Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
|
|
- Maarit Järvinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) B λ (10 15 W/m 3 /sterad) nm nm /home/heikki/cele2008_2010/musta_kappale_approksimaatio heikki@pc Wed Mar 13 15:33: Tähtitieteen perusteet, Luento 6,
2 5.8. Lämpötilat Erilaisia fysikaalisia prosesseja monta tapaa määritellä lämpötila Tähtien lämpötila: Verrataan säteilyn aallonpituusjakaumaa mustan kappaleen säteilyyn Eliminoidaan ensin absorptioviivojen vaikutus sovitetaan Planck n funktioon B λ (T) Sovitus voidaan tehdä usealla tavalla: Efektiivinen lämpötila T e = mustan kappaleen lämpötila, jolla sama kokonaisvuontieheys kuin tähdellä voidaan käyttää vaikka todellinen jakauma poikkeaisi huomattavastikin Planck n laista 4 SB-laki: kokonaisvuontiheys F = σt e kokonaisvuo L = 4πR 2 F (4πR 2 tähden pinta-ala) etäisyydellä r havaittu kokonaisvuontiheys F(r) = (R/r) 2 4 σt e = (α/2) 2 4 σte (5.26) Jos tähden kulmaläpimitta α = 2R/r tunnetaan (interferometrisesti) Efektiivinen lämpötila saadaan kokonaisvuontiheydestä (kts TP Esim. 5.5) Tähtitieteen perusteet, Luento 7,
3 Kirkkauslämpötila T b (Kokonaisvuontiheys vaikea määrittäää, helpompi käyttää rajattua aallonpituusväliä) Oletetaan että säteily isotrooppista ja noudattaa Planck n funktiota aallonpituudella λ Kirkkauslämpötila: asetetaan tähden pinnalla vuontiheys F λ = πb λ (T b ), etäisyydellä r havaittu vuontiheys F λ (r) = (R/r) 2 πb λ (T b ) = (α/2) 2 πb λ (T b ) Koska tähden säteily ei seuraa tarkasti Planck n lakia saatu T b riippuu käytetystä aallonopituudesta Radioastronomia: kohteen intensiteetti ilmoitetaan yleensä kirkkauslämpötilan muodossa: Intensiteetti taajuudella I ν = B ν (T b ) Rayleigh- Jeans approksimaatio (hν/(kt) << 1) hyvin voimassa B ν 2kν 2 /c 2 T b Kirkkauslämpötila T b = c2 2kν 2I ν = λ2 2k I ν Käytännössä radioteleskoopin mittaama suure = Antennilämpötila T A = havaitun signaalin teho T A = η Ω S Ω A T b η on antennin keilahyötysuhde ( ) Ω S = kohteen avaruuskulma Ω A = antennin havaitseman keilan avaruuskulma Jos Ω S > Ω A T A = ηt b Tähtitieteen perusteet, Luento 7,
4 Värilämpötila T c Tähden kulmaläpimittaa ei yleensä tunneta T b hankala määrittää Elimoidaan säteilyvuon absoluuttinen arvo käyttämällä kahdella aallonpituudella havaittujen vuontiheyksien suhdetta: F λ1 (T) F λ2 (T) = B λ 1 (T) B λ2 (T) = λ 2 5 e hc/λ 2 kt 1 λ 1 5 e hc/λ 1 kt 1 ratkaistaan T = värilämpötila T c (havaittujen vuontiheyksien suhde on sama kuin vuontiheyksien suhde tähden pinnalla) Muutetaan havaitut vuontiheydet magnitudeiksi: m λ1 m λ2 = 2.5 log 10 F λ1 F λ2 + vakio Eli Mikäli lämpötila < 10000K λ2 5 m λ1 m λ2 = 2.5 log 10 λ hc 1 kt optisella alueella Wienin approksimaatio B λ (T) = 2hc2 λ 5 e hc/λkt 1 λ1 1 λ 2 log 10 e + vakio m λ1 m λ2 = a + b Tc a,b vakioita Tarkkaan ottaen pitäisi käyttää monokromaattia magnitudeja (eli tietyllä aallonpituudella) Usein sovelletaan myös laajakaista (esim. Johnson B,V) magnitudeihin väri-indeksi B-V antaa värilämpötilan Tähtitieteen perusteet, Luento 7,
