Laskun vaiheet ja matemaattiset mallit
|
|
- Karoliina Salonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
2 Hieman kertausta Esimerkki Muutetaan yksi nanometri millimetriksi. Ensiksi nanometri mikrometriksi: 1 nm = 1/1000 µm = 10 3 µm Sitten mikrometri millimetriksi: 10 3 /1000 mm = 10 6 mm. Yksi nanometri (nm) on siis 10 6 millimetriä (mm). Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
3 Hieman kertausta II Kymmenen potenssimuoto voidaan yleisesti kirjoittaa: a 10 n, missä a R (=reaaliluvut) ja n Z (=kokonaisluvut). Esim. 1,2 10 3, jossa a = 1,2 ja n = 3. Kymmenen potenssin laskuissa halutaan ilmoittaa vastaus siten, että 0 < a < 10. Eli halutaan, että numero kymmenen potenssin edellä (=a) on enemmän kuin nolla mutta alle 10. Eli 1, on ok, mutta ei ole. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
4 Laskun vaiheet I Fysiikassa suureiden väliset riippuvuudet ilmoitetaan suureyhtälöinä. Esimerkiksi matkan s, nopeuden v ja ajan t välinen yhteys voidaan ilmoittaa muodossa s = vt. Kun suurreyhtälöitä ratkaistaan, tulos pitää antaa epätarkimman eli vähiten merkitseviä numeroita sisältävän suureen mukaan. Yhtälöön sijoitetaan sekä lukuarvo että yksikkö. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
5 Laskun vaiheet II Esimerkki John Doe ajoi polkupyörällä 3 km:n matkan aikaan sekuntia. Mikä oli J. Doe:n keskinopeus? RATKAISU: Kirjataan ensiksi suureet ylös. s = 3 km = m. (Yksi merkitsevä numero) t = 1637 s. (4 merkitsevää numeroa) Keskinopeus v k halutaan laskea. Merkitään v k tuntemattomaksi eli v k =?. Keskinopeus saadaan kaavasta v k = s t. Sijoitetaan suureet kaavaan: v k = 3000m 1637s = 1,833 m s. Matkassa on yksi merkitsevä numero ja ajassa 4 merkitsevää numeroa. Matka on siis ilmoitettu epätarkemmin. Pyöristetään tulos yhden merkitsevän numeron tarkkuudella eli 1,833 m/s 2 m/s. John Doe:n keskinopeus oli 2 m s. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
6 Laskun vaiheet III Esimerkki Maan massa on 5, kg ja Kuun massa on 7, kg. Kuinka monta prosenttia Maan massa on Maa-Kuu-systeemin kokonaismassasta? RATKAISU: Kirjataan ensiksi suureet: m maa = 5, kg; m kuu = 7, kg Halutaan laskea Maan massan prosentuaalinen suhde Maan ja Kuun yhdistettyyn massaan. Prosentuaalinen suhde saadaan: m MAA m MAA +m KUU 100% Sijoitetaan lukuarvot: m MAA m MAA +m KUU 100% = 5, kg 5, kg+7, kg 100% = 98,7849 % 98,78 % Maan massa on 98,78 % Maa-Kuu-systeemin kokonaismassasta. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
7 Laskun vaiheet IV HUOMIO! VAIN LOPPUTULOS PYÖRISTETÄÄN. SUUREITA EI SAA PYÖRISTÄÄ LASKUN AIKANA. Vastaus tulee AINA ilmoittaa lähtöarvojen tarkkuuden antamalla tarkkuudella. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
8 Paripulina Keskustele parisi kanssa siitä mitä ovat seuraavat asiat fysiikassa: Malli Luonnon laki Teoria Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
9 Mallit kuvaavat todellisuutta I Fysiikassa mallit ovat yksinkertaistuksia tutkittavasta kohteesta. Malli laaditaan mittaustiedon ja ennalta tunnetun tiedon perusteella. Esimerkki Fysiikan opettajasi antoi tehtäväksi mitata miten hiekan ja veden massa muttuu tilavuuden suhteen. Mittasit viidellä eri tilavuudella hiekan ja veden massan ja sait alla olevan taulukon. Tilavuus(dm 3 ) Hiekan massa (g) Veden massa (g) 0,0 0,0 0, Tulokset saatuasi piirsit niistä kuvaajan Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
10 Mallit kuvaavat todellisuutta II Vesi Hiekka 200 massa [g] tilavuus [cm 3 ] Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
