö: 1 N (newton) = 1 kgm/s 2 Vuorovaikutus=> Voima Miten Maa ja Kuu vaikuttavat toisiinsa? Pesäpallon ja Maan välinen gravitaatiovuorovaikutus
LisätiedotMassakeskipiste Kosketusvoimat
Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotLuento 8: Liikemäärä ja impulssi
Luento 8: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Harjoituksia ja esimerkkejä Ajankohtaista Konseptitesti 1 ÄLÄ KOKEILE TÄTÄ KOTONA! Kysymys
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta
LisätiedotNyt kerrataan! Lukion FYS5-kurssi
Nyt kerrataan! Lukion FYS5-kurssi Vaakasuora heittoliike Heittoliikettä voidaan tarkastella erikseen vaaka- ja pystysuunnassa v=(v x,v y ) Jos ilmanvastausta ei oteta huomioon (yleensä ei), vaakasuunnalle
LisätiedotTarkastellaan tilannetta, jossa kappale B on levossa ennen törmäystä: v B1x = 0:
8.4 Elastiset törmäykset Liike-energia ja liikemäärä säilyvät elastisissa törmäyksissä Vain konservatiiviset voimat vaikuttavat 1D-tilanteessa kappaleiden A ja B törmäykselle: 1 2 m Av 2 A1x + 1 2 m Bv
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotVUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian perusteet ja pedagogiikka, luento Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian perusteet ja pedagogiikka, 1.-2. luento Kari Sormunen Mitä yhteistä? Kirja pöydällä Opiskelijapari Teräskuulan liike magneetin lähellä
LisätiedotHarjoitellaan voimakuvion piirtämistä
Harjoitellaan voimakuvion piirtämistä Milloin ja miksi voimakuvio piirretään? Voimakuvio on keskeinen osa mekaniikan tehtävän ratkaisua, sillä sen avulla hahmotetaan tilanne, esitetään kappaleeseen kohdistuvat
LisätiedotHARJOITUS 4 1. (E 5.29):
HARJOITUS 4 1. (E 5.29): Työkalulaatikko, jonka massa on 45,0 kg, on levossa vaakasuoralla lattialla. Kohdistat laatikkoon asteittain kasvavan vaakasuoran työntövoiman ja havaitset, että laatikko alkaa
LisätiedotMekaniikkan jatkokurssi
Mekaniikkan jatkokurssi Tapio Hansson 16. joulukuuta 2018 Mekaniikan jatkokurssi Tämä materiaali on suunnattu lukion koulukohtaisen syventävän mekaniikan kurssin materiaaliksi. Kurssilla kerrataan lukion
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotFysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012
Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 LIIKE Jos vahvempi kaveri törmää heikompaan kaveriin, vahvemmalla on enemmän voimaa. Pallon heittäjä antaa pallolle heittovoimaa, jonka
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Mikro- ja nanotekniikan laitos Syksy 2016 1 / 21 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 2-3 Vääntömomentti Oletus: Voimat tasossa, joka on kohtisuorassa pyörimisakselia vastaan. Oven kääntämiseen tarvitaan eri suuruinen voima
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
LisätiedotVUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN. Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen
VUOROVAIKUTUKSESTA VOIMAAN JA EDELLEEN LIIKKEESEEN Fysiikan ja kemian pedagogiikan perusteet (mat/fys/kem suunt.), luento 1 Kari Sormunen Vuorovaikutus on yksi keskeisimmistä fysiikan peruskäsitteistä
LisätiedotLuku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia
Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait
LisätiedotRAK Statiikka 4 op
RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka
LisätiedotLiike pyörivällä maapallolla
Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa
LisätiedotNEWTONIN LAIT MEKANIIKAN I PERUSLAKI MEKANIIKAN II PERUSLAKI MEKANIIKAN III PERUSLAKI
NEWTONIN LAIT MEKANIIKAN I PERUSLAKI eli jatkavuuden laki tai liikkeen jatkuvuuden laki (myös Newtonin I laki tai inertialaki) Kappale jatkaa tasaista suoraviivaista liikettä vakionopeudella tai pysyy
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Konseptitesti 1 Kysymys
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa Ajankohtaista FuksiProffaBuffa Järjestetään
Lisätiedot2.2 Principia: Sir Isaac Newtonin 1. ja 2. laki
Voima se on joka jyllää!, sanottiin ennen. Fysiikassakin voimalla tarkoitetaan jokseenkin juuri sitä, mikä ennenkin jylläsi, joskin täytyy muistaa, että voima ja teho ovat kaksi eri asiaa. Fysiikan tutkimuksen
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
LisätiedotELEC-A3110 Mekaniikka (5 op)
Yliopistonlehtori, tkt Sami Kujala Syksy 2016 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia Ajankohtaista Presemokyselyn poimintoja Millä odotuksilla aloitat
Lisätiedot5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =
TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotLuvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
LisätiedotLiikemäärä ja voima 1
Liikemäärä ja voima 1 Tällä luennolla tavoitteena Kinematiikan ongelma ja sen ratkaisu: Miten radan ja nopeuden saa selville, jos kappaleen kiihtyvyys tunnetaan? Analyyttinen ratkaisu Liikemäärän, voiman
Lisätiedot2.3 Voiman jakaminen komponentteihin
Seuraavissa kappaleissa tarvitaan aina silloin tällöin taitoa jakaa voima komponentteihin sekä myös taitoa suorittaa sille vastakkainen operaatio eli voimien resultantin eli kokonaisvoiman laskeminen.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
LisätiedotLuvun 10 laskuesimerkit
Luvun 10 laskuesimerkit Esimerkki 10.1 Tee-se-itse putkimies ei saa vesiputken kiinnitystä auki putkipihdeillään, joten hän päättää lisätä vääntömomenttia jatkamalla pihtien vartta siihen tiukasti sopivalla
LisätiedotRTEK-2000 Statiikan perusteet. 1. välikoe ke LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa
RTEK-2000 Statiikan perusteet 1. välikoe ke 27.2. LUENTOSALEISSA K1705 klo 11:00-14:00 sekä S4 klo 11:15-14:15 S4 on sähkötalossa RTEK-2000 Statiikan perusteet 4 op 1. välikoealue luennot 21.2. asti harjoitukset
LisätiedotLuento 9: Pyörimisliikkeen dynamiikkaa
Luento 9: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami
LisätiedotLineaarialgebra MATH.1040 / voima
Lineaarialgebra MATH.1040 / voima 1 Seuraavaksi määrittelemme kaksi vektoreille määriteltyä tuloa; pistetulo ja. Määritelmät ja erilaiset tulojen ominaisuudet saattavat tuntua, sekavalta kokonaisuudelta.