5 Tähtitieteen perusteet-kirjan esimerkki: Värilämpötilan laskeminen Valittu λ 1 = 550nm, λ 2 = 440nm B 1 = 26206K, B 2 = 32757K (painovirhe: arvot toisinpäin) 4 yhtalon oikea puoli A T /home/heikki/cele2008_2010/pics2013/esim_5_6 heikki@pc Fri Mar 15 09:32: Tähtitieteen perusteet, Luento 7,
6 Muita lämpötilan määritelmiä Kineettinen lämpötila T k Liittyy kaasumolekyylien keskimääräiseen nopeuteen Ideaalikaasun molekyylien keskimääräinen liike-energia: 1 2 m < v 2 >= 3 2 kt k T k = m<v2 > 3k ja edelleen paine P = nkt k m molekyylin massa, < v 2 > nopeuden neliön keskiarvo, k Boltzmannin vakio, n molekyylien lukumäärä /tilavuusyksikkö Eksitaatio-lämpötila T ex Edellä: termisessä tasapainotilassa atomien viritystilojen jakauma Boltzman-jakautunut n i /n 0 = g i /g 0 e (E i E 0 )/kt Vaikkei todellinen jakauma olisikaan B-jakauman mukainen, eo. kaavaa voidaan käyttää kuvaamaan tilojen jakauma, asettamalla T = T ex (Huom: T ex riippuu mitä tiloja tarkastellaan) Mikäli viritystilojen jakauma määräytyy atomien törmäyksistä T ex = T k Ionisaatio-lämpötila T i Verrataan eri ionisaatio-tiloissa olevien atomien lukumääriä Huom: riippuu mitä spektriviivoja käytetään (kuten Tex) Termisessä tasapainossa kaikki eo. lämpötilat yhtä suuria T e = T b = T c = T k = T ex = T i Tähtitieteen perusteet, Luento 7,
7 5.9 Muita säteilymekanismeja Terminen tasapaino: kaasun säteily riippuu vain lämpötilasta ja tiheydestä Systeemi ei kuitenkaan aina ole termisessä tasapainotilassa ei-terminen säteily Maser ja laser-säteily -B-jakauma: viritystilassa vähemmän atomeja kuin perustilassa -Tilanne jossa viritystilassa korkeampi miehitysaste ( pumppaus ): kohdistetaan säteily jonka energia vastaa viritysenergiaa atomit säteilevät tällä taajuudella enemmän kuin absorboivat tulevaa säteilyä = indusoitunut emissio koherenttia säteilyä Laser = indusoitu emissio näkyvän valon aallonpituudella Light Amplification by Stimulated Emission of Radiation Maser = indusoitu emissio mikroaaltosäteilyä ( Microwave...) tähtienväliset molekyylipilvet ja tähtiä ympäröivät pölyvaipat Synktronisäteily Kiihtyvässä liikkeessä oleva vapaa ei-atomiin sidottu varaus Magneettikenttä: varaukset liikkuvat pitkin helix-ratoja, säteilevät radan tangentin suuntaan säteilee Tähtitieteen perusteet, Luento 7,
1 Perussuureiden kertausta ja esimerkkejä
1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.
LisätiedotXFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
LisätiedotTähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia. Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan
Tähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan Ilmakehän läpäisykyky - radioikkuna: λ 0.3mm 15 m Radioastronomia
LisätiedotZ 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
LisätiedotValo ja muu sähkömagneettinen säteily
Valo ja muu sähkömagneettinen säteily Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valohiukkanen eli fotoni on
LisätiedotXFYS4336 Havaitseva tähtitiede II
XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva
LisätiedotMustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
LisätiedotMustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
LisätiedotKULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
LisätiedotTähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi
Tähtitieteen perusteet, harjoitus 2 Yleisiä huomioita: Tähtitieteessä SI-yksiköissä ilmaistut luvut ovat usein hyvin isoja ja epähavainnollisia. Esimerkiksi aurinkokunnan etäisyyksille kannattaa usein
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotKvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
LisätiedotKäyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
LisätiedotMikrotila Makrotila Statistinen paino Ω(n) 3 Ω(3) = 4 2 Ω(2) = 6 4 Ω(4) = 1
76628A Termofysiikka Harjoitus no. 4, ratkaisut (syyslukukausi 204). (a) Systeemi koostuu neljästä identtisestä spin- -hiukkasesta. Merkitään ylöspäin olevien spinien lukumäärää n:llä. Systeemin mahdolliset
LisätiedotRadiokontinuumi. Centaurus A -radiogalaksi. Cassiopeia A -supernovajäänne
Radiokontinuumi Centaurus A -radiogalaksi Cassiopeia A -supernovajäänne Radiosäteilyn lähteet Molekyyleillä ja atomeilla on diskreettejä energiatiloja, joiden väliset siirtymät lähettävät viivasäteilyä,
Lisätiedot4 Fotometriset käsitteet ja magnitudit
4 Fotometriset käsitteet ja magnitudit 4.1 Intensiteetti, vuontiheys ja luminositeetti Pinta-alkion da läpi kulkee säteilyä Avaruuskulma dω muodostaa kulman θ pinnan normaalin kanssa. Tähän avaruuskulmaan
Lisätiedot4.3 Magnitudijärjestelmät
4.3 Magnitudijärjestelmät Näennäinen magnitudi riippuu tarkasteltavasta aallonpituusalueesta ja havaintovälineen herkkyydestä tällä aallonpituusalueella Erilaiset magnitudijärjestelmät Järjestelmien nollakohdat
Lisätiedot3.1 Varhaiset atomimallit (1/3)
+ 3 ATOMIN MALLI 3.1 Varhaiset atomimallit (1/3) Thomsonin rusinakakkumallissa positiivisesti varautuneen hyytelömäisen aineen sisällä on negatiivisia elektroneja kuin rusinat kakussa. Rutherford pommitti
LisätiedotFysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
LisätiedotRadioastronomian käsitteitä
Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä
LisätiedotSähkömagneettinen säteily ja sen vuorovaikutusmekanismit
Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Syksy 009 Jukka Maalampi LUENTO 1 Jäykän kappaleen pyöriminen Knight, Ch 1 Jäykkä kappale = kappale, jonka koko ja muoto eivät muutu liikkeen aikana. Jäykkä kappale on malli.
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
LisätiedotRadioastronomia harjoitustyö; vedyn 21cm spektriviiva
Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)
LisätiedotTURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V
TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight
LisätiedotLinssin kuvausyhtälö (ns. ohuen linssin approksimaatio):
Fysiikan laboratorio Työohje 1 / 5 Optiikan perusteet 1. Työn tavoite Työssä tutkitaan valon kulkua linssisysteemeissä ja perehdytään interferenssi-ilmiöön. Tavoitteena on saada perustietämys optiikasta
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
LisätiedotIdeaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
LisätiedotSÄHKÖENERGIATEKNIIIKKA. Harjoitus - luento 6. Tehtävä 1.
