Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.
|
|
- Emma Väänänen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja Mittanauha tai metrimitta, ilmankosteus- ja lämpötilamittari. Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti. Vesihöyryä voi olla ilmassa vain tietty enimmäismäärä, jonka suuruus riippuu ilman lämpötilasta. Vesihöyryn sanotaan tällöin olevan kylläistä. Kylläinen höyry on dynaamisessa tasapainotilassa, jossa höyrystyminen ja tiivistyminen ovat yhtä runsasta. Tällaisessa tilassa olevaa höyryä sanotaan siis kylläiseksi höyryksi ja vallitsevaa höyryn painetta kylläisen höyryn paineeksi. Kylläisen vesihöyryn paine eri lämpötiloissa on esitetty taulukossa (ks. MAOL s. 80 (80)). Ilman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella: missä (1). Ilman suhteellinen kosteus voidaan laskea myös toisella tavalla; ilman absoluuttisen kosteuden X ja kyseistä lämpötilaa vastaavan maksimikosteuden Xmax osamääränä, joka ilmoitetaan usein prosentteina; (2) Ilman absoluuttinen kosteus X tarkoittaa ilman todellista vesihöyryn tiheyttä. Se siis ilmoittaa ilmassa olevan vesihöyryn massan tilavuusyksikköä kohti. Tiettyä lämpötilaa vastaava maksimikosteus Xmax kertoo vesihöyryn suurimman mahdollisen massan tilavuusyksikköä kohden. Maksimikosteus Xmax on siis vesihöyryn suurin mahdollinen tiheys ilmassa. Maksimikosteus Xmax riippuu lämpötilasta.
2 Jos ilman kosteus on 100 %, niin ilma on vesihöyryn kyllästämä. Ilma sisältää maksimimäärän vettä ja esimerkiksi avoimesta astiasta ei haihdu vettä ilmaan. Saunassa ilmankosteus voi olla 100 %. Löylyä heitettäessä vettä tiivistyy iholle ja ikkunoihin. Asunnoissa suhteellisen kosteuden tulisi olla noin 40 % - 55 %. (Lehto-Luoma: Fysiikka 3: Lämpö ja energia, Tammi, 5-9. uudistettu painos 2002, s , 71). Jos ilman lämpötila laskee, ilman suurin mahdollinen kosteus pienenee. Jos ilman lämpötila laskee niin paljon, että tätä lämpötilaa vastaava kylläisen vesihöyryn paine (ks. MAOL s. 80) on yhtä suuri kuin ilmassa olevan vesihöyryn osapaine, vesihöyry alkaa tiivistyä vedeksi. Tätä lämpötilaa kutsutaan kastepisteeksi. Kun lämpötila laskee kastepisteen alapuolelle, (näkymättömän) vesihöyryn tiivistyminen vedeksi jatkuu. Silloin maan pinnalla näkyy usein sumua, ja kastepisaroita tiivistyy ruohoon. Jos huoneen lämpötila laskee kastepisteen alapuolelle, kosteus tiivistyy ikkunoihin ja tekstiileihin, ja huonekalut tuntuvat kosteilta. Mikäli kastepiste on sulamispistettä alempi, esimerkiksi ruohoon muodostuu jäähileitä. Auton ikkunoihin voi muodostua silloin jäätä. Ilmiötä, jossa vesihöyry muuttuu kiinteäksi (jääksi), kutsutaan härmistymiseksi. Kosteustaulukko. Suhteellinen kosteus (%) -liian kostea puu mätänee 90 - vilun tunne 80 - maalit lohkeilevat 70 - soittimet epävireessä -sopiva kosteus liian kuiva kurkku aamuisin kipeä huonekalut rapistuvat 0 Astmaattisten ja allergisten ihmisten ja varsinkin pienten lasten terveydelle ilman suhteellisella kosteudella on suuri merkitys. Huoneilman suhteellinen kosteus vaikuttaa myös kotieläinten terveyteen ja kasvien sekä soittimien kuntoon.
