Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:

Koko: px
Aloita esitys sivulta:

Download "Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:"

Transkriptio

1 ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti. Vesihöyryä voi olla ilmassa vain tietty enimmäismäärä, jonka suuruus riippuu ilman lämpötilasta. Vesihöyryn sanotaan tällöin olevan kylläistä. Kylläinen höyry on dynaamisessa tasapainotilassa, jossa höyrystyminen ja tiivistyminen ovat yhtä runsasta. Tällaisessa tilassa olevaa höyryä sanotaan siis kylläiseksi höyryksi ja vallitsevaa höyryn painetta kylläisen höyryn paineeksi. Kylläisen vesihöyryn paine eri lämpötiloissa on esitetty taulukossa (ks. MAOL s. 80 (80)). Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: missä h % hö ä hö.äö. Ilman suhteellinen kosteus voidaan laskea myös toisella tavalla; ilman absoluuttisen kosteuden X ja kyseistä lämpötilaa vastaavan maksimikosteuden Xmax osamääränä, joka ilmoitetaan usein prosentteina; % Ilman absoluuttinen kosteus X tarkoittaa ilman todellista vesihöyryn tiheyttä. Se siis ilmoittaa ilmassa olevan vesihöyryn massan tilavuusyksikköä kohti. Tiettyä lämpötilaa vastaava maksimikosteus Xmax kertoo vesihöyryn suurimman mahdollisen massan tilavuusyksikköä kohden. Maksimikosteus Xmax on siis vesihöyryn suurin mahdollinen tiheys ilmassa. Maksimikosteus Xmax riippuu lämpötilasta. Jos ilman kosteus on 100 %, niin ilma on vesihöyryn kyllästämä. Ilma sisältää maksimimäärän vettä ja esimerkiksi avoimesta astiasta ei haihdu vettä ilmaan. Saunassa ilmankosteus voi olla 100 %. Löylyä heitettäessä vettä tiivistyy iholle ja ikkunoihin. Asunnoissa suhteellisen kosteuden tulisi olla noin 40 % - 55 %. (Lehto-Luoma: Fysiikka 3: Lämpö ja energia, Tammi, 5-9. uudistettu painos 2002, s , 71).

2 Jos ilman lämpötila laskee, ilman suurin mahdollinen kosteus pienenee. Jos ilman lämpötila laskee niin paljon, että tätä lämpötilaa vastaava kylläisen vesihöyryn paine (ks. MAOL s. 80(80)) on yhtä suuri kuin ilmassa olevan vesihöyryn osapaine, vesihöyry alkaa tiivistyä vedeksi. Tätä lämpötilaa kutsutaan kastepisteeksi. Kun lämpötila laskee kastepisteen alapuolelle, (näkymättömän) vesihöyryn tiivistyminen vedeksi jatkuu. Silloin maan pinnalla näkyy usein sumua, ja kastepisaroita tiivistyy ruohoon. Jos huoneen lämpötila laskee kastepisteen alapuolelle, kosteus tiivistyy ikkunoihin ja tekstiileihin, ja huonekalut tuntuvat kosteilta. Mikäli kastepiste on sulamispistettä alempi, esimerkiksi ruohoon muodostuu jäähileitä. Auton ikkunoihin voi muodostua silloin jäätä. Ilmiötä, jossa vesihöyry muuttuu kiinteäksi (jääksi), kutsutaan härmistymiseksi. Kosteustaulukko. Suhteellinen kosteus (%) -liian kostea puu mätänee 90 - vilun tunne 80 - maalit lohkeilevat 70 - soittimet epävireessä -sopiva kosteus liian kuiva kurkku aamuisin kipeä huonekalut rapistuvat 0 Astmaattisten ja allergisten ihmisten ja varsinkin pienten lasten terveydelle ilman suhteellisella kosteudella on suuri merkitys. Huoneilman suhteellinen kosteus vaikuttaa myös kotieläinten terveyteen ja kasvien sekä soittimien kuntoon.

3 TEHTÄVIÄ: Teht. 1. Asuinhuoneessa on kosteusmittarin mukaan suhteellinen kosteus 52 %. Huoneen lämpötila on 21 o C ja tilavuus 48 m 3. Laske a) huoneilman vesihöyryn osapaine b) vesihöyryn osatiheys ilmassa. c) Kuinka paljon (g) huoneilmassa on vettä? Teht. 2. Tehtävän 1 asuinhuoneessa on kosteusmittarin mukaan suhteellinen kosteus 52 %, huoneen lämpötila on 21 o C ja tilavuus 48 m 3. Kastepiste on lämpötila, jossa vesihöyry alkaa tiivistyä vedeksi. Määritä asuinhuoneen kastepiste. Teht. 3. Työpöytäsi vieressä oleva kosteusmittari osoittaa suhteellisen kosteuden arvoa 39 %. Huoneen lämpötila on 21 o C. a) Laske huoneilman vesihöyryn osapaine. b) Määritä kastepisteen arvo. Teht. 4. Huoneilman lämpötila on 19 o C ja suhteellinen kosteus 49 %. Laske a) huoneilman vesihöyryn osapaine b) veden osatiheys ilmassa. c) Kuinka paljon (g) huoneilmassa on vettä? Huoneen tilavuus on 52 m 3. d) Kuinka suuri on huoneilman kastepiste? Teht. 5. Huoneen ilman suhteellinen kosteus on 60 % ja lämpötila 21 o C. a) Kuinka suuri on absoluuttinen kosteus? b) Kuinka paljon ilmassa on vettä, jos huoneen tilavuus on 36 m 3? Teht. 6. Määritä kastepisteen suuruus tehtävän 5 tapauksessa. Teht. 7. Ilman lämpötila on 20 o C ja suhteellinen kosteus 59 %. a) Kuinka suuri on absoluuttinen kosteus? b) Mikä on kastepiste? Teht. 8. Luokkahuoneen tilavuus on 180 m 3 ja sen sisältämän ilman lämpötila 24 o C sekä suhteellinen kosteus 48 %. Mikä on luokkahuoneen sisältämän vesihöyryn massa?

