Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Koko: px
Aloita esitys sivulta:

Download "Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut"

Transkriptio

1 Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja sen indusoima etäisyys on siis d(x,y) x y (x y,x y). (a) Annettujen vektoreiden välinen etäisyys, kun etäisyyden (ja samalla normin) indusoi tavanomainen pistetulo, on d(u,v) (u v) (u v) (4 ( 1),0 1,4 3,2 5) (4 ( 1),0 1,4 3,2 5) (5, 1,1, 3) (5, 1,1, 3) 5 2 +( 1) ( 3) Oikotie: Reaalivektoreiden pistetulolle etäisyys voidaan esittää muodossa d(x, y) (x1 y 1 ) (x n y n ) 2, joka edelleen saadaan muotoon Saadaan siis d(u,v) d(x,y) x 1 y x n y n (b) Annettujen vektoreiden välinen etäisyys, kun etäisyyden (ja samalla normin) indusoi sisätulo (x,y) x 1 y 1 + 3x 2 y 2 + 3x 3 y 3 + 2x 4 y 4, jossa x (x 1,x 2,x 3,x 4 ) ja y (y 1,y 2,y 3,y 4 ), on d(u,v) (u v,u v) ((4 ( 1),0 1,4 3,2 5),(4 ( 1),0 1,4 3,2 5)) ((5, 1,1, 3),(5, 1,1, 3)) ( 1) ( 3) Olkoon u (1,1,1,1) ja v (1, i,0,1 i) vektoriavaruuden C 4 vektoreita. Annetun normin x indusoima etäisyys on siis d(x, y) x y. (a) Annettujen vektoreiden välinen etäisyys, kun etäisyyden indusoi Hermiten pistetulon x y indusoima normi x x x, on d(u,v) u v (u v) (u v) (1 1,1 ( i),1 0,1 (1 i)) (1 1,1 ( i),1 0,1 (1 i)) (0,1+i,1,i) (0,1+i,1,i) 0 0+(1+i) (1+i)+1 1+i i Oikotie: Kompleksivektoreiden Hermiten pistetulolle etäisyys voidaan esittää muodossa d(x,y) x 1 y x n y n 2. Saadaan siis d(u,v) Huomaa itseisarvot! i i

2 (b) Annettujen vektoreiden välinen etäisyys, kun etäisyyden indusoi normi x x x 2 + x 3 +2 x 4, jossa x (x 1,x 2,x 3,x 4 ), on d(u,v) u v ( i) (1 i) i i Kuten ohjeessa mainittiin, voidaan lauseen 1 ja huomautuksen 19 yhtälöitä soveltaa reaalivektorien x ja y välisen kulman θ määrittämiseen yleisemminkin. Yhtälöstä cosθ (x,y) x y, (1) saadaan vektorien (kumpikaan ei nollavektori) välinen kulma, kun normi on annetun sisätulon indusoima. Tämä nähtäisiin käymällä läpi monisteessa olleet tarkastelut sisätulon mukaisesti (pistetulo on siätulo). Olkoon u (1,,, 3) ja v (3,2,2, 1) vektoreita vektoriavaruudesta R 4. Ilmeisesti kumpikaan ei ole nollavektori, joten monisteen huomautus 19 soveltuu tehtävän ratkaisuun. (a) Vektoreiden u ja v välinen kulma, kun sisätulo on tavanomainen pistetulo ja normi sen indusoima, saadaan humautuksesta 19 cosθ u v u v (1,,, 3) (3,2,2, 1) (1,,, 3) (3,2,2, 1) ( 1) 1 2 +() 2 +() 2 +( 3) ( 1) , joten θ 1,682 (rad) tai θ (b) Olkoon sisätulo (x,y) 4x 1 y 1 + x 2 y 2 + 2x 3 y 3 + x 4 y 4, jossa x (x 1,x 2,x 3,x 4 ) ja y (y 1,y 2,y 3,y 4 ), ja normi sen indusoima x (x,y). Tällöin vektoreiden u ja v välisen kulman kosini kaavan 1 mukaan on cosθ (u,v) u v ((1,,, 3),(3,2,2, 1)) (1,,, 3) (3,2,2, 1) 4 (1 3)+1 (() 2)+2 (() 2)+1 (( 3) ( 1)) () 2 +2 () 2 +1 ( 3) ( 1) , joten θ 1,485 (rad) tai θ 85,08. 2