11 Mallit kuvaavat todellisuutta III Kuvaajasta huomasit, että hiekan massa kasvaa selvästi nopeammin kuin veden. Mietit, että pystyisitkö löytämään näille kahdella suureelle yhdistävän tekijän? Silloin mieleesi palautui matematiikan tunti, jossa käsiteltiin polynomeja. Kuvaavasta huomaat selvästi, että voisit sijoittaa yhtälöön 1. asteen polynomin. Kaivat esille muistiinpanosi ja 1. asteen polynomin määritelmän: y = ax + b, missä a ja b ovat vakioita. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
12 Mallit kuvaat todellisuutta IV y = x y = x + 1 y = x y x Hieman kertausta suorista. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
13 Mallit kuvaavat todellisuutta V Huomaat heti, että pisteet kulkevat origon kautta. Näin voit huolettaa olettaa b:n nollaksi eli y = ax. Sinua on aina sekoittanut, että notaatiot ovat erilaiset fysiikassa kuin matematiikassa. Päädyt siis vaihtamaan notaatiot: m = av. Sovitat suorat kuvaajaan. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
14 Mallit kuvaat todellisuutta VI Vesi Hiekka 200 massa [g] tilavuus [cm 3 ] Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
15 Mallit kuvaavat todellisuutta VII Sait kaksi eri suoran yhtälöä: m vesi = av ja m hiekka = bv, missä a ja b ovat tuntemattomia vakioita. Haluat selvittää tuntemattomat vakiot a:n ja b:n. Haluamasi vakiot ovat suorien kulmakertoimet. Näin ollen ratkaisemalla kulmakertoimet, saat vakioiden arvot tietoosi. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
16 Mallit kuvaavat todellisuutta VIII Vesi Hiekka 200 massa [g] tilavuus [cm 3 ] Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
17 Mallit kuvaavat todellisuutta IX Muistat, että (Delta) kreikkalaisista aakkosista kuvaa muutosta. Tilavuuden muutokseksi saat molemmille: V = V 2 - V 1 = 200 cm 3-0 cm 3 = 200 cm 3. Lähdet määrittämään aluksi vakioita a vedelle. Arvioit hieman massan arvoja kuvaajasta ja alat laskemaan a = m vesi V = m 2 m 1 V = 200g 0g = 1 g 200cm 3 cm 3 Teet samalla tavalla hiekan b vakiolle: b = m hiekka V = m 2 m 1 V = 280g 0g = 1,4 g 200cm 3 cm 3 Tämän jälkeen mieleesi muistuikin, että tiheys kertoo massan ja tilavuuden suhteen ja tiheyden yksikkö oli ρ (rhoo). Onnistuit määrittämään veden ja hiekan tiheydet mittauspisteistä sovittamalla niihin graafisen mallin - tässä tapauksessa suoran. ρ vesi = 1 g ja ρ cm 3 hiekka = 1,4 g. cm 3 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
18 Mallit kuvaavat todellisuutta X Mallit ovat yksinkertaistuksia tutkittavasta kohteesta ja mallit pätevät tietyissä olosuhteissa ja tietyllä tarkkuudella. Mallien ns. pätevyysalue. Jos tarkasteltavat suureet ovat suoraan verrannollisia, matemaattisen mallin kuvaaja on suora esim. m = ρv. Huomio! Kun valitset pisteet kulmakertoimet määrittämistä varten, pisteet valitaan suoralta eikä mittauspisteistä. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
19 Tuntitehtävä (yo-kevät 2013) Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
20 Liikkeessä paikka muuttuu I Melkein kaikkiin luonnon ilmiöihin liittyy liike ja sen takia liikkeen kuvaamiseen ja selittämiseen tarvittavt käsitteet ovat fysiikan peruskäsitteitä. Kappaleen liikettä voidaan kuvata aika-paikka-koordinaatistolla, jossa aika on x-akselilla ja paikka y-akselilla. Kuvaajasta voidaan lukea kappaleen paikka tietyllä ajan hetkellä. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
21 Liikkeessä paikka muuttuu II Kappaleen keskinopeus kuvaa kappaleen nopeutta tiettynä aikavälillä. Keskinopeus ei kerro kappaleen nopeutta tietyllä ajan hetkellä vaan mikä on kappaleen keskimääräistä nopeutta valitulla aikavälillä. Keskinopeus voidaan laskea kun tiedetään kuinka pitkän matka kappale on liikkunut ja kuinka paljon aikaa siihen on kulunut. Keskinopeus v k on v k = s t, jossa s on kuljettu matka ja t siihen kulunut aika. HUOM! Keskinopeus ei kerro minkälaista kappaleen liike (kiihtyvää, hidastuvaa, tasaista) on kyseisellä aikavälillä. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