4 RATKAISUT TEHTÄVIIN 1-8. Teht. 1. Asuinhuoneessa on kosteusmittarin mukaan suhteellinen kosteus 52 %. Huoneen lämpötila on 21 o C ja tilavuus 48 m 3. Laske a) huoneilman vesihöyryn osapaine b) vesihöyryn osatiheys ilmassa. c) Kuinka paljon (g) huoneilmassa on vettä? Teht. 1. Ratkaisu: 0,52 T ( ,15)K 294,15 K V 48 m 3 Taulukosta (MAOL s. 80(80)) nähdään, että kylläisen vesihöyryn paine lämpötilassa 21 o C on 24,86. Ilman suhteellinen kosteus on, josta saadaan huoneilman vesihöyryn osapaine 0,52 24,86 12, V: Huoneilman vesihöyryn osapaine on 13 mbar. b) Vesihöyryn osatiheys ilmassa on Ilmassa olevan vesihöyryn massa m (g) on, (MAOL s ( )) missä äää. h. Veden H2O moolimassa on Mv (2 1, ,00) g/mol 18,0 g/mol. Vedyn H suhteellinen atomimassa on 1,008 ja hapen O suhteellinen atomimassa 16,00. (ks. hapen ja vedyn suhteelliset atomimassat; MAOL s. 169, 171 (161, 163)). Oletetaan, että kaasujen yleinen tilanyhtälö on voimassa. Kaasujen yleisestä tilanyhtälöstä saadaan vesihöyryn ainemäärä, missä on a)-kohdassa laskettu huoneilman vesihöyryn osapaine. Vesihöyryn massa. Vesihöyryn osatiheys on,,,, 0, , , ,15 9, Vesihöyryn osatiheys ilmassa on 9,5 10 9,5 10.

5 c) Huoneilmassa olevan veden massa on 9, g. Yksikkötarkastelu: Vesihöyryn osatiheys on. Oikein. Teht. 2. Tehtävän 1 asuinhuoneessa on kosteusmittarin mukaan suhteellinen kosteus 52 %, huoneen lämpötila on 21 o C ja tilavuus 48 m 3. Kastepiste on lämpötila, jossa vesihöyry alkaa tiivistyä vedeksi. Määritä asuinhuoneen kastepiste. Teht. 2. Ratkaisu: Tehtävässä 1 laskettiin asuinhuoneen vesihöyryn osapaineeksi 12, Huoneen lämpötilan on laskettava niin alas, että tätä lämpötilaa vastaava kylläisen vesihöyryn paine on 12,9 mbar 13 mbar. Kastepiste on tätä kylläisen höyryn painetta vastaava lämpötila, joka taulukon (MAOL s. 80(80)) mukaan on noin 11 o C. V: kastepiste on 11 o C. Teht. 3. Työpöytäsi vieressä oleva kosteusmittari osoittaa suhteellisen kosteuden arvoa 39 %. Huoneen lämpötila on 21 o C. a) Laske huoneilman vesihöyryn osapaine. b) Määritä kastepisteen arvo. Teht. 3. Ratkaisu: a) Ilman suhteellinen kosteus 0,39 ja lämpötila t 21 o C. Kylläisen vesihöyryn paine taulukkokirjan (MAOL s. 80(80)) mukaan tässä lämpötilassa on 24,86. Ilman suhteellinen kosteus on josta saadaan huoneilman vesihöyryn osapaine 0,39 24,86 9,6954 9,7. V: Huoneilman vesihöyryn osapaine on 9,7 mbar., b) Jos ilman lämpötila laskee niin paljon, että tätä lämpötilaa vastaava kylläisen vesihöyryn paine (taulukosta) on yhtä suuri kuin ilmassa olevan vesihöyryn osapaine eli a)-kohdan perusteella pv 9,7 mbar, niin vesihöyry alkaa tiivistyä vedeksi. Lämpötilaa, jossa tämä tapahtuu, sanotaan kastepisteeksi. Vesihöyryn osapainetta pv 9,7 mbar 10 mbar vastaa taulukon mukaan (MAOL s. 80(80)) lämpötila 7 o C. V: kastepiste on 7 o C.