3 Lisäys: Olkoon u (1,,2,3) kolmas vektori. Tällöin saataisiin vektorien u ja v väliselle kulmalle θ kohdan a) tilanteessa cosθ 0 ja kohdan b) tilanteessa cosθ Siis kohdan a) sisätulolla (pistetulolla) vektorit ovat kohtisuorassa toisiaan vastaan, mutta kohdan b) sisätulolla eivät. 4. Olkoon vektorijoukko B {x 1,x 2,...,x n } vektoriavaruuden V kanta, joka on ortogonaalinen sisätulon (x, y) suhteen. Normina on tämän sisätulon indusoima normi. Tällöin määritelmän 34 mukaan { x i 2, kun i j, (x i,x j ) (2) 0, kun i j. Koska B on kanta, niin jokainen x V voidaan lausua määritelmän 14 mukaisesti yksikäsitteisesti muodossa x c 1 x 1 +c 2 x 2 + +c n x n ja x i 2 > 0 kaikilla ß {1,...,n}. Ohjetta noudattaen saadaan yhtälön (2) ja sisätulon lineaarisuudella kullekin i {1,...,n} (x,x i ) (c 1 x 1 +c 2 x 2 + +c n x n,x i ) c 1 (x 1,x i )+c 2 (x 2,x i )+ +c n (x n,x i ) (2) c i (x i,x i ) c i x i 2. Ratkaisemalla c i saadusta yhtälöstä ( x i 2 > 0) saadaan c i (x,x i) x i 2. Lisäys: Katso tehtävän 5 ratkaisua. Jos vektorijoukko B olisi vektoriavaruuden V ortonormaali kanta, olisi { 1, kun i j, (x i,x j ) 0, kun i j, (3) joten saisimme kertoimen c i yhtälöstä c i (x,x i ). Huom! Tehtävän alkuperäisessä versiossa oli virheellisesti c i (x x i) x i 2, mutta jos sisätulona on pistetulo (tai Hermiten pistetulo), tulos olisi tuossa muodossa. 5. Olkoon B kuten tehtävässä 4 vektoriavaruuden V ortogonaalikanta sisätulon (x, y) suhteen. Määritelmän 35 jälkeisessä laskelmassa (tai kalvosetissä) esitettiin annetun vektorin x projektio x vektorille y, joka saadaan yhtälöstä x x y y 2y. Kuten tehtävän 3 ohjeessa mainittiin, voidaan projektion yhtälöä soveltaa reaalivektorin x projektion x määrittämiseen yleisemminkin. Yhtälöstä x (x,y) y }{{ 2 y (4) } skalaari saadaan vektorin x projektio x, kun normi on annetun sisätulon indusoima. 3

4 Koska B on kanta, niin x i 2 > 0 kaikilla ß {1,...,n}. Saadaan siis vektorin x projektioksi z i kantavektorille x i z i (x,x i) x i 2 x i. Eli vektorin x projektioksi z i kantavektorille x i on muotoa d i x i, jossa d i (x,x i) x i 2. Tehtävän 5 kertoimelle saadaan siis c i d i. Yhteenvetona voi siis sanoa, että vektorin x projektio ortogonaalin kannan vektorille x i on yhtäsuuri kuin vektorin x yksikäsitteisessä lineaarikombinaatiossa oleva vektorin x i monikerta. Lisäys: Vektorin x koordinaattivektori x B orgonaalin kannan B suhteen on siis ( (x,x1 ) x B x 1 2, (x,x 2) x 2 2,..., (x,x ) n) x n Olkoon x 1 (5,2, 1), x 2 (,0,1) ja x 3 (2,4, 1) avaruuden R 3 pisteitä. Pitää määrittää taso, jolla nuo pisteet sijaitsevat. Tarkistetaan ensin, että kyseinen taso on olemassa eli tarkistetaan etteivät pisteet ole samalla suoralla. Toisaalta pisteet x 1, x 2 ja x 3 ovat samalla suoralla, jos vektorit x 2 x 1 ja x 3 x 1 ovat lineaarisesti riippuvat eli x 2 x 1 c(x 3 x 1 ) jollakin skalaarilla c. Sijoittamalla arvot saadaan siis 5 c(2 5) 0 c(4) 1 ( 1) c( 1 ( 1)) c 3 c 1 2 0) Ratkaisua ei ole eli pisteet x 1, x 2 ja x 3 määrittävät jonkin tason T. Olkoon x 1 (5,2, 1), x 2 (,0,1) ja x 3 (2,4, 1) avaruuden R 3 pisteitä. (a) Määritetään ensin tasolle T parametrimuotoinen esitys. Esimerkin 8 tai kalvojen mukaan saadaan Siis parametrimuodossa T {x 1 +c 1 (x 2 x 1 )+c 2 (x 3 x 1 ) c 1,c 2 R} {(5,2, 1) +c 1 (,,2) +c 2 ( 3,2,0) c 1,c 2 R} T {(5,2, 1) +c 1 (,,2)+c 2 ( 3,2,0) c 1,c 2 R} eli paikkavektorina on x 1 (5,2, 1) ja suuntavektoreina ovat x 2 x 1 (,,2) ja x 3 x 1 ( 3,2,0). (b) Käytetään apuna edellä saatua parametrimuotoista esitystä saadaksemme normaalimuotoisen esityksen tasolle T. Esimerkin 5 tai kalvojen mukaan saadaan normaalivektoriksi ja edelleen saadaan n (x 2 x 1 ) (x 3 x 2 ) (,,2) ( 3,2,0) i j k i j k 3 2 4i 6j0k T {x R 3 (x x 1 ) (x 2 x 1 ) (x 3 x 2 ) 0} {(x,y,z) R 3 ((x,y,z) (5,2, 1)) ( 4, 6,0) 0}. 4.