SÄHKÖENERGIATEKNIIIKKA Harjoitus - luento 6 Tehtävä 1. Aurinkokennon virta I s 1,1 A ja sen mallissa olevan diodin estosuuntainen kyllästysvirta I o 1 na. Laske aurinkokennon maksimiteho suhteessa termiseen
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin
LisätiedotSPEKTROGRAFIT. Mitataan valon aallonpituusjakauma
SPEKTROGRAFIT Mitataan valon aallonpituusjakauma Objektiivi-prisma: Objektiivin edessä oleva prisma levitää valon spektriksi tallennetaan CCD-kennolla Rakospektrografi: Teleskoopista kapean raon kautta
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
Lisätiedot2. Fotonit, elektronit ja atomit
Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin
Lisätiedotm h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
Lisätiedot7.10 Planeettojen magnitudit
7.10 Planeettojen magnitudit Edellä vuontiheyden kaava (*) F(α) = CA 4π Φ(α) L i 2 Sijoitetaan C = 4/q, A = pq, F = p π Φ(α) 1 2 L R 2 4r 2 L i = L R2 4r 2 Planeetasta heijastunut vuontiheys etäisyydellä
LisätiedotNyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
LisätiedotLuento 6. Mustan kappaleen säteily
Mustan kappaleen säteily Luento 6 Pintaa, joka absorboi kaiken siihen osuvan sähkömagneettisen säteilyn, kutsutaan mustaksi kappaleeksi. Tällainen pinta myös säteilee kaikilla aallonpituuksilla. Sen sanotaan
LisätiedotMikroskooppisten kohteiden
Mikroskooppisten kohteiden lämpötilamittaukset itt t Maksim Shpak Planckin laki I BB ( λ T ) = 2hc λ, 5 2 1 hc λ e λkt 11 I ( λ, T ) = ε ( λ, T ) I ( λ T ) m BB, 0 < ε
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan
Lisätiedotinfoa tavoitteet E = p2 2m kr2 Klassisesti värähtelyn amplitudi määrää kokonaisenergian Klassisesti E = 1 2 mω2 A 2 E = 1 2 ka2 = 1 2 mω2 A 2
infoa tavoitteet Huomenna keskiviikkona 29.11. ei ole luentoa. Oppikirjan lukujen 12-13.3. lisäksi kotisivulla laajennettu luentomateriaali itse opiskeltavaksi Laskarit pidetään normaalisti. Ymmärrät mitä
LisätiedotChapter 3. The Molecular Dance. Luento Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely
Chapter 3. The Molecular Dance 1 Luento 15.1.016 Terminen liike Kineettinen kaasuteoria Boltzmann-jakauma Satunnaiskävely Chapter 3. The Molecular Dance Solut: Korkeasti järjestyneitä systeemeitä Terminen
LisätiedotEssee Laserista. Laatija - Pasi Vähämartti. Vuosikurssi - IST4SE
Jyväskylän Ammattikorkeakoulu, IT-instituutti IIZF3010 Sovellettu fysiikka, Syksy 2005, 5 ECTS Opettaja Pasi Repo Essee Laserista Laatija - Pasi Vähämartti Vuosikurssi - IST4SE Sisällysluettelo: 1. Laser
LisätiedotE p1 = 1 e 2. e 2. E p2 = 1. Vuorovaikutusenergian kolme ensimmäistä termiä on siis
763343A IINTEÄN AINEEN FYSIIA Ratkaisut 3 evät 2017 1. Tehtävä: CsCl muodostuu Cs + - ja Cl -ioneista, jotka asettuvat tilakeskeisen rakenteen vuoropaikoille (kuva). Laske tämän rakenteen Madelungin vakion
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
Lisätiedot7.6 Planeettojen sisärakenne
7.6 Planeettojen sisärakenne Luotaimien ratoihin kohdistuvat häiriöt planeetan gravitaatiokenttä Gravitaatiokenttä riippuu kappaleen muodosto ja sisäisestä massakajaumasta 1000 km ja suuremmat kappaleet:
Lisätiedotkertausta edellisestä seuraa, että todennäköisimmin systeemi löydetään sellaisesta mikrotilasta, jollaisia on
tavoitteet kertausta Tiedät mitä on Boltzmann-jakauma ja osaat soveltaa sitä Ymmärrät miten päädytään kaasumolekyylien nopeusjakaumaan Ymmärrät kuinka voidaan arvioida hiukkasen vapaa matka Kaikki mikrotilat,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 1 Korkolaskentaa Oletetaan, että korkoaste on r Jos esimerkiksi r = 0, 02, niin korko on 2 prosenttia Tätä korkoastetta käytettään diskonttaamaan tulevia tuloja ja