6 Teht. 4. Huoneilman lämpötila on 19 o C ja suhteellinen kosteus 49 %. Laske a) huoneilman vesihöyryn osapaine b) veden osatiheys ilmassa. c) Kuinka paljon (g) huoneilmassa on vettä? Huoneen tilavuus on 52 m 3. d) Kuinka suuri on huoneilman kastepiste? Teht. 4. Ratkaisu: 0,49 T ( ,15)K 292,15 K V 52 m 3 Taulukosta (MAOL s. 80(80)) nähdään, että kylläisen vesihöyryn paine lämpötilassa 19 o C on 21,96. Ilman suhteellinen kosteus on, josta saadaan huoneilman vesihöyryn osapaine 0,49 21,96 10, V: Huoneilman vesihöyryn osapaine on 11 mbar. b) Vesihöyryn osatiheys ilmassa on Ilmassa olevan vesihöyryn massa m (g) on, (MAOL s ( )) missä äää. h. Veden H2O moolimassa on Mv (2 1, ,00) g/mol 18,0 g/mol. (ks. hapen ja vedyn suhteelliset atomimassat; MAOL s. 169, 171 (161, 163)). Oletetaan, että kaasujen yleinen tilanyhtälö on voimassa. Kaasujen yleisestä tilanyhtälöstä saadaan vesihöyryn ainemäärä, missä on a)-kohdassa laskettu huoneilman vesihöyryn osapaine. Vesihöyryn massa. Vesihöyryn osatiheys on,,,, 0, , , ,15 7, Vesihöyryn osatiheys ilmassa on 8,0 10 8,0 10.

7 c) Huoneilmassa olevan veden massa on 7, ,6 415g. d) Kastepisteessä kylläisen vesihöyryn paine on yhtä suuri kuin vesihöyryn osapaine 10,76. Taulukosta (MAOL s. 80(80)) nähdään, että tätä vesihöyryn osapainetta 10,76 vastaava lämpötila on 8 o C. V: kastepiste on 8 o C. Teht. 5. Huoneen ilman suhteellinen kosteus on 60 % ja lämpötila 21 o C. a) Kuinka suuri on absoluuttinen kosteus? b) Kuinka paljon ilmassa on vettä, jos huoneen tilavuus on 36 m 3? Teht. 5. Ratkaisu: a) Ilman suhteellinen kosteus on absoluuttisen kosteuden X ja maksimikosteuden Xmax osamäärä;. Absoluuttinen kosteus ratkaistaan tästä suhteellisen kosteuden yhtälöstä, jolloin saadaan. Taulukon mukaan (MAOL s. 80(80)) 21 o C:n lämpötilassa maksimikosteus ( kylläisen vesihöyryn tiheys) on Xmax 18,33 g/m 3. Sijoittamalla lukuarvot saadaan absoluuttiseksi kosteudeksi 0,60 18,33 10,998. V: 11 b) Huoneilmassa olevan veden massa m saadaan tiheyden ja tilavuuden tulona (m ρv) eli tehtävän merkinnöillä m X V 10,998 g/m 3 36 m g m 400 g. Teht. 6. Määritä kastepisteen suuruus tehtävän 5 tapauksessa. Teht. 6. Ratkaisu: Edellisessä tehtävässä saatiin huoneen ilman absoluuttiseksi kosteudeksi 11 g/m 3. Katsotaan taulukosta (MAOL s. 80(80)), missä lämpötilassa se on maksimikosteus. Taulukon mukaan lämpötilassa 12 o C kylläisen vesihöyryn tiheys on 10,66 g/m 3. V: Kastepiste on siis noin 12 o C.

8 Teht. 7. Ilman lämpötila on 20 o C ja suhteellinen kosteus 59 %. a) Kuinka suuri on absoluuttinen kosteus? b) Mikä on kastepiste? Teht. 7. Ratkaisu: a) Suhteellinen kosteus on, missä X absoluuttinen kosteus ja Xmax maksimikosteus. Absoluuttinen kosteus on siten Taulukon mukaan lämpötilaa 20 o C vastaa kylläisen vesihöyryn tiheys, joka on maksimikosteus Xmax 17,29 g/m 3. Absoluuttiseksi kosteudeksi saadaan näin ollen 0,59 17,29 10,201. V: Absoluuttinen kosteus on X 10 g/m 3. b) Absoluuttisen kosteuden arvoa eli kylläisen vesihöyryn tiheyttä 10,2 g/m 3 vastaa taulukon mukaan (MAOL s. 80(80)) lämpötila, joka on noin 11 o C. V: Kastepiste on noin 11 o C. Teht. 8. Luokkahuoneen tilavuus on 180 m 3 ja sen sisältämän ilman lämpötila 24 o C sekä suhteellinen kosteus 48 %. Mikä on luokkahuoneen sisältämän vesihöyryn massa? Teht. 8. Ratkaisu: Sovelletaan vesihöyryyn kaasujen yleistä tilanyhtälöä pv nrt. Kylläisen vesihöyryn paine lämpötilassa 24 o C on 29,82 mbar (MAOL s. 80(80)). Ilman suhteellinen kosteus on, josta saadaan huoneilman vesihöyryn osapaine 0,48 29,82 14, , , , , Lämpötila on kaasujen yleisessä tilanyhtälössä eli ideaalikaasujen tilanyhtälössä ilmoitettava aina kelvineinä (K): T ( ,15)K 297,15 K. Kaasujen yleisen tilanyhtälön mukaan RT (*) jossa vesihöyryn ainemäärä on veden massa m (g) jaettuna veden moolimassalla (ks. MAOL s ( )). äää. Veden H2O moolimassa on Mv (2 1, ,00) g/mol 18,0 g/mol. Vedyn H suhteellinen atomimassa on 1,008 ja hapen O suhteellinen atomimassa 16,00. (ks. hapen ja vedyn suhteelliset atomimassat; MAOL s. 169, 171 (161, 163)).