5 Siis normaalimuodossa T {(x,y,z) R 3 ((x,y,z) (5,2, 1)) ( 4, 6,0) 0} {(x,y,z) R 3 ((x,y,z) (5,2, 1)) (2,3,10) 0} (c) koordinaattimuodossa. Esimerkin 6 tai kalvojen mukaisesti laskemalla normaalimuodon esityksen auki saadaan T {(x,y,z) R 3 ((x,y,z) (5,2, 1)) ( 4, 6,0) 0} {(x,y,z) R 3 (x,y,z) ( 4, 6,0) (5,2, 1) ( 4, 6,0) 0} {(x,y,z) R 3 4x 6y 0z ( ) 0} {(x,y,z) R 3 4x 6y 0z 12}. Siis koordinaattimuodossa T {(x,y,z) R 3 4x 6y 0z 12} {(x,y,z) R 3 2x+3y +10z 6}. Pisteidenp 1 (3,10, 3) jap 2 (4, 1,0) kuuluminen tasoont voidaan parhaiten todeta sijoittamalla koordinaattimuodon lausekkeeseen 2x + 3y + 10z: p 1 : ( 3) 6 p 1 T; p 2 : ( 1) p 2 T.. Olkoon x 1 (6, 3,4) ja x 2 (4,,3) avaruuden R 3 pisteitä. Nämä pisteet määrittävät yksikäsitteisen suoran, koska x 1 x 2. (a) Määritetään suoralle L parametrimuotoinen esitys. Valitsemalla p x 1 ja x x 2 x 1 voimme helposti todeta, että pisteet x 1 (parametrilla t 0) ja x 2 (parametrilla t 1) ovat suoralla Siis parametrimuodossa L {p+tx t R} {x 1 +t(x 2 x 1 ) t R} {(6, 3,4) +t(,1, 1) t R} L {(6, 3,4) +t(,1, 1) c R} eli paikkavektorina on x 1 (6, 3,4) ja suuntavektorina on x 2 x 1 (,1, 1). (b) Käytetään edellä saatua parametrimuotoa hyväksi. Koska yksikään suuntavektorin koordinaatti ei ole nolla, saadaan koordinaattimuoto kokonaan ratkaisemalla parametri t yhtälöstä (x,y,z) p+tx x 1 +t(x 2 x 1 ) (6, 3,4) +t(,1, 1) (t+6,t 3, t+4). Saadaan t x 6, t y +3 ja t z +4. Siis L {(x,y,z) R 3 x 6 y +3 z +4}. 5