22 Liikkeessä paikka muuttuu III Nopeuden yksikkö muunnos tehdään seuraavasti: km/h muunnetaan yksikköön m/s jakamalla nopeuden lukuarvo 3,6:lla. m/s muunnetaan yksikköön km/h kertomalla nopeuden lukuarvo 3,6:lla. Esimerkki Muunnetaan 1 km/h 1 m/s. 1 km = 1000 m ja 1h = s = 3600 s. Tällöin 1 km h = 1000m 3600s = 1 3,6 m/s. Toisinpäin vastaavasti: 1 m/s = 3600m 3600s = 3,6km 1h = 3,6 km/h. Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta / 22
Laskun vaiheet ja matemaattiset mallit
Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta
LisätiedotOhjeita fysiikan ylioppilaskirjoituksiin
Ohjeita fysiikan ylioppilaskirjoituksiin Kari Eloranta 2016 Jyväskylän Lyseon lukio 11. tammikuuta 2016 Kokeen rakenne Fysiikan kokeessa on 13 tehtävää, joista vastataan kahdeksaan. Tehtävät 12 ja 13 ovat
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +
Lisätiedot5.3 Ensimmäisen asteen polynomifunktio
Yllä olevat polynomit P ( x) = 2 x + 1 ja Q ( x) = 2x 1 ovat esimerkkejä 1. asteen polynomifunktioista: muuttujan korkein potenssi on yksi. Yleisessä 1. asteen polynomifunktioissa on lisäksi vakiotermi;
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotFYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka
FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka Oppilaan nimi: Pisteet: / 77 p. Päiväys: Koealue: kpl 13-18, s. 91-130 1. SUUREET. Täydennä taulukon tiedot. suure suureen tunnus suureen yksikkö matka aika
LisätiedotFysiikan perusteet. SI-järjestelmä. Antti Haarto 21.05.2012. www.turkuamk.fi
Fysiikan perusteet SI-järjestelmä Antti Haarto 21.05.2012 Fysiikka ja muut luonnontieteet Ihminen on aina pyrkinyt selittämään havaitsemansa ilmiöt Kreikkalaiset filosofit pyrkivät selvittämään ilmiöt
Lisätiedot7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla
Lisätiedot4 Yleinen potenssifunktio ja polynomifunktio
4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako
LisätiedotKERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x
Lisätiedotorigo III neljännes D
Sijoita pisteet A(1,4) ja B(4,5;5) sekä C(-3,4) ja D(-4,--5) y II neljännes C A I neljännes B x origo III neljännes D IV neljännes KOTIT. Sijoita ja nimeä koordinaatistoon pisteitä niin, että pisteet yhdistettäessä
LisätiedotKertaustehtävien ratkaisut
Kertaustehtävien ratkaisut. x y = x + 6 (x, y) 0 0 + 6 = 6 (0, 6) + 6 = (, ) + 6 = 0 (, 0) y-akselin leikkauspiste on (0, 6) ja x-akselin (, 0).. x y = x (x, y) 0 0 (0, 0) (, ) (, ) x y = x + (x, y) 0
Lisätiedot1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400
LisätiedotLiike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
LisätiedotYlioppilastutkintolautakunta S tudentexamensnämnden
Ylioppilastutkintolautakunta S tudentexamensnämnden MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ.9.013 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutkintolautakunnan
LisätiedotOSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO
OSA : YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Kolme kaverusta, Olli, Pekka
LisätiedotPRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
LisätiedotKahden suoran leikkauspiste ja välinen kulma (suoraparvia)
Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole
LisätiedotTarkastellaan seuraavaksi esimerkkien avulla yhtälöryhmän ratkaisemista käyttäen Gaussin eliminointimenetelmää.
Yhtälörhmä Lineaarisen htälörhmän alkeisoperaatiot ovat ) kahden htälön järjestksen vaihto ) htälön kertominen puolittain nollasta eroavalla luvulla ja ) luvulla puolittain kerrotun htälön lisääminen johonkin
LisätiedotTekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.