3 Suoritusohjeita Mitataan luokkahuoneen pituus, leveys ja korkeus sekä lasketaan huoneen tilavuus. Luetaan lämpötila ja kosteusmittarista ilman lämpötila ja suhteellinen kosteus. Taulukosta (MAOL s. 80) saadaan kutakin lämpötilaa vastaava kylläisen vesihöyryn paine. 1) HUONEILMAN VESIHÖYRYN OSAPAINE Huoneilman vesihöyryn osapaine saadaan lausekkeesta (1) suhteellisen kosteuden ja kylläisen vesihöyryn paineen tulona: (3) missä φ = suhteellinen kosteus (mittarista luettu %), = kylläisen vesihöyryn paine (mbar), (taulukosta sivulta 80). = huoneilman vesihöyryn osapaine (mbar). Esim. Jos huoneen lämpötila on 21 o C, niin tätä vastaava kylläisen vesihöyryn paine taulukon mukaan on 24,86 mbar. 2) HUONEILMAN VESIHÖYRYN OSATIHEYS Vesihöyryn osatiheys ilmassa on. Ilmassa olevan vesihöyryn massa (g) on (MAOL s ( ); n = m/m), missä Huoneen tilavuus lasketaan suorakulmaisen särmiön tilavuutena; V = abc (tilavuus on pituuden, korkeuden ja leveyden tulo). Veden H2O moolimassa on Mv = (2 1, ,00) g/mol 18,0 g/mol. (ks. hapen ja vedyn suhteelliset atomimassat; MAOL s. 169, 171 (161, 163)). Oletetaan, että kaasujen yleinen tilanyhtälö voimassa. Kaasujen yleisestä tilanyhtälöstä vesihöyryn ainemäärä, missä vesihöyryn osapaine. on saadaan Vesihöyryn massa. Vesihöyryn osatiheys on
4 (4) missä vesihöyryn osapaine (bar),, R = moolinen kaasuvakio (MAOL s. 70 (71)); T = lämpötila kelvinasteina (K), ρ = vesihöyryn osatiheys (kg/m 3 ). 3) HUONEILMASSA OLEVAN VESIHÖYRYN MASSA Tiheyden määritelmästä ρ = m/v saadaan huoneilmassa olevan vesihöyryn massa (5) missä ρ = ilmassa olevan vesihöyryn osatiheys (g/m 3 ), (ks. lauseke (4)). V = huoneen tilavuus (m 3 ). Ilmassa olevan vesihöyryn massa voidaan laskea myös toisin: Sijoitetaan ainemäärän lauseke kaasujen yleiseen tilanyhtälöön, josta ratkaistaan vesihöyryn massa (6) Yksikkötarkastelu antaa tulokseksi gramman, kuten pitääkin.. Oikein. Kolmas tapa laskea ilmassa olevan vesihöyryn massa on laskea se kertomalla absoluuttinen kosteus X huoneen tilavuudella V (vrt. m = ρv); = X V (7) missä = ilmassa olevan vesihöyryn massa (g), X = absoluuttinen kosteus (g/m 3 ), V = huoneen tilavuus (m 3 ). Vrt. lauseke (2) ja (8).
5 4) HUONEILMAN ABSOLUUTTINEN KOSTEUS Ilman absoluuttinen kosteus X tarkoittaa ilman todellista vesihöyryn tiheyttä. Ilman absoluuttinen kosteus X saadaan laskettua lausekkeesta (2): missä X = absoluuttinen kosteus (g/m 3 ), φ = suhteellinen kosteus (mittarista luettu %), Xmax = maksimikosteus (g/m 3 ), joka saadaan taulukon (MAOL s. 80) vastaavan lämpötilan kylläisen vesihöyryn tiheytenä (g/m 3 ). Esim. lämpötilassa 21 o C maksimikosteus on 18,33 g/m 3. 5) HUONEILMAN KASTEPISTE Kastepisteessä ilman vesihöyry alkaa tiivistyä vedeksi, kun ilman lämpötila on laskenut siten, että tätä lämpötilaa vastaava kylläisen vesihöyryn paine (ks. MAOL s. 80) on yhtä suuri kuin ilmassa olevan vesihöyryn osapaine. Katsotaan taulukosta ilmassa olevan vesihöyryn osapainetta vastaava lämpötila, joka on kastepiste. Esim. Jos paine on 12,3 mbar, niin kastepiste on noin 10 o C. (8) Mittauspöytäkirja Mittaustulokset Huoneen tilavuus V = abc, V = V = m 3 Huoneen lämpötila t = o C, T = K. Ilman suhteellinen kosteus φ = %. 1) HUONEILMAN VESIHÖYRYN OSAPAINE φ Vastaus: vesihöyryn osapaine = mbar.