6 Pisteiden p 1 (2, 1,2) jap 2 (6, 4,5) kuuluminen suoralle L voidaan parhaiten todeta sijoittamalla koordinaattimuodon yhtälöön x 6 y +3 z +4: p 1 : p 1 L; p 2 : p 2 L. 8. Tarkastellaan koordinaattimuodossa annettuja tasoja T 1 : x+2y +3z 0 ja T 2 : 2x+3y z 5. Koordinaattimuodosta näemme suoraan näiden normaalivektorit: T 1 : n 1 ( 1,2,3) T 2 : n 2 (2,3, 1). Yhtälö n 1 cn 2 toteutuu vain, jos yhtälöille 1 2c, 2 3c ja 3 c löytyy ratkaisu. Tälläista ratkaisua ei ole joten n 1 jan 2 ovat riippumattomat. Täten tasot ovat erisuuntaiset ja niillä on leikkaussuora. Haetaan ne pisteet, jotka ovat molemmilla tasoilla ratkaisemalla yhtäaikaisesti molempien tasojen yhtälöt: { { { x+2y +3z 0 x+2y +3z 0 x+2y +3z 0 2 2x+3y z 5 y z 5 1 { x +5z 10 y z 5 Ratkaisut: y z 5 x y z 5z 10 z 5 Ratkaisuksi saadaan siis (x,y,z) 5 (, 1,0) + z(5,1,1). Siis suora L T 1 T 2 on parametrimuodossa L { 5 (, 1,0)+t(5,1,1) t R}. Tarkistetaan onko L L. Koska edellisessä tehtävässä saatiin suoralle L koordinaattimuotoinen esitys ja on siis helpompi todeta onko piste suoralla L, valitaan kaksi pistettä suoralta L. t 2 : p 1 1 (0, 3,2) L ; t 0: p 2 5 (, 1,0) L ; Suorat ovat samat täsmälleen silloin, kun molemmat pisteet ovat suoralla L. Pisteiden p 1 ja p 2 kuuluminen suoralle L voidaan parhaiten todeta sijoittamalla suoran L koordinaattimuodon yhtälöön x 6 y +3 z +4: p 1 : p 1 L L L. Ei ollut tarpeen edes tarkistaa toista pistettä. Suorat L ja L eivät ole samat. 9. Olkoon B {p 1,p 2,p 3 } kolmen eri pisteen joukko avaruudessa R 3 ja merkitään u p 2 p 1 ja v p 3 p 1. (a) Osoita joukon pisteiden olevan samalla suoralla tarkalleen silloin, kun vektorit u ja v ovat lineaarisesti riippuvat. Kaksi eriävää pistettä p 1, p 2 määrittelevät suoran L {p 1 + cu c R}. Piste p 3 on suoralla L täsmälleen silloin, kun on olemassa kerroin c 3 R toteuttaen yhtälön p 3 p 1 +c 3 u. Edelleen yhtälöp 3 p 1 +c 3 u voidaan kirjoittaa muotoonp 3 p1 c 3 u eli c 3 u v 0. Siis lineaarisen riipuuvuuden määritelmän mukaisesti pisteet p 1, p 2 ja p 3 ovat samalla suoralla L täsmälleen silloin, kun on olemassa kerroin c 3 R toteuttaen yhtälön c 3 u v 0 (lineaarinen riippuvuus). 6

7 (b) Suoraan määritelmästä 14 saadaan lineaarisesti riippuville vektoreille u ja v yhtälölle c 1 u+c 2 v 0 epätriviaali ratkaisu joillakin c 1,c 2 R tarkalleen silloin, kun ne ovat riippuvat. Hieman tarkentaen, kahden nollavektorista poikkeavan vektorin tapauksessa c 1,c 2 R\{0}. Siis u c 2 c 1 v täsmälleen silloin, kun vektorit u ja v ovat lineaarisesti riippuvat. Edellisen kohdan mukaan vektoreiden u ja v välinen kulma θ on 0 tai π (riippuen suunnasta) täsmälleen silloin, kun nämä vektorit ovat lineaarisesti riippuvat. Lauseen 23 kohdan mukaan x y x y sinθ, missä θ on näiden vektoreiden välinen kulma. Täten kahdelle nollavektorista poikkeavalle vektorille u ja v, joille x > 0 ja y > 0, saadaan siis x y 0 x y 0 θ {0,π}. Edellisen kohdan mukaisesti ensin lauseen 1 mukaan saadaan vektoreille u ja v niiden väliselle kulmalle θ u v x y cos θ. Täten kahdelle nollavektorista poikkeavalle vektorille u ja v, joille x > 0 ja y > 0, saadaan siis josta edelleen saadaan cosθ u v x y, u v x y cosθ 1 θ {0,π}. 10. Olkoon V vektoriavaruus. Käydään väitteet läpi kompleksiavaruudelle. Reaaliavaruuden tapauksessa liittoluvut (kompleksikonjugaatit) eivät ole tarpeen. (a) Olkoon (x,y) vektoriavaruuden V sisätulo ja x (x,x). Käydään läpi määritelmän ehdot käyttäen sisätulon määritelmän ehtoja hyväksi: 1) 2) 3) ja (x,x) 0 x (x,x) 0 x (x,x) 0 (x,x) 0 0. ax (ax,ax) a(x,ax) a(ax, x) a 2 (x,x) a 2 (x,x) a (x,x) a x. x+y 2 (x+y,x+y) (x,x+y)+(y,x+y) (x+y,x)+(x+y,y) (x,x)+(y,x)+(x,y)+(y,y) (x,x)+(x,y)+(y,x)+(y,y) Lauseen 15 mukaan sisätulo toteuttaa Cauchyn Schwarzin epäyhtälön joka voidaan kirjoittaa muotoon (x,y) 2 (x,x)(y,y), (x,y) (y,x) (x,x)(y,y),