Tekijä Pitkä matematiikka 5 7..017 37 Pisteen (x, y) etäisyys pisteestä (0, ) on ( x 0) + ( y ). Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y. Merkitään etäisyydet yhtä suuriksi ja ratkaistaan
LisätiedotMAA4 Abittikokeen vastaukset ja perusteluja 1. Määritä kuvassa olevien suorien s ja t yhtälöt. Suoran s yhtälö on = ja suoran t yhtälö on = + 2. Onko väittämä oikein vai väärin? 2.1 Suorat =5 +2 ja =5
LisätiedotMateriaalia, ohjeita, videoita sekä lisätietoja opettajille tarjottavasta koulutuksesta osoitteessa:
Kevään Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Nämä ratkaisut tehty alusta loppuun TI-Nspire CX CAS -ohjelmistolla ja tallennettu lopuksi PDF -muotoon. Tarkoituksena on havainnollistaa,
Lisätiedot4. Funktion arvioimisesta eli approksimoimisesta
4. Funktion arvioimisesta eli approksimoimisesta Vaikka nykyaikaiset laskimet osaavatkin melkein kaiken muun välttämättömän paitsi kahvinkeiton, niin joskus, milloin mistäkin syystä, löytää itsensä tilanteessa,
Lisätiedot5-2. a) Valitaan suunta alas positiiviseksi. 55 N / 6,5 N 8,7 m/s = =
TEHTÄVIEN RATKAISUT 5-1. a) A. Valitaan suunta vasemmalle positiiviseksi. Alustan suuntainen kokonaisvoima on ΣF = 19 N + 17 N -- 16 N = 0 N vasemmalle. B. Valitaan suunta oikealle positiiviseksi. Alustan
LisätiedotMAB3 - Harjoitustehtävien ratkaisut:
MAB3 - Harjoitustehtävien ratkaisut: 1 Funktio 1.1 Piirretään koordinaatistoakselit ja sijoitetaan pisteet: 1 1. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä.
LisätiedotTekijä Pitkä matematiikka
Tekijä Pitkä matematiikka 5..017 110 Valitaan suoralta kaksi pistettä ja piirretään apukolmio, josta koordinaattien muutokset voidaan lukea. Vaakasuoran suoran kulmakerroin on nolla. y Suoran a kulmakerroin
LisätiedotAluksi. 1.1. Kahden muuttujan lineaarinen yhtälö
Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,
LisätiedotDifferentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
LisätiedotLiikkeet. Haarto & Karhunen. www.turkuamk.fi
Liikkeet Haarto & Karhunen Suureita Aika: tunnus t, yksikkö: sekunti = s Paikka: tunnus x, y, r, ; yksikkö: metri = m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema) oidaan ilmoittaa
LisätiedotHuippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
YHTÄLÖITÄ ALOITA PERUSTEISTA A. Luku on yhtälön ratkaisu, jos luku toteuttaa yhtälön. a) Sijoitetaan luku = yhtälöön. 6 = 0 0 = 0 Yhtälö on tosi, joten = on yhtälön ratkaisu. Vastaus: on b) Sijoitetaan
Lisätiedot1.1 Funktion määritelmä
1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen
LisätiedotAlgebran ja Geometrian laskukokoelma
Algebran ja Geometrian laskukokoelma A. Potenssien laskusäännöt Sievennä 1. (r 3 ) 4 2. (2a 3 ) 3 3. x 3 x 5 4. k11 k 5 5. 2a2 a 7 5a 3 6. (-3x 2 y 3 ) 3 7. ( 1 4 ) 3 8. (2 a2 Lisätehtäviä b 3)3 9. (a
Lisätiedot4 TOISEN ASTEEN YHTÄLÖ
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on
LisätiedotMatikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon
Matikkaa KA1-kurssilaisille, osa 3: suoran piirtäminen koordinaatistoon KA1-kurssi on ehkä mahdollista läpäistä, vaikkei osaisikaan piirtää suoraa yhtälön perusteella. Mutta muut kansiksen kurssit, no
LisätiedotNopeus, kiihtyvyys ja liikemäärä Vektorit
Nopeus, kiihtyvyys ja liikemäärä Vektorit Luento 2 https://geom.mathstat.helsinki.fi/moodle/course/view.php?id=360 Luennon tavoitteet: Vektorit tutuiksi Koordinaatiston valinta Vauhdin ja nopeuden ero
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
Lisätiedot0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys
Lukutyypit Laskusäännöt Laskujärjestys 0. perusmääritelmiä Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaFonaaliluvut (Q): kaikki luvut, jotka voidaan esihää kahden
LisätiedotFysiikan perusteet. Liikkeet. Antti Haarto 22.05.2012. www.turkuamk.fi
Fysiikan perusteet Liikkeet Antti Haarto.5.1 Suureita Aika: tunnus t, yksikkö: sekunti s Paikka: tunnus x, y, r, ; yksikkö: metri m Paikka on ektorisuure Suoraiiaisessa liikkeessä kappaleen paikka (asema)
Lisätiedotmatematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola
9 E matematiikka Martti Heinonen Markus Luoma Leena Mannila Kati Rautakorpi-Salmio Timo Tapiainen Tommi Tikka Timo Urpiola Helsingissä Kustannusosakeyhtiö Otava Yhteenlaskumenetelmän harjoittelua Joskus
LisätiedotFYSIIKKA. Mekaniikan perusteita pintakäsittelijöille. Copyright Isto Jokinen; Käyttöoikeus opetuksessa tekijän luvalla. - Laskutehtävien ratkaiseminen
FYSIIKKA Mekaniikan perusteita pintakäsittelijöille - Laskutehtävien ratkaiseminen - Nopeus ja keskinopeus - Kiihtyvyys ja painovoimakiihtyvyys - Voima - Kitka ja kitkavoima - Työ - Teho - Paine LASKUTEHTÄVIEN
LisätiedotMATEMATIIKAN KOE. AMMATIKKA top 17.11.2005. 2. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.