6 2) HUONEILMAN VESIHÖYRYN OSATIHEYS ρ Vastaus: Vesihöyryn osatiheys ρ = kg/m 3. 3) HUONEILMASSA OLEVAN VESIHÖYRYN MASSA Lasketaan massa yhdellä tavalla näistä kolmesta seuraavasta tavasta: Tapa 1: Tapa 2: Tapa 3: = X V Vastaus: Ilmassa olevan vesihöyryn massa = g.
7 4) HUONEILMAN ABSOLUUTTINEN KOSTEUS Vastaus: Absoluuttinen kosteus = g/m 3. 5) HUONEILMAN KASTEPISTE t Vastaus: Kastepiste t = o C. TYÖN JA TULOSTEN TARKASTELUA 1) Mitkä seikat aiheuttivat virhettä tuloksiin? 2) Miten mittaustarkkuutta voitaisiin parantaa?
8 RATKAISUT: Mittauspöytäkirja Mittaustulokset Huoneen tilavuus V = abc, V = V = m 3 Huoneen lämpötila t = o C, T = K. Ilman suhteellinen kosteus φ = %. 1) HUONEILMAN VESIHÖYRYN OSAPAINE φ Vastaus: vesihöyryn osapaine = mbar. 2) HUONEILMAN VESIHÖYRYN OSATIHEYS ρ Vastaus: Vesihöyryn osatiheys ρ = kg/m 3.
9 3) HUONEILMASSA OLEVAN VESIHÖYRYN MASSA Lasketaan massa yhdellä tavalla näistä kolmesta seuraavasta tavasta: Tapa 1: Tapa 2: Tapa 3: = X V Vastaus: Ilmassa olevan vesihöyryn massa = g. 4)HUONEILMAN ABSOLUUTTINEN KOSTEUS Vastaus: Absoluuttinen kosteus = g/m 3.
10 5) HUONEILMAN KASTEPISTE t Vastaus: Kastepiste t = o C. TYÖN JA TULOSTEN TARKASTELUA 1) Mitkä seikat aiheuttivat virhettä tuloksiin? 2) Miten mittaustarkkuutta voitaisiin parantaa?
Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste.
TYÖ 36b. ILMANKOSTEUS Tehtävä Työssä määritetään luokkahuoneen huoneilman vesihöyryn osapaine, osatiheys, huoneessa olevan vesihöyryn massa, absoluuttinen kosteus ja kastepiste. Välineet Taustatietoja
LisätiedotIlman suhteellinen kosteus saadaan, kun ilmassa olevan vesihöyryn osapaine jaetaan samaa lämpötilaa vastaavalla kylläisen vesihöyryn paineella:
ILMANKOSTEUS Ilmankosteus tarkoittaa ilmassa höyrynä olevaa vettä. Veden määrä voidaan ilmoittaa höyryn tiheyden avulla. Veden osatiheys tarkoittaa ilmassa olevan vesihöyryn massaa tilavuusyksikköä kohti.