9 Sijoitetaan ainemäärän lauseke kaasujen yleiseen tilanyhtälöön (*), jolloin saadaan, josta ratkaistaan vesihöyryn massa m; 18,0 1, m 8, ,15 18,0 1, m 8, , : Luokkahuoneen sisältämän vesihöyryn massa on 1,9 kg. Yksikkötarkastelu. [ ]. Oikein.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.

4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta. K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy

Lisätiedot

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3

T F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3 76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15

Lisätiedot

REAKTIOT JA ENERGIA, KE3. Kaasut

REAKTIOT JA ENERGIA, KE3. Kaasut Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen

Lisätiedot

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]

= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ] 766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan

Lisätiedot

Aineen olomuodot ja olomuodon muutokset

Aineen olomuodot ja olomuodon muutokset Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt

P = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt 766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö

Lisätiedot

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.

1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T. S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai

Lisätiedot

Puu luovuttaa (desorptio) ilmaan kosteutta ja sitoo (adsorptio) ilmasta kosteutta.

Puu luovuttaa (desorptio) ilmaan kosteutta ja sitoo (adsorptio) ilmasta kosteutta. Puun kosteus Hygroskooppisuus Puu luovuttaa (desorptio) ilmaan kosteutta ja sitoo (adsorptio) ilmasta kosteutta. Tasapainokosteus Ilman lämpötilaa ja suhteellista kosteutta vastaa puuaineen tasapainokosteus.

Lisätiedot

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU

MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE

Lisätiedot

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p

Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten

Lisätiedot

Viikkoharjoitus 2: Hydrologinen kierto

Viikkoharjoitus 2: Hydrologinen kierto Viikkoharjoitus 2: Hydrologinen kierto 30.9.2015 Viikkoharjoituksen palautuksen DEADLINE keskiviikkona 14.10.2015 klo 12.00 Palautus paperilla, joka lasku erillisenä: palautus joko laskuharjoituksiin tai

Lisätiedot

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen

vetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KEMIALLISIIN REAKTIOIHIN PERUSTUVA POLTTOAINEEN PALAMINEN Voimalaitoksessa käytetään polttoaineena

Lisätiedot

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari

Kasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvihuoneen kasvutekijät ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvien kasvuun vaikuttavat: - Lämpö - Valo - Vesi - Ilmankosteus - Hiilidioksidi - Ravinteet - Kasvin perinnölliset eli geneettiset

Lisätiedot

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi.

ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi. ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat Hannu Hirsi. SRakMK ja rakennusten energiatehokkuus : Lämmöneristävyys laskelmat, lämmöneristyksen termit, kertausta : Lämmönjohtavuus

Lisätiedot

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2

TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2 Aalto-yliopisto/Insinööritieteiden korkeakoulu/energiatalous ja voimalaitostekniikka 1(5) TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) Ilmaa komprimoidaan 1 bar (abs.) paineesta 7 bar

Lisätiedot

PL 6007 00021, Laskutus 153021000 / Anne Krokfors. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2

PL 6007 00021, Laskutus 153021000 / Anne Krokfors. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2 ENSIRAPORTTI raportointipäivä : 4.8.2011 Työ : TILAAJA: Vantaan kaupunki ISÄNNÖINTI: Vantaan kaupunki / HUOLTO: Kouluisäntä: 0400 765 713 LASKUTUSOSOITE: Vantaan Kaupunki PL 6007 00021, Laskutus 153021000

Lisätiedot

Kuivauksen fysiikkaa. Hannu Sarkkinen

Kuivauksen fysiikkaa. Hannu Sarkkinen Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m

Lisätiedot

Hydrologia. Säteilyn jako aallonpituuden avulla

Hydrologia. Säteilyn jako aallonpituuden avulla Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna

Lisätiedot

Tasapainotilaan vaikuttavia tekijöitä

Tasapainotilaan vaikuttavia tekijöitä REAKTIOT JA TASAPAINO, KE5 Tasapainotilaan vaikuttavia tekijöitä Fritz Haber huomasi ammoniakkisynteesiä kehitellessään, että olosuhteet vaikuttavat ammoniakin määrään tasapainoseoksessa. Hän huomasi,

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske

Lisätiedot

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n =

a) Oletetaan, että happi on ideaalikaasu. Säiliön seinämiin osuvien hiukkasten lukumäärä saadaan molekyylivuon lausekkeesta = kaava (1p) dta n = S-, ysiikka III (S) välikoe 7000 Laske nopeuden itseisarvon keskiarvo v ja nopeuden neliöllinen keskiarvo v rs seuraaville 6 olekyylien nopeusjakauille: a) kaikkien vauhti 0 / s, b) kolen vauhti / s ja

Lisätiedot

Molaariset ominaislämpökapasiteetit

Molaariset ominaislämpökapasiteetit Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen

Lisätiedot

MITTAUSRAPORTTI. Työ : 514/3248. Kohde: Hämeenkylän koulu. Raportointipäivä : 24.6.2014. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2

MITTAUSRAPORTTI. Työ : 514/3248. Kohde: Hämeenkylän koulu. Raportointipäivä : 24.6.2014. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2 MITTAUSRAPORTTI Kohde: Hämeenkylän koulu Raportointipäivä : 2462014 Työ : 514/3248 etunimisukunimi@akumppanitfi 01740 Vantaa wwwkuivauspalvelutfi KOHDE: Hämeenkylän koulu TILAN VUOKRALAINEN: TILAAJA: Vantaan