8 josta edelleen saadaan (x,y)+(y,x) (x,y)+(y,x) (x,y) + (y,x) 2 (x,x)(y,y). (5) Huomaa, että (x, y) +(y, x) R myös kompleksiavaruudessa. Edellisestä saadaan x+y 2 (x,x)+(x,y)+(y,x)+(y,y) (5) x 2 + y 2 +2 (x,x)(y,y) x 2 + y 2 +2 x y ( x + y ) 2 Normin ollessa aina epänegatiivinen seuraa edellisestä x+y x + y. Kuvaus x (x,x) on siis tosiaan normi (b) Olkoon x vektoriavaruuden V normi ja d(x,y) x y. Käydään läpi normin ehtojen avulla määritelmän ehdot: 1) d(x,y) ( x y) 0 ja d(x,y) 0 x y 0 x y 0 x y. 2) d(x,y) x y (y x) 1 y x d(y,x) 3) d(x,z) x z (x y)+(y z) x y + y z d(x,y)+d(y,z) 8

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on 13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu

Lisätiedot

Kertausta: avaruuden R n vektoreiden pistetulo

Kertausta: avaruuden R n vektoreiden pistetulo Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2014 164/246 Kertausta:

Lisätiedot

1 Sisätulo- ja normiavaruudet

1 Sisätulo- ja normiavaruudet 1 Sisätulo- ja normiavaruudet 1.1 Sisätuloavaruus Määritelmä 1. Olkoon V reaalinen vektoriavaruus. Kuvaus : V V R on reaalinen sisätulo eli pistetulo, jos (a) v w = w v (symmetrisyys); (b) v + u w = v

Lisätiedot

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen

Lisätiedot

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö. TSON YHTÄLÖT VEKTORIT, M4 Jokainen seuraavista määrää avaruuden tason yksikäsitteisesti: - kolme tason pistettä, jotka eivät ole samalla suoralla, - yksi piste ja pisteen ulkopuolinen suora, - yksi piste

Lisätiedot

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorista ja tasoista LaMa 1 syksyllä 2009 Viidennen viikon luennot Suorista ja tasoista LaMa 1 syksyllä 2009 Perustuu kirjan Poole: Linear Algebra lukuihin I.3 - I.4 Esko Turunen esko.turunen@tut.fi Aluksi hiukan 2 ja 3 ulotteisen reaaliavaruuden

Lisätiedot

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät 11 Taso Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät tason. Olkoot nämä pisteet P, B ja C. Merkitään vaikkapa P B r ja PC s. Tällöin voidaan sanoa, että vektorit

Lisätiedot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45 MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Pistetulo eli skalaaritulo

Pistetulo eli skalaaritulo Pistetulo eli skalaaritulo VEKTORIT, MAA4 Pistetulo on kahden vektorin välinen tulo. Tarkastellaan ensin kahden vektorin välistä kulmaa. Vektorien a ja, kun a 0, välinen kulma on (kuva) kovera kun a vektorit

Lisätiedot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon

Lisätiedot

Sisätuloavaruudet. 4. lokakuuta 2006

Sisätuloavaruudet. 4. lokakuuta 2006 Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä

Lisätiedot

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä

Lisätiedot

1. Normi ja sisätulo

1. Normi ja sisätulo Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja

Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja 7 NELIÖMATRIISIN DIAGONALISOINTI. Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T () Muistutus: Kokoa n olevien vektorien

Lisätiedot

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo Antti Rasila 2016 Vektoriavaruuden kannan olemassaolo Jos {v 1, v 2,..., v k } on äärellisulotteisen vektoriavaruuden V lineaarisesti riippumaton