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
Lisätiedot, voidaan myös käyttää likimäärälauseketta
ILMAN KOSTEUS Ilma sisältää aina jonkin verran vesihöyryä. Ilman vesihöyrypitoisuudella eli kosteudella on huomattava merkitys ihmisten viihtyvyydelle ja terveydelle, erilaisten materiaalien ja esineiden
Lisätiedot4 Aineen olomuodot. 4.2 Höyrystyminen POHDI JA ETSI
4 Aineen olomuodot 4.2 Höyrystyminen POHDI JA ETSI 4-1. a) Vesi asettuu astiassa vaakatasoon Maan vetovoiman ja veden herkkäliikkeisyyden takia. Painovoima tekee työtä, kunnes veden potentiaalienergia
Lisätiedot10B16A. LÄMPÖLAAJENEMINEN JA ILMAN SUHTEELLINEN KOSTEUS
TURUN AMMATTIKORKEAKOULU TYÖOHJE 1/7 1B16A. LÄMPÖLAAJENEMINEN JA ILMAN SUHTEELLINEN KOSTEUS A. LÄMPÖLAAJENEMINEN Pituuden lämpötilakertoimen määrittäminen vesihauteen avulla 1. Työn tavoite Tutkitaan aineen
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
Lisätiedot= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa
766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa
LisätiedotREAKTIOT JA ENERGIA, KE3. Kaasut
Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen
LisätiedotVastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.
Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol
LisätiedotKOSTEUS. Visamäentie 35 B 13100 HML
3 KOSTEUS Tapio Korkeamäki Visamäentie 35 B 13100 HML tapio.korkeamaki@hamk.fi RAKENNUSFYSIIKAN PERUSTEET KOSTEUS LÄMPÖ KOSTEUS Kostea ilma on kahden kaasun seos -kuivan ilman ja vesihöyryn Kuiva ilma
LisätiedotKARTOITUSRAPORTTI. Asematie Vantaa 1710/
Asematie 7 01300 Vantaa 1710/6416 26.3.2018 2 KOHDETIEDOT... 3 LÄHTÖTIEDOT... 4 RAKENTEET... 4 SUORITETUT TYÖT SEKÄ HAVAINNOT... 4 KÄYTETTY MITTAKALUSTO... 4 MITTAUSPÖYTÄKIRJA... 5 YHTEENVETO... 7 3 KOHDETIEDOT
LisätiedotKARTOITUSRAPORTTI. Rälssitie 13 01510 VANTAA 567/2609 25.9.2013
KARTOITUSRAPORTTI Rälssitie 13 01510 VANTAA 567/2609 25.9.2013 KARTOITUSRAPORTTI 2 KOHDETIEDOT... 3 LÄHTÖTIEDOT... 4 RAKENTEET... 4 SUORITETUT TYÖT SEKÄ HAVAINNOT... 4 JOHTOPÄÄTÖKSET JA SUOSITUKSET...
LisätiedotENSIRAPORTTI/MITTAUSRAPORTTI
Martinkyläntie 5 01620 VANTAA Raportointi pvm: 22.2.2012 ENSIRAPORTTI/MITTAUSRAPORTTI Työ A12162 KOHDE: ASUNNOT: Martinkyläntie 5 01620 VANTAA/Myllymäen koulu Liikuntasali ja pukuhuonetilat TILAAJA: Reino
LisätiedotTehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla.
TYÖ 9d. FYSIKAALISEN HEILURIN HITAUSMOMENTTI Tehtävä Välineet Taustatietoja Tehtävänä on määrittää fysikaalisen heilurin hitausmomentti heilahdusajan avulla. Fysikaalisena heilurina on metrin teräsmittana,
LisätiedotOn määritettävä puupalikan ja lattian välinen liukukitkakerroin. Sekuntikello, metrimitta ja puupalikka (tai jääkiekko).
TYÖ 5b LIUKUKITKAKERTOIMEN MÄÄRITTÄMINEN Tehtävä Välineet Taustatietoja On määritettävä puupalikan ja lattian välinen liukukitkakerroin Sekuntikello, metrimitta ja puupalikka (tai jääkiekko) Kitkavoima
LisätiedotRATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt
Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotPuu luovuttaa (desorptio) ilmaan kosteutta ja sitoo (adsorptio) ilmasta kosteutta.
Puun kosteus Hygroskooppisuus Puu luovuttaa (desorptio) ilmaan kosteutta ja sitoo (adsorptio) ilmasta kosteutta. Tasapainokosteus Ilman lämpötilaa ja suhteellista kosteutta vastaa puuaineen tasapainokosteus.