Lisätiedot

KARTOITUSRAPORTTI. Seurantaraportti Valkoisenlähteentie Vantaa 86/

KARTOITUSRAPORTTI. Seurantaraportti Valkoisenlähteentie Vantaa 86/ Seurantaraportti Valkoisenlähteentie 51 01370 Vantaa 86/3342 28.8.2014 2 KOHDETIEDOT... 3 LÄHTÖTIEDOT... 4 RAKENTEET... 4 SUORITETUT TYÖT SEKÄ HAVAINNOT... 4 JOHTOPÄÄTÖKSET JA SUOSITUKSET... 5 KÄYTETTY

Lisätiedot

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut

Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2012 Insinöörivalinnan fysiikan koe 30.5.2012, malliratkaisut A1 Kappale, jonka massa m = 2,1 kg, lähtee liikkeelle levosta paikasta x = 0,0 m pitkin vaakasuoraa alustaa. Kappaleeseen vaikuttaa vaakasuora vetävä voima F, jonka suuruus riippuu paikasta oheisen kuvan

Lisätiedot

η = = = 1, S , Fysiikka III (Sf) 2. välikoe

η = = = 1, S , Fysiikka III (Sf) 2. välikoe S-11445 Fysiikka III (Sf) välikoe 710003 1 Läpövoiakoneen kiertoprosessin vaiheet ovat: a) Isokorinen paineen kasvu arvosta p 1 arvoon p b) adiabaattinen laajeneinen jolloin paine laskee takaisin arvoon

Lisätiedot

ENSIRAPORTTI. Työ A Jokiniemen koulu Valkoisenlähteentie 51, Vantaa. raportointipäivä:

ENSIRAPORTTI. Työ A Jokiniemen koulu Valkoisenlähteentie 51, Vantaa. raportointipäivä: ENSIRAPORTTI raportointipäivä: 22.3.2011 Työ TILAAJA: Vantaan kaupunki / Anne Krokfors LASKUTUSOSOITE: Vantaan kaupunki PL 6007 00021 Laskutus Viite: 153021000/Anne Krokfors VASTAANOTTAJA (T): Anne Krokfors

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta

Lisätiedot

Erilaisia entalpian muutoksia

Erilaisia entalpian muutoksia Erilaisia entalpian muutoksia REAKTIOT JA ENERGIA, KE3 Erilaisille kemiallisten reaktioiden entalpiamuutoksille on omat terminsä. Monesti entalpia-sanalle käytetään synonyymiä lämpö. Reaktiolämmöllä eli

Lisätiedot

Kaasu Neste Kiinteä aine Plasma

Kaasu Neste Kiinteä aine Plasma Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien

Lisätiedot

Teddy 1. välikoe kevät 2008

Teddy 1. välikoe kevät 2008 Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?

Lisätiedot

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. 1.2 Elektronin energia Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin. -elektronit voivat olla vain tietyillä energioilla (pääkvanttiluku n = 1, 2, 3,...) -mitä kauempana

Lisätiedot

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos

REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos ympäristö ympäristö 15.12.2016 REAKTIOT JA ENERGIA, KE3 Ekso- ja endotermiset reaktiot sekä entalpian muutos Kaikilla aineilla (atomeilla, molekyyleillä) on asema- eli potentiaalienergiaa ja liike- eli

Lisätiedot

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2

1. van der Waalsin tilanyhtälö: 2 V m RT. + b2. ja C = b2. Kun T = 273 K niin B = cm 3 /mol ja C = 1200 cm 6 mol 2 FYSIKAALINEN KEMIA KEMA22) Laskuharjoitus 2, 28..2009. van der Waalsin tilanyhtälö: p = RT V m b a Vm V 2 m pv m = RT V m b = RT = RT a ) V m RT a b/v m V m RT ) [ b/v m ) a V m RT Soveltamalla sarjakehitelmää

Lisätiedot

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen

vetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin

Lisätiedot

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeat vastaukset: Tehtävän tarkkuus on kolme numeroa. Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa Teräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808

Lisätiedot

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p.

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2½ p. = 2 p. Diplomi-insinöörien ja arkkitehtien yhteisvalinta dia-valinta 2015 Insinöörivalinnan kemian koe 27.5.2015 MALLIRATKAISUT JA PISTEET Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei

Lisätiedot

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3

Kaasu 2-atominen. Rotaatio ja translaatiovapausasteet virittyneet (f=5) c. 5 Ideaalikaasun tilanyhtälöstä saadaan kaasun moolimäärä: 3 S-4.5.vk. 6..000 Tehtävä Ideaalikaasun aine on 00kPa, lämötila 00K ja tilavuus,0 litraa. Kaasu uristetaan adiabaattisesti 5-kertaiseen aineeseen. Kaasumolekyylit ovat -atomisia. Laske uristamiseen tarvittava

Lisätiedot

Laskun vaiheet ja matemaattiset mallit

Laskun vaiheet ja matemaattiset mallit Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta

Lisätiedot

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi

Lämpöoppia. Haarto & Karhunen. www.turkuamk.fi Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien

Lisätiedot

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus

Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KATTILAN VESIHÖYRYPIIRIN SUUNNITTELU Höyrykattilan on tuotettava höyryä seuraavilla arvoilla.