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. 4 Suora ja taso Ennakkotehtävät 1. a) Kappale kulkee yhdessä sekunnissa vektorin s, joten kahdessa sekunnissa kappale kulkee vektorin 2 s. Pisteestä A = ( 3, 5) päästään pisteeseen P, jossa kappale sijaitsee,

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

1 Ominaisarvot ja ominaisvektorit

1 Ominaisarvot ja ominaisvektorit 1 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) 1 missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin

Lisätiedot

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Talousmatematiikan perusteet: Luento 8 Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo Motivointi Esim. Herkkumatikka maksaa 50 /kg. Paljonko

Lisätiedot

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste Suora 1/5 Sisältö KATSO MYÖS:, vektorialgebra, geometriset probleemat, taso Suora geometrisena peruskäsitteenä Pisteen ohella suora on geometrinen peruskäsite, jota varsinaisesti ei määritellä. Alkeisgeometriassa

Lisätiedot

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218 Lineaarialgebra ja matriisilaskenta I LM1, Kesä 2012 1/218 Avaruuden R 2 vektorit Määritelmä (eli sopimus) Avaruus R 2 on kaikkien reaalilukuparien joukko; toisin sanottuna R 2 = { (a, b) a R ja b R }.

Lisätiedot

5 Ominaisarvot ja ominaisvektorit

5 Ominaisarvot ja ominaisvektorit 5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A

Lisätiedot

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori Vektorialgebra 1/5 Sisältö Skalaaritulo Vektoreiden yhteenlaskun ja skalaarilla kertomisen lisäksi vektoreiden välille voidaan määritellä myös kertolasku. Itse asiassa näitä on kaksi erilaista. Seurauksena

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa 9. Vektorit 9.1 Skalaarit ja vektorit Skalaari on koon tai määrän mitta. Tyypillinen esimerkki skalaarista on massa. Lukumäärä on toinen hyvä esimerkki skalaarista. Vektorilla on taas suuruus ja suunta.

Lisätiedot

2 / :03

2 / :03 file:///c:/users/joonas/desktop/linis II Syksy /Ratkaisuehdotukse / 8 76 3:3 Kysymys Pisteet,, Määritellään positiivisten reaalilukujen joukossa R + = {x R x > } yhteenlasku ja skalaarikertolasku seuraavasti:

Lisätiedot

Ortogonaalisen kannan etsiminen

Ortogonaalisen kannan etsiminen Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0 MATRIISIALGEBRA, s, Ratkaisuja/ MHamina & M Peltola 22 Virittääkö vektorijoukko S vektoriavaruuden V, kun a V = R 3 ja S = {(1,0, 1,(2,0,4,( 5,0,2,(0,0,1} b V = P 2 (R ja S = {t1,t 2 1,t 2 t} ( ( 1 0 c

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

6 MATRIISIN DIAGONALISOINTI

6 MATRIISIN DIAGONALISOINTI 6 MATRIISIN DIAGONALISOINTI Ortogonaaliset matriisit Neliömatriisi A on ortogonaalinen (eli ortogonaalimatriisi), jos sen alkiot ovat reaalisia ja A - = A T Muistutus: vektorien a ja b pistetulo (skalaaritulo,

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

5 OMINAISARVOT JA OMINAISVEKTORIT

5 OMINAISARVOT JA OMINAISVEKTORIT 5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 24.2.2016 Susanna Hurme Päivän aihe: Voiman momentin käsite (Kirjan luvut 4.1-4.6) Mikä on voiman momentti? Määritetään momentti skalaari- ja vektorimuodossa Opitaan

Lisätiedot

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

Juuri 5 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa. Suora Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 9..07 Ennakkotehtävät. a) Kumpaankin hintaan sisältyy perusmaksu ja minuuttikohtainen maksu. Hintojen erotus on kokonaan minuuttikohtaista

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma

Lisätiedot

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h HARJOITUSTEHTÄVIÄ 1. Anna seuraavien yhtälöryhmien kerroinmatriisit ja täydennetyt kerroinmatriisit sekä ratkaise yhtälöryhmät Gaussin eliminointimenetelmällä. { 2x + y = 11 2x y = 5 2x y + z = 2 a) b)