Lisätiedota) Jos törmäysten määrä sekunnissa on f = s 1 ja jokainen törmäys deaktivoi virityksen, niin viritystilan keskimääräinen elinikä on
KEMA225 syksy 2016 Demo 6 Malliratkaisut 1. Törmäyksistä johtuva viivan levenemä on muotoa δe = h τ, (1) jossa τ on viritystilan keskimääräinen elinaika. Tämä tulos löytyy luentoslaideista ja Atkinsista
LisätiedotKuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
LisätiedotIntegroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj
S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan
LisätiedotMaxwell-Boltzmannin jakauma
Maxwell-Boltzmannin jakauma Homogeenisessa tasapainotilassa redusoidut yksihiukkastodennäköisyydet f voivat olla vain nopeuden funktioita, f = f(v ), ja H-funktio ei toisaalta voi riippua ajasta, eli dh
LisätiedotRadioastronomian harjoitustyö
1.11.2005 Radioastronomian harjoitustyö SPEKTRIVIIVA-ANALYYSI CLASS Tämän harjoitustyön tarkoituksena on tutustuttaa radiospektriviivojen analysointiin. Observatoriossa on käytössä tähän tarkoitukseen
LisätiedotPuhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
LisätiedotPlanck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio
Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz
LisätiedotFysiikan valintakoe klo 9-12
Fysiikan valintakoe 2.5.208 klo 9-2. Koripalloilija heittää vapaaheiton. Hän lähettää pallon liikkeelle korkeudelta,83 m alkuvauhdilla 7,53 m/s kulmassa 43,2 vaakatason yläpuolella. Pallon lähtöpisteen
LisätiedotYdin- ja hiukkasfysiikka 2014: Harjoitus 5 Ratkaisut 1
Ydin- ja hiukkasfysiikka 04: Harjoitus 5 Ratkaisut Tehtävä a) Vapautunut energia saadaan laskemalla massan muutos reaktiossa: E = mc = [4(M( H) m e ) (M( 4 He) m e ) m e ]c = [4M( H) M( 4 He) 4m e ]c =
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
LisätiedotSäteilyturvakeskuksen määräys ionisoimattoman säteilyn käytöstä kosmeettisessa tai siihen verrattavassa toimenpiteessä
MÄÄRÄYS S/5/2018 Säteilyturvakeskuksen määräys ionisoimattoman säteilyn käytöstä kosmeettisessa tai siihen verrattavassa toimenpiteessä Annettu Helsingissä 20.12.2018 Säteilyturvakeskuksen päätöksen mukaisesti
LisätiedotTermodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 /
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / 7.11.2016 v. 02 / T. Paloposki Tämän päivän ohjelma: Sisäenergia (kertaus) termodynamiikan 1. pääsääntö Entropia termodynamiikan 2. pääsääntö 1 Termodynamiikan
LisätiedotLIITE 2. ALTISTUMISRAJA-ARVOT OPTISELLE SÄTEILYLLE
MUISTIO 1137121 v. 1 1(17) 12.06.2017 2388/2017 LIITE 2. ALTISTUMISRAJA-ARVOT OPTISELLE SÄTEILYLLE 1. Epäkoherentti optinen säteily Biofysikaalisesti merkittävät optisen säteilyn altistumisraja-arvot määritellään
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotMittaustulosten tilastollinen käsittely
Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe
LisätiedotRadiospektroskopia Linnunrata (valokuva) Linnunrata (valokuva+co)
Radiospektroskopia Linnunrata (valokuva) Linnunrata (valokuva+co) Kaasun säteily Atomeilla ja molekyyleillä on diskreettejä energiatiloja Ne lähettävät tai absorboivat säteilyä siirtyessään energiatilalta
LisätiedotKuva 1: Etäisestä myrskystä tulee 100 metrisiä sekä 20 metrisiä aaltoja kohti rantaa.
Kuva : Etäisestä yrskystä tulee 00 etrisiä sekä 20 etrisiä aaltoja kohti rantaa. Myrskyn etäisyys Kuvan ukaisesti yrskystä tulee ensin pitkiä sataetrisiä aaltoja, joiden nopeus on v 00. 0 tuntia yöhein
LisätiedotL a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotShrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
Lisätiedota) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
Lisätiedot8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
Lisätiedot13 LASERIN PERUSTEET. Laser on todennäköisesti tärkein optinen laite, joka on kehitetty viimeisten 50 vuoden aikana.