AMMATIKKA top 17.11.005 MATEMATIIKAN KOE. asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu Nimi: Oppilaitos:. Koulutusala:... Luokka:.. Sarjat: MERKITSE OMA SARJA 1. Tekniikka
Lisätiedot1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
Lisätiedot3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.
Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman
LisätiedotMetallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet?
1 Metallitanko, jonka pituus on 480 cm, jaetaan kahteen osaan. Toinen osista on 60 cm pitempi kuin toinen. Mitkä ovat osien pituudet? Tapa 1 Merkitään toista osaa x:llä, toista y:llä ja piirretään asiaa
LisätiedotMAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.
KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen
LisätiedotMS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
Lisätiedot0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys
0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut (N): 1, 2, 3, 4 Kokonaisluvut (Z):... 4, 3, 2, 1, 0, 1, 2, 3, 4... RaConaaliluvut (Q): kaikki luvut, jotka voidaan esieää kahden
Lisätiedot1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA
1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Seuraavien tehtävien tekemiseen tarvitset tulitikkuja
LisätiedotLyhyt, kevät 2016 Osa A
Lyhyt, kevät 206 Osa A. Muodostettu yhtälö, 2x 2 + x = 5x 2 Kaikki termit samalla puolla, 2x 2 4x + 2 = 0 Vastaus x = x:n derivaatta on x 2 :n derivaatta on 2x f (x) = 4x + derivoitu väärää funktiota,
LisätiedotPRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)
LisätiedotMS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Lisätiedot5.2 Ensimmäisen asteen yhtälö
5. Ensimmäisen asteen ytälö 5. Ensimmäisen asteen yhtälö Aloitetaan antamalla nimi yhtälön osille. Nyt annettavat nimet eivät riipu yhtälön tyypistä tai asteesta. Tarkastellaan seuraavaa yhtälöä. Emme
Lisätiedotv = Δs 12,5 km 5,0 km Δt 1,0 h 0,2 h 0,8 h = 9,375 km h 9 km h kaava 1p, matkanmuutos 1p, ajanmuutos 1p, sijoitus 1p, vastaus ja tarkkuus 1p
2. Pyöräilijä lähti Pietarsaaresta kohti Kokkolaa, jonne on matkaa 33 km. Hän asetti tavoitteeksi ajaa edestakaisen matkan keskinopeudella 24 km/h. Vastatuulen takia hän joutui käyttämään menomatkaan aikaa
LisätiedotKahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi.
10.1 Yleistä Kahden lausekkeen merkittyä yhtäsuuruutta sanotaan yhtälöksi. Esimerkkejä: 2x 8 = 12 A = πr 2 5 + 7 = 12 Yhtälöissä voi olla yksi tai useampi muuttuja Tuntematonta muuttujaa merkitään usein
Lisätiedot= 6, Nm 2 /kg kg 71kg (1, m) N. = 6, Nm 2 /kg 2 7, kg 71kg (3, m) N
t. 1 Auringon ja kuun kohdistamat painovoimat voidaan saada hyvin tarkasti laksettua Newtonin painovoimalailla, koska ne ovat pallon muotoisia. Junalle sillä saadaan selville suuruusluokka, joka riittää
LisätiedotSovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
LisätiedotMatematiikka vuosiluokat 7 9
Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa
Lisätiedot(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
LisätiedotKompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
Lisätiedot3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
LisätiedotParaabeli suuntaisia suoria.