Lisätiedot

HILBERTIN AVARUUKSISTA

HILBERTIN AVARUUKSISTA HILBERTIN AVARUUKSISTA Pro gradu -tutkielma Hannariikka Lehtiniemi Matematiikan ja tilastotieteen laitos Jyväskylän yliopisto syksy 2014 TIIVISTELMÄ Ääretönulotteiset avaruudet ovat monilta ominaisuuksiltaan

Lisätiedot

Taso. Hannu Lehto. Lahden Lyseon lukio

Taso. Hannu Lehto. Lahden Lyseon lukio Taso Hannu Lehto Lahden Lyseon lukio Taso avaruudessa Piste P 0 ja tason normaalivektori n määräävät tason. n=a i+b j+c k P 0 (x 0,y 0,z 0 ) Hannu Lehto 17. syyskuuta 2010 Lahden Lyseon lukio 2 / 7 Taso

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u.

Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla y, voidaan kirjoittaa. y T u. DEE-00 Lineaariset järjestelmät Harjoitus, ratkaisuehdotukset Järjestelmien lineaarisuus ja aikainvarianttisuus Kun järjestelmää kuvataan operaattorilla T, sisäänmenoa muuttujalla u ja ulostuloa muuttujalla

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen

Lisätiedot

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R}, Määritelmä Suora Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko { p + t v t R}, missä p, v R n ja v 0. Tässä p on suoran jonkin pisteen paikkavektori ja v on suoran suuntavektori. v p LM1,

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

2.5. Matriisin avaruudet ja tunnusluvut

2.5. Matriisin avaruudet ja tunnusluvut 2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I Usean muuttujan funktiot MS-A7 Differentiaali- ja integraalilaskenta (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto Raja-arvot 3 Jatkuvat funktiot 4 Osittaisderivaatat 5 Derivaatta eli gradientti.

Lisätiedot

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia Voidaan osoittaa, että avaruuden R n vektoreilla voidaan laskea tuttujen laskusääntöjen mukaan. Huom. Lause tarkoittaa väitettä, joka voidaan perustella

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Lineaarialgebra II P

Lineaarialgebra II P Lineaarialgebra II 89P Sisältö Vektoriavaruus Sisätuloavaruus 8 3 Lineaarikuvaus 5 4 Ominaisarvo 5 Luku Vektoriavaruus Määritelmä.. Epätyhjä joukko V on vektoriavaruus, jos seuraavat ehdot ovat voimassa:.

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen

Informaatiotieteiden yksikkö. Lineaarialgebra 1A. Pentti Haukkanen. Puhtaaksikirjoitus: Joona Hirvonen Informaatiotieteiden yksikkö Lineaarialgebra 1A Pentti Haukkanen Puhtaaksikirjoitus: Joona Hirvonen . 2 Sisältö 1 Matriisit, determinantit ja lineaariset yhtälöryhmät 4 1.1 Matriisit..............................

Lisätiedot

Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37

Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Matriisilaskenta Laskuharjoitus 1 - Ratkaisut / vko 37 Tehtävä 1: Käynnistä Matlab-ohjelma ja kokeile laskea sillä muutama peruslaskutoimitus: laske jokin yhteen-, vähennys-, kerto- ja jakolasku. Laske

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mat-1.1410 Matematiikan peruskurssi P1 1. välikokeen alueen teoriatiivistelmä 2007 Materiaali: kirjat [Adams R. A. Adams: Calculus, a complete course (6th edition), [Lay D. C. Lay: Linear

Lisätiedot

Ominaisarvo ja ominaisvektori

Ominaisarvo ja ominaisvektori Ominaisarvo ja ominaisvektori Määritelmä Oletetaan, että A on n n -neliömatriisi. Reaaliluku λ on matriisin ominaisarvo, jos on olemassa sellainen vektori v R n, että v 0 ja A v = λ v. Vektoria v, joka

Lisätiedot

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain Matriisilaskenta LH4 24 ratkaisut 1 Hae seuraavien R 4 :n aliavaruuksien dimensiot jotka sisältävät vain a) Kaikki muotoa (a b c d) olevat vektorit joilla d a + b b) Kaikki muotoa (a b c d) olevat vektorit

Lisätiedot

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( ) Kertaus K1. a) OA =- i + j + k K. b) B = (, 0, 5) K. a) AB = (6 -(- )) i + ( - ) j + (- -(- 7)) k = 8i - j + 4k AB = 8 + (- 1) + 4 = 64+ 1+ 16 = 81= 9 b) 1 1 ( ) AB = (--(- 1)) i + - - 1 j =-i - 4j AB