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
LisätiedotP = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
LisätiedotENSIRAPORTTI. Työ A11849. Läntinen Valoisenlähteentie 50 A Raportointi pvm: 01.12.2011. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2
ENSIRAPORTTI Läntinen Valoisenlähteentie 50 A Raportointi pvm: 01.12.2011 Työ TILAT: ISÄNNÖINTI: TILAAJA: LASKUTUSOSOITE: VASTAANOTTAJA (T): Läntinen valkoisenlähteentie 50 A Lummenpolun päiväkoti Päiväkodin
LisätiedotPL 6007 00021, Laskutus 153021000 / Anne Krokfors. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2
ENSIRAPORTTI raportointipäivä : 4.8.2011 Työ : TILAAJA: Vantaan kaupunki ISÄNNÖINTI: Vantaan kaupunki / HUOLTO: Kouluisäntä: 0400 765 713 LASKUTUSOSOITE: Vantaan Kaupunki PL 6007 00021, Laskutus 153021000
LisätiedotAineen olomuodot ja olomuodon muutokset
Aineen olomuodot ja olomuodon muutokset Jukka Sorjonen sorjonen.jukka@gmail.com 8. helmikuuta 2017 Jukka Sorjonen (Jyväskylän Normaalikoulu) Aineen olomuodot ja olomuodon muutokset 8. helmikuuta 2017 1
LisätiedotKartoitusraportti. Kisatie 21 Ruusuvuoren koulu Vantaa 297/
Kartoitusraportti Kisatie 21 Ruusuvuoren koulu Vantaa 297/3920 5.5.2015 2 KOHDETIEDOT... 3 LÄHTÖTIEDOT... 4 RAKENTEET... 4 SUORITETUT TYÖT SEKÄ HAVAINNOT... 4 JOHTOPÄÄTÖKSET JA SUOSITUKSET... 4 MITTAUSPÖYTÄKIRJA...
LisätiedotKIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT
KIINTEÄN AINEEN JA NESTEEN TILANYHTÄLÖT Lämpölaajeneminen Pituuden lämpölaajeneminen: l = αl o t lo l l = l o + l = l o + αl o t l l = l o (1 + α t) α = pituuden lämpötilakerroin esim. teräs: α = 12 10
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
LisätiedotPuhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
LisätiedotKuivauksen fysiikkaa. Hannu Sarkkinen
Kuivauksen fysiikkaa Hannu Sarkkinen 28.11.2013 Kuivatusmenetelmiä Auringon säteily Mikroaaltouuni Ilmakuivatus Ilman kosteus Ilman suhteellinen kosteus RH = ρ v /ρ vs missä ρ v = vesihöyryn tiheys (g/m
LisätiedotViikkoharjoitus 2: Hydrologinen kierto
Viikkoharjoitus 2: Hydrologinen kierto 30.9.2015 Viikkoharjoituksen palautuksen DEADLINE keskiviikkona 14.10.2015 klo 12.00 Palautus paperilla, joka lasku erillisenä: palautus joko laskuharjoituksiin tai
LisätiedotVirhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.
Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita
LisätiedotKosteusmittausten haasteet
Kosteusmittausten haasteet Luotettavuutta päästökauppaan liittyviin mittauksiin, MIKES 21.9.2006 Martti Heinonen Tavoite Kosteusmittaukset ovat haastavia; niiden luotettavuuden arviointi ja parantaminen
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 LIITE 1 VIRHEEN RVIOINNIST Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi
Lisätiedot(b) Tunnista a-kohdassa saadusta riippuvuudesta virtausmekaniikassa yleisesti käytössä olevat dimensiottomat parametrit.