LisätiedotLiike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
LisätiedotKpl 2: Vuorovaikutus ja voima
Kpl 2: Vuorovaikutus ja voima Jos kaksi eri kappaletta vaikuttavat toisiinsa jollain tavalla, niiden välillä on vuorovaikutus Kahden kappaleen välinen vuorovaikutus saa aikaan kaksi vastakkaista voimaa,
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Harjoituksia ja laskettuja esimerkkejä 1 / 37 Luennon sisältö Johdanto
LisätiedotTyö ja kineettinen energia
Työ ja kineettinen energia Kaikki mekaniikan probleemat voidaan periaatteessa ratkaista Newtonin lakien avulla, liikeyhtälöistä. Työ- ja energiakäsitteiden käyttöönottaminen kuitenkin yksinkertaistaa monia
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän
LisätiedotLuento 7: Pyörimisliikkeen dynamiikkaa
Luento 7: Pyörimisliikkeen dynamiikkaa Johdanto Vääntömomentti Hitausmomentti ja sen määrittäminen Liikemäärämomentti Gyroskooppi Laskettuja esimerkkejä Luennon sisältö Johdanto Vääntömomentti Hitausmomentti
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
LisätiedotELEC-A3110 Mekaniikka (5 op)
ELEC-A3110 Mekaniikka (5 op) Yliopistonlehtori, tkt Sami Kujala Elektroniikan ja nanotekniikan laitos (ELE) Syksy 2017 Luento 2: Kertausta ja johdantoa Suoraviivainen liike Jumppaa Harjoituksia ja oivalluksia
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
LisätiedotAUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t,
AUTON LIIKETEHTÄVIÄ: KESKIKIIHTYVYYS ak JA HETKELLINEN KIIHTYVYYS a(t) (tangenttitulkinta) sekä matka fysikaalisena pinta-alana (t, v)-koordinaatistossa ruutumenetelmällä. Tehtävä 4 (~YO-K97-1). Tekniikan
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 30.3.2016 Susanna Hurme Yleisen tasoliikkeen kinetiikka (Kirjan luku 17.5) Osaamistavoitteet Osata ratkaista voimia ja niiden aiheuttamia kiihtyvyyksiä tasoliikkeessä
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 29.3.2016 Susanna Hurme Yleisen tasoliikkeen kinematiikka: absoluuttinen ja suhteellinen liike, rajoitettu liike (Kirjan luvut 16.4-16.7) Osaamistavoitteet Ymmärtää,
LisätiedotFysiikan perusteet ja pedagogiikka (kertaus)
Fysiikan perusteet ja pedagogiikka (kertaus) 1) MEKANIIKKA Vuorovaikutus vuorovaikutuksessa kaksi kappaletta vaikuttaa toisiinsa ja vaikutukset havaitaan molemmissa kappaleissa samanaikaisesti lajit: kosketus-/etä-
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
LisätiedotLiikemäärän säilyminen Vuorovesivoimat Jousivoima
Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten
LisätiedotFYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen
FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN
LisätiedotKERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1
KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation
Lisätiedot766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4
766323A Mekaniikka, osa 2, kl 2015 Harjoitus 4 0. MUISTA: Tenttitehtävä tulevassa päätekokeessa: Fysiikan säilymislait ja symmetria. (Tästä tehtävästä voi saada tentissä kolme ylimääräistä pistettä. Nämä
LisätiedotRAK-31000 Statiikka 4 op
RAK-31000 Statiikka 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat RAK-31000 Statiikka
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut
A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan
LisätiedotRTEK-2000 Statiikan perusteet 4 op
RTEK-2000 Statiikan perusteet 4 op Opintojakson kotisivu on osoitteessa: http://webhotel2.tut.fi/mec_tme harjoitukset (H) harjoitusten malliratkaisut harjoitustyöt (HT) ja opasteet ilmoitusasiat Osaamistavoitteet
LisätiedotTÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA
TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022
Lisätiedota) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
LisätiedotLuku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.
Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen
LisätiedotPiirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan
Voimakuvioita kirja Piirrä kirjaan vaikuttavat voimat oikeissa suhteissa toisiinsa nähden. Kaikki kappaleet ovat paikallaan Kirja lattialla Kirja, jota painetaan kepillä Kirja, jota painetaan seinään Kirja,
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 10.3.2016 Susanna Hurme Statiikan välikoe 14.3.2016 Ajankohta ma 14.3.2016 klo 14:15 17:15 Salijako Aalto-Sali: A-Q (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
Lisätiedot