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Johdatus lineaarialgebraan. Juha Honkala 2017

Johdatus lineaarialgebraan. Juha Honkala 2017 Johdatus lineaarialgebraan Juha Honkala 2017 Sisällysluettelo 1 Lineaariset yhtälöryhmät ja matriisit 11 Lineaariset yhtälöryhmät 12 Matriisit 13 Matriisien alkeismuunnokset ja porrasmatriisit 14 Yhtälöryhmien

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA

KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA KRISTALLOGRAFIASSA TARVITTAVAA MATEMA- TIIKKAA Aloita kertaamalla hilan indeksointi niin, että osaat kuutiollisen kiteen tasojen ja suuntien Miller-indeksit. Vektorit määritellään yleisessä muodossa r

Lisätiedot

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin

=p(x) + p(y), joten ehto (N1) on voimassa. Jos lisäksi λ on skalaari, niin FUNKTIONAALIANALYYSI, RATKAISUT 1 KEVÄT 211, (AP) 1. Ovatko seuraavat reaaliarvoiset funktiot p : R 3 R normeja? Ovatko ne seminormeja? ( x = (x 1, x 2, x 3 ) R 3 ) a) p(x) := x 2 1 + x 2 2 + x 2 3, b)

Lisätiedot

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

169. 170. 171. 172. 173. 174. 5. Geometriset avaruudet. 5.1. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 5. Geometriset avaruudet 5.. Pisteavaruus, vektoriavaruus ja koordinaattiavaruus 69. Olkoon {b,b 2 } tason E 2 kanta ja olkoon u = 2b + 3b 2, v = 3b + 2b 2, w = b 2b 2. Määritä vektoreiden 2u v + w ja

Lisätiedot

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt

10. Toisen kertaluvun lineaariset differentiaaliyhtälöt 37. Toisen kertaluvun lineaariset differentiaalihtälöt Tarkastelemme muotoa () ( x) + a( x) ( x) + a( x) ( x) = b( x) olevia htälöitä, missä kerroinfunktiot ja oikea puoli ovat välillä I jatkuvia. Edellisen

Lisätiedot

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5. Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän

Lisätiedot

Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts.

Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts. 49 3 VEKTORIT 3.1 VEKTORIN KÄSITE Vektori on suure, jolla suuruuden lisäksi on myös suunta (esim. kiihtyvyys). Skalaari puolestaan on suure, jolla on vain suuruus (esim. tiheys). Vektori graafisesti: Vektorin

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 4: Ketjusäännöt ja lineaarinen approksimointi Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1

Lisätiedot

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )

Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m ) Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Laudatur 5 MAA5 ratkaisut kertausharjoituksiin. Peruskäsitteitä 282. Vastaus: CA = a b, = BA + AC BA = BC AC = AC CB. Vastaus: DC = AC BC

Laudatur 5 MAA5 ratkaisut kertausharjoituksiin. Peruskäsitteitä 282. Vastaus: CA = a b, = BA + AC BA = BC AC = AC CB. Vastaus: DC = AC BC Laudatur 5 MAA5 ratkaisut kertausharjoituksiin Peruskäsitteitä 8. CA CB + BA BC AB b a a b DA DB + BA ( BC) + ( AB) b a a b Vastaus: CA a b, DA a b 8. DC DA + AC BA + AC BA BC AC ( BC AC ) + AC AC CB Vastaus:

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Luento 8: Epälineaarinen optimointi

Luento 8: Epälineaarinen optimointi Luento 8: Epälineaarinen optimointi Vektoriavaruus R n R n on kaikkien n-jonojen x := (x,..., x n ) joukko. Siis R n := Määritellään nollavektori 0 = (0,..., 0). Reaalisten m n-matriisien joukkoa merkitään

Lisätiedot

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A) Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 017 Insinöörivalinnan matematiikan koe 30..017, Ratkaisut (Sarja A) 1. a) Lukujen 9, 0, 3 ja x keskiarvo on. Määritä x. (1 p.) b) Mitkä reaaliluvut

Lisätiedot

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr

Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Hilbertin avaruudet, 5op Hilbert spaces, 5 cr Pekka Salmi 14.3.2015 Pekka Salmi Hilbertin avaruudet 14.3.2015 1 / 64 Yleistä Opettaja: Pekka Salmi, MA327 Kontaktiopetus ti 1012 (L), ke 810 (L), ma 1214

Lisätiedot