Tehtävä 1 Oletetaan, että ruiskutussuuttimen nestepisaroiden halkaisija d riippuu suuttimen halkaisijasta D, suihkun nopeudesta V sekä nesteen tiheydestä ρ, viskositeetista µ ja pintajännityksestä σ. (a)
LisätiedotTEHTÄVIEN RATKAISUT N = 1,40 N -- 0,84 N = 0,56 N. F 1 = p 1 A = ρgh 1 A. F 2 = p 2 A = ρgh 2 A
TEHTÄVIEN RATKAISUT 8-1. Jousivaa an lukema suolavedessä on pienempi kuin puhtaassa vedessä, koska suolaveden tiheys on suurempi kuin puhtaan veden ja siksi noste suolavedessä on suurempi kuin puhtaassa
Lisätiedotm h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
LisätiedotTeddy 7. harjoituksen malliratkaisu syksy 2011
Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin
LisätiedotMITTAUSRAPORTTI. Työ : 514/3248. Kohde: Hämeenkylän koulu. Raportointipäivä : 24.6.2014. A - Kunnostus- ja kuivauspalvelut Oy Y-tunnus: 1911067-2
MITTAUSRAPORTTI Kohde: Hämeenkylän koulu Raportointipäivä : 2462014 Työ : 514/3248 etunimisukunimi@akumppanitfi 01740 Vantaa wwwkuivauspalvelutfi KOHDE: Hämeenkylän koulu TILAN VUOKRALAINEN: TILAAJA: Vantaan
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
Lisätiedot1. Laske ideaalikaasun tilavuuden lämpötilakerroin (1/V)(dV/dT) p ja isoterminen kokoonpuristuvuus (1/V)(dV/dp) T.
S-35, Fysiikka III (ES) välikoe Laske ideaalikaasun tilavuuden lämpötilakerroin (/V)(dV/d) p ja isoterminen kokoonpuristuvuus (/V)(dV/dp) ehtävän pisteyttäneen assarin kommentit: Ensimmäisen pisteen sai
LisätiedotKE4, KPL. 3 muistiinpanot. Keuruun yläkoulu, Joonas Soininen
KE4, KPL. 3 muistiinpanot Keuruun yläkoulu, Joonas Soininen KPL 3: Ainemäärä 1. Pohtikaa, miksi ruokaohjeissa esim. kananmunien ja sipulien määrät on ilmoitettu kappalemäärinä, mutta makaronit on ilmoitettu
Lisätiedot= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
LisätiedotKaasu Neste Kiinteä aine Plasma
Olomuodot Kaasu: atomeilla/molekyyleillä suuri nopeus, vuorovaikuttavat vain törmätessään toisiinsa Neste: atomit/molekyylit/ionit liukuvat toistensa lomitse, mutta pysyvät yhtenä nestetilavuutena (molekyylien
LisätiedotTEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) TEHTÄVÄ 2
Aalto-yliopisto/Insinööritieteiden korkeakoulu/energiatalous ja voimalaitostekniikka 1(5) TEHTÄVÄ 1 *palautettava tehtävä (DL: 3.5. klo. 10:00 mennessä!) Ilmaa komprimoidaan 1 bar (abs.) paineesta 7 bar
LisätiedotLuku 13. Kertausta Hydrostaattinen paine Noste
Luku 13 Kertausta Hydrostaattinen paine Noste Uutta Jatkuvuusyhtälö Bernoullin laki Virtauksen mallintaminen Esitiedot Voiman ja energian käsitteet Liike-energia ja potentiaalienergia Itseopiskeluun jää
LisätiedotTässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
LisätiedotMIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka. Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU
MIKKELIN AMMATTIKORKEAKOULU Tekniikka ja liikenne / Sähkövoimatekniikka T8415SJ Energiatekniikka Hannu Sarvelainen HÖYRYKATTILAN SUUNNITTELU HARJOITUSTYÖOHJE SISÄLLYS SYMBOLILUETTELO 3 1 JOHDANTO 4 2 TYÖOHJE
LisätiedotDifferentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 LIITE 1 VIRHEEN ARVIOINNISTA Mihin tarvitset virheen arviointia? Mittaustulokset ovat aina todellisten luonnonvakioiden ja tutkimuskohdetta kuvaavien suureiden likiarvoja, vaikka mittauslaite olisi miten
LisätiedotKasvihuoneen kasvutekijät. ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari
Kasvihuoneen kasvutekijät ILMANKOSTEUS Tuula Tiirikainen Keuda Mäntsälä Saari Kasvien kasvuun vaikuttavat: - Lämpö - Valo - Vesi - Ilmankosteus - Hiilidioksidi - Ravinteet - Kasvin perinnölliset eli geneettiset
LisätiedotHydrologia. Säteilyn jako aallonpituuden avulla
Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna
LisätiedotENSIRAPORTTI. Työ A Jokiniemen koulu Valkoisenlähteentie 51, Vantaa. raportointipäivä:
ENSIRAPORTTI raportointipäivä: 22.3.2011 Työ TILAAJA: Vantaan kaupunki / Anne Krokfors LASKUTUSOSOITE: Vantaan kaupunki PL 6007 00021 Laskutus Viite: 153021000/Anne Krokfors VASTAANOTTAJA (T): Anne Krokfors
LisätiedotTUNTEMATON KAASU. TARINA 1 Lue etukäteen argonin käyttötarkoituksista Jenni Västinsalon kandidaattitutkielmasta sivut 12-15. Saa lukea myös kokonaan!