07 1 LASERIN PERUSTEET 08 Laser on todennäköisesti tärkein optinen laite, joka on kehitetty viimeisten 50 vuoden aikana. Sana LASER on tunnuslyhenne (akronyymi) sanoista Light Amplification by Stimulated
Lisätiedot1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
LisätiedotHydrologia. Säteilyn jako aallonpituuden avulla
Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna
LisätiedotValo ja muu sähkömagneettinen säteily
Valo ja muu sähkömagneettinen säteily Valon luonne Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valoaallot eivät
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotLuvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja
LisätiedotValon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014
Valon sironta - ilmiöt ja mallinnus Jouni Mäkitalo Fysiikan seminaari 2014 Sisältö Johdanto Sironnan sähkömagneettinen mallinnus Analyyttinen sirontateoria Sironta ei-pallomaisista hiukkasista Johdanto
LisätiedotHavaitsevan tähtitieteen pk I, 2012
Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin
LisätiedotP = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
LisätiedotHavaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen
Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän
LisätiedotOsa 5. lukujonot ja sarjat.
Osa 5. lukujonot ja sarjat. Summamerkintä Kurssilla on jo tullut vastaan ns. summamerkintä (kreikkalainen iso sigma): n k=1 Indeksin loppuarvo Indeksi jonka suhteen summataan a k =a 1 +a +a 3 +...+a n
LisätiedotEntrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit
Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
LisätiedotKemiallinen mallinnus I: mallintamisen perusteita. Astrokemia -kurssin luento
Kemiallinen mallinnus I: mallintamisen perusteita Astrokemia -kurssin luento 28.3.2011 mallinnuksella halutaan rakentaa fysikaalinen ja kemiallinen kuvaus kohteesta selvittämään havaittuja ominaisuuksia
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 3 Kevät E 1 + c 2 m 2 = E (1) p 1 = P (2) E 2 1
763306A JOHDATUS SUHTLLISUUSTORIAAN Ratkaisut 3 Kevät 07. Fuusioreaktio. Lähdetään suoraan annetuista yhtälöistä nergia on suoraan yhtälön ) mukaan + m ) p P ) m + p 3) M + P 4) + m 5) Ratkaistaan seuraavaksi
LisätiedotRadiointerferometria II
Radiointerferometria II Kolme ALMA-antennia ALMA tulevaisuudessa Puuttuva informaatio Epätäydellinen uv-tason peitto: 1. Keskusaukko : pintamaisen lähteen kokonaisvuontiheys jää mittaamatta, V (0, 0) =
LisätiedotValomylly. (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta.
Valomylly (tunnetaan myös Crookesin radiometrinä) Mikko Marsch Pieni välipala nykyisin lähinnä leluksi jääneen laitteen historiasta Valomylly (tunnetaan myös Crookesin radiometrinä) Pieni välipala nykyisin
Lisätiedot7.4 Fotometria CCD kameralla
7.4 Fotometria CCD kameralla Yleisin CCDn käyttötapa Yleensä CCDn edessä käytetään aina jotain suodatinta, jolloin kuvasta saadaan siistimpi valosaaste UV:n ja IR:n interferenssikuviot ilmakehän dispersion
Lisätiedot766328A Termofysiikka Harjoitus no. 10, ratkaisut (syyslukukausi 2014)
7668A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 4). Johdetaan yksiatomisen klassisen ideaalikaasun kemiallisen potentiaalin µ(t,, N) lauseke. (a) Luentojen yhtälön mukaan kemiallinen potentiaali
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotLASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä
LASKENNALLISEN TIETEEN OHJELMATYÖ: Diffuusion Monte Carlo -simulointi yksiulotteisessa systeemissä. Diffuusio yksiulotteisessa epäjärjestäytyneessä hilassa E J ii, J ii, + 0 E b, i E i i i i+ x Kuva.:
LisätiedotLaskun vaiheet ja matemaattiset mallit
Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 28. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 28. syyskuuta 2016 1 / 22 Hieman kertausta
Lisätiedot