15.5.017 Paraabeli Määritelmä, Paraabeli: Paraabeli on tason niiden pisteiden ura, jotka ovat yhtä etäällä annetusta suorasta, johtosuorasta ja sen ulkopuolella olevasta pisteestä, polttopisteestä. Esimerkki
LisätiedotSivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi
Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla
Lisätiedot4. Kontrollitilavuusajattelu ja massan säilyminen. KJR-C2003 Virtausmekaniikan perusteet
4. Kontrollitilavuusajattelu ja massan säilyminen KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten partikkelisysteemiin liittyvän suuren säilyminen esitetään tarkastelualueen taseena ja miten massan
LisätiedotBetonimatematiikkaa
Betonimatematiikkaa.11.017 Kiviaineksen seulontatulokset ja läpäisyarvo Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo g % % Pohja 60 9,0-0,15
LisätiedotBetonimatematiikkaa
Betonimatematiikkaa.11.017 Kiviaineksen rakeisuusesimerkki Laske seuraavan seulontatuloksen rakeisuusluku ja piirrä rakeisuuskäyrä Seula # mm Seulalle jäänyt Läpäisyarvo % g % Pohja 60 9,0-0,15 30 4,5
LisätiedotMATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.3.06 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
LisätiedotKESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.
VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten
LisätiedotPERUSKOULUSTA PITKÄLLE
Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS
LisätiedotNumeeriset menetelmät Pekka Vienonen
Numeeriset menetelmät Pekka Vienonen 1. Funktion nollakohta Newtonin menetelmällä 2. Määrätty integraali puolisuunnikassäännöllä 3. Määrätty integraali Simpsonin menetelmällä Newtonin menetelmä Newtonin
Lisätiedot2 Raja-arvo ja jatkuvuus
Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.6 Raja-arvo ja jatkuvuus. a) Kun suorakulmion kärki on kohdassa =, on suorakulmion kannan pituus. Suorakulmion korkeus on käyrän y-koordinaatti
LisätiedotMatematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
LisätiedotTekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).
Tekijä Pitkä matematiikka 4 9.12.2016 212 Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4). Vastaus esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4) 213 Merkitään pistettä
LisätiedotMAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x
MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =
Lisätiedot(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
Lisätiedot5. Numeerisesta derivoinnista
Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan
Lisätiedot0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys
0. perusmääritelmiä Lukutyypit Laskusäännöt Laskujärjestys Luonnolliset luvut: 1,2,3,4... Kokonaisluvut (ℵ):... 4, 3, 2, 1,0,1,2,3,4... RaBonaaliluvut: kaikki luvut jotka voidaan esidää kahden kokonaisluvun
LisätiedotVapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.
Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +
LisätiedotVektoreiden virittämä aliavaruus
Vektoreiden virittämä aliavaruus Määritelmä Oletetaan, että v 1, v 2,... v k R n. Näiden vektoreiden virittämä aliavaruus span( v 1, v 2,... v k ) tarkoittaa kyseisten vektoreiden kaikkien lineaarikombinaatioiden
LisätiedotTekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
LisätiedotNELIÖJUURI. Neliöjuuren laskusääntöjä
NELIÖJUURI POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA2 Tarkoittaa positiivista tai nollaa Määritelmä, neliöjuuri: Luvun a R neliöjuuri, merkitään a, on se ei-negatiivinen luku, jonka neliö (eli toiseen potenssiin
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
LisätiedotMATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 1 Funktion kuperuussuunnat Derivoituva funktio f (x) on pisteessä x aidosti konveksi, jos sen toinen derivaatta on positiivinen f (x) > 0. Vastaavasti f (x) on aidosti
LisätiedotMEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta
MEKANIIKAN TEHTÄVIÄ Ympyröi oikea vaihtoehto. Normaali ilmanpaine on a) 1013 kpa b) 1013 mbar c) 1 Pa Kappaleen liike on tasaista, jos a) kappaleen paikka pysyy samana b) kappaleen nopeus pysyy samana
LisätiedotÖljysäiliö maan alla
Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö
LisätiedotTEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.
TEHTÄVIEN RATKAISUT Luku 4.1 183. a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5. Lasketaan funktioon syötetyn luvun neliö: 5 = 5. Saatuun arvoon lisätään luku 1:
LisätiedotTekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)
K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +
Lisätiedot