TUNTEMATON KAASU KOHDERYHMÄ: Työ soveltuu lukiolaisille, erityisesti kurssille KE3 ja FY2. KESTO: Noin 60 min. MOTIVAATIO: Oppilaat saavat itse suunnitella koejärjestelyn. TAVOITE: Työn tavoitteena on
LisätiedotARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat. Hannu Hirsi.
ARK-A.3000 Rakennetekniikka (4op) Lämpö- ja kosteustekniset laskelmat Hannu Hirsi. SRakMK ja rakennusten energiatehokkuus : Lämmöneristävyys laskelmat, lämmöneristyksen termit, kertausta : Lämmönjohtavuus
LisätiedotMamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus
Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske
LisätiedotDifferentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
LisätiedotLIITE 1 VIRHEEN ARVIOINNISTA
1 Mihin tarvitset virheen arviointia? Mittaustuloksiin sisältyy aina virhettä, vaikka mittauslaite olisi miten uudenaikainen tai kallis tahansa ja mittaaja olisi alansa huippututkija Tästä johtuen mittaustuloksista
LisätiedotLuvun 12 laskuesimerkit
Luvun 12 laskuesimerkit Esimerkki 12.1 Mikä on huoneen sisältämän ilman paino, kun sen lattian mitat ovat 4.0m 5.0 m ja korkeus 3.0 m? Minkälaisen voiman ilma kohdistaa lattiaan? Oletetaan, että ilmanpaine
LisätiedotTermiikin ennustaminen radioluotauksista. Heikki Pohjola ja Kristian Roine
Termiikin ennustaminen radioluotauksista Heikki Pohjola ja Kristian Roine Maanpintahavainnot havaintokojusta: lämpötila, kostea lämpötila (kosteus), vrk minimi ja maksimi. Lisäksi tuulen nopeus ja suunta,
LisätiedotLiike ja voima. Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä
Liike ja voima Kappaleiden välisiä vuorovaikutuksia ja niistä aiheutuvia liikeilmiöitä Tasainen liike Nopeus on fysiikan suure, joka kuvaa kuinka pitkän matkan kappale kulkee tietyssä ajassa. Nopeus voidaan
LisätiedotLämpöoppia. Haarto & Karhunen. www.turkuamk.fi
Läpöoppia Haarto & Karhunen Läpötila Läpötila suuren atoi- tai olekyylijoukon oinaisuus Liittyy kiinteillä aineilla aineen atoeiden läpöliikkeeseen (värähtelyyn) ja nesteillä ja kaasuilla liikkeisiin Atoien
LisätiedotIntegroimalla ja käyttämällä lopuksi tilanyhtälöä saadaan T ( ) ( ) H 5,0 10 J + 2,0 10 0,50 1,0 10 0,80 Pa m 70 kj
S-4.35 Fysiikka (ES) entti 3.8.. ääritä yhden haikaasumoolin (O) (a) sisäenergian, (b) entalian muutos tilanmuutoksessa alkutilasta =, bar, =,8 m3 loutilaan =, bar, =,5 m3. ärähtelyn vaausasteet voidaan
Lisätiedot1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa?