Lisätiedot

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä

Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Sorptiorottorin ja ei-kosteutta siirtävän kondensoivan roottorin vertailu ilmanvaihdon jäähdytyksessä Yleista Sorptioroottorin jäähdytyskoneiston jäähdytystehontarvetta alentava vaikutus on erittän merkittävää

Lisätiedot

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?

1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? Kysymys 1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? 2. EXTRA-PÄHKINÄ (menee yli aiheen): Heität vettä kiukaalle. Miksi vesihöyry nousee voimakkaasti kiukaasta ylöspäin?

Lisätiedot

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua

Ideaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi

Lisätiedot

V T p pv T pv T. V p V p p V p p. V p p V p

V T p pv T pv T. V p V p p V p p. V p p V p S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden

Lisätiedot

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka

Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi

DEE Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen 2 ratkaisuiksi DEE-4000 Sähkömagneettisten järjestelmien lämmönsiirto Ehdotukset harjoituksen ratkaisuiksi Yleistä asiaa lämmönjohtumisen yleiseen osittaisdifferentiaaliyhtälöön liittyen Lämmönjohtumisen yleinen osittaisdifferentiaaliyhtälön

Lisätiedot

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa

KAASULÄMPÖMITTARI. 1. Työn tavoitteet. 2. Työn taustaa Oulun ylioisto Fysiikan oetuslaboratorio Fysiikan laboratoriotyöt 3 1 AASULÄMPÖMIARI 1. yön tavoitteet ässä työssä tutustutaan kaasulämömittariin, jonka avulla lämötiloja voidaan määrittää tarkasti. aasulämömittarin

Lisätiedot

Harjoitus 2: Hydrologinen kierto 30.9.2015

Harjoitus 2: Hydrologinen kierto 30.9.2015 Harjoitus 2: Hydrologinen kierto 30.9.2015 Harjoitusten aikataulu Aika Paikka Teema Ke 16.9. klo 12-14 R002/R1 1) Globaalit vesikysymykset Ke 23.9 klo 12-14 R002/R1 1. harjoitus: laskutupa Ke 30.9 klo

Lisätiedot

KOSTEUSKARTOITUS. Korsontie 52 01450 Vantaa 1/6. Työnumero: 09187. Scan-Clean Oy Y-tunnus: 0690693-8. www.asb.fi 24 h päivytys puh: +358 40 717 9330

KOSTEUSKARTOITUS. Korsontie 52 01450 Vantaa 1/6. Työnumero: 09187. Scan-Clean Oy Y-tunnus: 0690693-8. www.asb.fi 24 h päivytys puh: +358 40 717 9330 1/6 KOSTEUSKARTOITUS Korsontie 52 01450 Vantaa Työnumero: 09187 Scan-Clean Oy Y-tunnus: 0690693-8 www.asb.fi 24 h päivytys puh: +358 40 717 9330 Konalankuja 4, 00390 Helsinki puh: 0207 311 140 faksi: 0207

Lisätiedot

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?

Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan

Lisätiedot

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut: 1,2,3,4... Kokonaisluvut (ℵ):... 4, 3, 2, 1,0,1,2,3,4... RaBonaaliluvut: kaikki luvut jotka voidaan esidää kahden kokonaisluvun

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan

Lisätiedot

Termodynamiikan suureita ja vähän muutakin mikko rahikka

Termodynamiikan suureita ja vähän muutakin mikko rahikka Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,

Lisätiedot

Sovelletun fysiikan pääsykoe

Sovelletun fysiikan pääsykoe Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA Oulun yliopisto Fysiikan opetuslaboratorio Fysikaalisen kemian laboratorioharjoitukset I 1 Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja

Lisätiedot

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö:

Oikeasta vastauksesta (1p): Sulamiseen tarvittavat lämmöt sekä teräksen suurin mahdollinen luovutettu lämpö: A1 Seppä karkaisee teräsesineen upottamalla sen lämpöeristettyyn astiaan, jossa on 118 g jäätä ja 352 g vettä termisessä tasapainossa eräsesineen massa on 312 g ja sen lämpötila ennen upotusta on 808 C

Lisätiedot

PHYS-A0120 Termodynamiikka syksy 2016

PHYS-A0120 Termodynamiikka syksy 2016 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......

Lisätiedot

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.

Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,

Lisätiedot

L7 Kaasun adsorptio kiinteän aineen pinnalle

L7 Kaasun adsorptio kiinteän aineen pinnalle CHEM-C2230 Pintakemia L7 Kaasun adsorptio kiinteän aineen pinnalle Monika Österberg Barnes&Gentle, 2005, luku 8 Aikaisemmin käsitellyt Adsorptio kiinteälle pinnalle nesteessä Adsorptio nestepinnalle 1

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Yläilmakehän luotaukset Synoptiset säähavainnot antavat tietoa meteorologisista parametrestä vain maan pinnalla Ilmakehän

Lisätiedot

Seoksen pitoisuuslaskuja

Seoksen pitoisuuslaskuja Seoksen pitoisuuslaskuja KEMIAA KAIKKIALLA, KE1 Analyyttinen kemia tutkii aineiden määriä ja pitoisuuksia näytteissä. Pitoisuudet voidaan ilmoittaa: - massa- tai tilavuusprosentteina - promilleina tai

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa

Lisätiedot

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!

ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä

Lisätiedot

Energiapuun mittaus ja kosteus

Energiapuun mittaus ja kosteus Energiapuun mittaus ja kosteus Metsäenergiafoorumi Joensuu 10.6.2009 Jari Lindblad Metsäntutkimuslaitos, Joensuun toimintayksikkö jari.lindblad@metla.fi 050 391 3072 Metsäntutkimuslaitos Skogsforskningsinstitutet

Lisätiedot

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)

ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4) 76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa

Lisätiedot

0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C.

0 C lämpötilaan antaa 836 kj. Lopputuloksena on siis vettä lämpötilassa, joka on suurempi kuin 0 0 C. LH12-1 1 kg 2 C asteista vettä sekoitetaa yhde baari paieessa 2kg jäätä, joka lämpötila o -5 C Laske etropia muutos ja lämpötila, ku tasapaio o saavutettu 3 3 Vedelle c p 4,18 1 J/(kgK) jäälle c p 2, 9

Lisätiedot

Toimiva ilmanvaihto sisäilman laadun turvaajana

Toimiva ilmanvaihto sisäilman laadun turvaajana Kosteus ja homesienivauriot rakennuksissa: osa 1 ja Ilmanvaihdon vaikutus niiden estämiseen: osa 2 Kosteus ja homesienivauriot rakennuksissa: osa 1 Homesienten kasvuedellytykset Homeiden esiintyminen ja

Lisätiedot

MC 60 Materiaalin kosteusmittari Käyttöohje

MC 60 Materiaalin kosteusmittari Käyttöohje MC 60 Materiaalin kosteusmittari Käyttöohje Markkinointi: Pietiko Oy puh. 02-2514402 Valmistaja: CSA Electronics, Saksa Pietiko Oy s. 2 Pietiko Oy s. 3 JOHDANTO MC-60A-kosteusmittauslaite on EXOTEK INSTRUMENTS

Lisätiedot

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje

CHEM-C2230 Pintakemia. Työ 2: Etikkahapon adsorptio aktiivihiileen. Työohje CHEM-C2230 Pintakemia Tö 2: Etikkahapon orptio aktiivihiileen Töohje 1 Johdanto Kaasun ja kiinteän aineen rajapinnalla tapahtuu leensä kaasun orptiota. Mös liuoksissa tapahtuu usein liuenneen aineen orptiota

Lisätiedot

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.

Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. 10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein

Lisätiedot

Lämpöopin pääsäännöt

Lämpöopin pääsäännöt Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia

Lisätiedot

ARK-A3000 Rakennetekniikka: Käytettävien yhtälöiden koonti

ARK-A3000 Rakennetekniikka: Käytettävien yhtälöiden koonti ARK-A3000Rakennetekniikka:Käytettävienyhtälöidenkoonti Tässä dokumentissa esitellään ja eritellään kurssilla tarvittavat yhtälöt. Yhtälöitä ei tulla antamaan tentin yhteydessä, joten nämä on käytännössä

Lisätiedot

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä

Vauhti = nopeuden itseisarvo. Nopeuden itseisarvon keskiarvo N:lle hiukkaselle määritellään yhtälöllä S-4.35, Fysiikka III (ES) entti 8.3.006. Laske nopeuden itseisarvon keskiarvo v ave ja nopeuden neliöllinen keskiarvo v rms seuraaville 6 molekyylien nopeusjakaumille: a) kaikkien vauhti 0 m/s, b) kolmen

Lisätiedot

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka

Fysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi

Lisätiedot

Mitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan?

Mitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan? 2.1 Kolme olomuotoa Mitkä ovat aineen kolme olomuotoa ja miksi niiden välisiä olomuodon muutoksia kutsutaan? pieni energia suuri energia lämpöä sitoutuu = endoterminen lämpöä vapautuu = eksoterminen (endothermic/exothermic)

Lisätiedot

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki

Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät

Lisätiedot

LIITE 1 VIRHEEN ARVIOINNISTA

LIITE 1 VIRHEEN ARVIOINNISTA 1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista

Lisätiedot

Liite 1. KYSELYLOMAKKEET

Liite 1. KYSELYLOMAKKEET Liite 1. KYSELYLOMAKKEET Lomake 1: Käyttäjäkysely 1. Kuinka kauan olette työskennelleet tässä rakennuksessa? 2. Missä huonetilassa työskentelette pääasiallisesti? 3. Työpisteenne sisäilman laatu: Oletteko

Lisätiedot

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima

Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Fysiikan laboratoriotyöt 3 Sähkömotorinen voima Työn suorittaja: Antti Pekkala (1988723) Mittaukset suoritettu 8.10.2014 Selostus palautettu 16.10.2014 Valvonut assistentti Martti Kiviharju 1 Annettu tehtävä

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma

KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma KOE 3, A-OSIO Agroteknologia Agroteknologian pääsykokeessa saa olla mukana kaavakokoelma Sekä A- että B-osiosta tulee saada vähintään 10 pistettä. Mikäli A-osion pistemäärä on vähemmän kuin 10 pistettä,

Lisätiedot

Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Perjantai VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Perjantai VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN Kemian koe, Ke3 Reaktiot ja energia RATKAISUT Kannaksen lukio Perjantai 26.9.2014 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN 1. A. Selitä käsitteet ja määritelmät (lyhyesti), lisää tarvittaessa kemiallinen merkintätapa:

Lisätiedot

Kosteuskartoitus tiloissa 1069/1070, 1072, 2004 ja 1215

Kosteuskartoitus tiloissa 1069/1070, 1072, 2004 ja 1215 TUTKIMUSSELOSTUS 22500325.069 2016-6-30 Kosteuskartoitus tiloissa 1069/1070, 1072, 2004 ja 1215 Tutkimuskohde: Kartanonkosken koulu Tilkuntie 5, Vantaa Tilaaja: Ulla Lignell Maankäytön, rakentamisen ja

Lisätiedot

Tärkeitä tasapainopisteitä

Tärkeitä tasapainopisteitä Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen

Lisätiedot

Energiatehokkuuden analysointi

Energiatehokkuuden analysointi Liite 2 Ympäristöministeriö - Ravinteiden kierrätyksen edistämistä ja Saaristomeren tilan parantamista koskeva ohjelma Energiatehokkuuden analysointi Liite loppuraporttiin Jani Isokääntä 9.4.2015 Sisällys

Lisätiedot

Puun termiset aineominaisuudet pyrolyysissa

Puun termiset aineominaisuudet pyrolyysissa 1 Puun termiset aineominaisuudet pyrolyysissa V Liekkipäivä Otaniemi, Espoo 14.1.2010 Ville Hankalin TTY / EPR 14.1.2010 2 Esityksen sisältö TTY:n projekti Biomassan pyrolyysin reaktiokinetiikan tutkimus

Lisätiedot

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle.

Jos olet käynyt kurssin aikaisemmin, merkitse vuosi jolloin kävit kurssin nimen alle. 1(4) Lappeenrannan teknillinen yliopisto School of Energy Systems LUT Energia Nimi, op.nro: BH20A0450 LÄMMÖNSIIRTO Tentti 13.9.2016 Osa 1 (4 tehtävää, maksimi 40 pistettä) Vastaa seuraaviin kysymyksiin

Lisätiedot

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473

Torsioheiluri IIT13S1. Selostuksen laatija: Eerik Kuoppala. Ryhmä B3: Eerik Kuoppala G9024 Petteri Viitanen G8473 Torsioheiluri IIT3S Selostuksen laatija: Eerik Kuoppala Ryhmä B3: Eerik Kuoppala G904 Petteri Viitanen G8473 Mittauspäivämäärä:..4 Selostuksen jättöpäivä: 4.3.4 Torsioheilurin mitatuilla neljän jakson

Lisätiedot

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello

Tarvittavat välineet: Kalorimetri, lämpömittari, jännitelähde, kaksi yleismittaria, sekuntikello 1 LÄMPÖOPPI 1. Johdanto Työssä on neljä eri osiota, joiden avulla tutustutaan lämpöopin lakeihin ja ilmiöihin. Työn suoritettuaan opiskelijan on tarkoitus ymmärtää lämpöopin keskeiset käsitteet, kuten

Lisätiedot

RAKENNUSFYSIIKKA Kylmäsillat

RAKENNUSFYSIIKKA Kylmäsillat Kylmäsillat Kylmäsillan määritelmä Kylmäsillat ovat rakennuksen vaipan paikallisia rakenneosia, joissa syntyy korkea lämpöhäviö. Kohonnut lämpöhäviö johtuu joko siitä, että kyseinen rakenneosa poikkeaa

Lisätiedot

4757 4h. MAGNEETTIKENTÄT

4757 4h. MAGNEETTIKENTÄT TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 FYSIIKAN LABORATORIO V 1.6 5.014 4757 4h. MAGNEETTIKENTÄT TYÖN TAVOITE Työssä tutkitaan vitajohtimen aiheuttamaa magneettikentää. VIRTAJOHTIMEN SYNNYTTÄMÄ MAGNEETTIKENTTÄ

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 008 MATEMATIIKKA TEHTÄVIEN RATKAISUT Tehtävä. Maljakossa on 0 keltaista ja 0 punaista tulppaania, joista puutarhuriopiskelijan on määrä

Lisätiedot

Alumiinirungon/Eristyskatto

Alumiinirungon/Eristyskatto 7970FI Alumiinirungon/Eristyskatto Kattolipan runko 8 Willab Garden 2016.05 3 2 4 TÄRKEÄÄ! Lue asennusohjeet läpi ennen kuin aloitat asentamisen! Jos ohjeita ei noudateta, elementti ei toimi parhaalla

Lisätiedot

Sukunimi: Etunimi: Henkilötunnus:

Sukunimi: Etunimi: Henkilötunnus: K1. Onko väittämä oikein vai väärin. Oikeasta väittämästä saa 0,5 pistettä. Vastaamatta jättämisestä tai väärästä vastauksesta ei vähennetä pisteitä. (yhteensä 10 p) Oikein Väärin 1. Kaikki metallit johtavat

Lisätiedot

Kertausta Talousmatematiikan perusteista

Kertausta Talousmatematiikan perusteista Kertausta Talousmatematiikan perusteista Ensimmäinen välikoe luokittelu 1. asteen yhtälö 1. asteen epäyhtälö 2. asteen yhtälö 2. asteen epäyhtälö Prosentti Määritelmä "b on p a a:sta." b = p 100 a p% =

Lisätiedot