Kysymys 1. Kumpi painaa enemmän normaalipaineessa: 1m2 80 C ilmaa vai 1m2 0 C ilmaa? 2. EXTRA-PÄHKINÄ (menee yli aiheen): Heität vettä kiukaalle. Miksi vesihöyry nousee voimakkaasti kiukaasta ylöspäin?
Lisätiedotvetyteknologia Polttokennon tyhjäkäyntijännite 1 DEE-54020 Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon tyhjäkäyntijännite 1 DEE-5400 Risto Mikkonen 1.1.014 g:n määrittäminen olttokennon toiminta perustuu Gibbsin vapaan energian muutokseen. ( G = TS) Ideaalitapauksessa
LisätiedotTERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT
TERMODYNAMIIKAN KURSSIN FYS 2 KURS- SIKOKEEN RATKAISUT (lukuun ottamatta tehtävää 12, johon kukaan ei ollut vastannut) RATKAISU TEHTÄVÄ 1 a) Vesi haihtuu (höyrystyy) ja ottaa näin ollen energiaa ympäristöstä
LisätiedotKARTOITUSRAPORTTI. Seurantaraportti Valkoisenlähteentie Vantaa 86/
Seurantaraportti Valkoisenlähteentie 51 01370 Vantaa 86/3342 28.8.2014 2 KOHDETIEDOT... 3 LÄHTÖTIEDOT... 4 RAKENTEET... 4 SUORITETUT TYÖT SEKÄ HAVAINNOT... 4 JOHTOPÄÄTÖKSET JA SUOSITUKSET... 5 KÄYTETTY
LisätiedotMAA03.3 Geometria Annu
1 / 8 2.2.2018 klo 11.49 MAA03.3 Geometria Annu Kokeessa on kolme (3) osaa; Monivalinnat 1 ja 2 ovat pakollisia (6 p /tehtävä, yht. 12 p) B1 osa Valitse kuusi (6) mieleisintä tehtävää tehtävistä 3-10.
LisätiedotV T p pv T pv T. V p V p p V p p. V p p V p
S-45, Fysiikka III (ES välikoe 004, RAKAISU Laske ideaalikaasun tilavuuden lämötilakerroin ( / ( ja isoterminen kokoonuristuvuus ( / ( Ideaalikaasun tilanyhtälö on = ν R Kysytyt suureet ovat: ilavuuden
LisätiedotPinnoitteen vaikutus jäähdytystehoon
Pinnoitteen vaikutus jäähdytystehoon Jesse Viitanen Esko Lätti 11I100A 16.4.2013 2 SISÄLLYS 1TEHTÄVÄN MÄÄRITTELY... 3 2TEORIA... 3 2.1Jäähdytysteho... 3 2.2Pinnoite... 4 2.3Jäähdytin... 5 3MITTAUSMENETELMÄT...
Lisätiedot2.1 Yhdenmuotoiset suorakulmaiset kolmiot
2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9
LisätiedotA-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:
MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:
LisätiedotPRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015
PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)
LisätiedotReaktiosarjat
Reaktiosarjat Usein haluttua tuotetta ei saada syntymään yhden kemiallisen reaktion lopputuotteena, vaan monen peräkkäisten reaktioiden kautta Tällöin edellisen reaktion lopputuote on seuraavan lähtöaine
LisätiedotKosteusmittausyksiköt
Kosteusmittausyksiköt Materiaalit Paino-% kosteus = kuinka monta prosenttia vettä materiaalissa on suhteessa kuivapainoon. kg/m3 kosteus = kuinka monta kg vettä materiaalissa on suhteessa yhteen kuutioon.
LisätiedotLämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka
Lämpöistä oppia Fysiikan ja kemian perusteet ja pedagogiikka Kari Sormunen Kevät 2012 Alkudemonstraatio Käsi lämpömittarina Laittakaa kolmeen eri altaaseen kylmää, haaleaa ja lämmintä vettä. 1) Pitäkää
LisätiedotMamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus
Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KEMIALLISIIN REAKTIOIHIN PERUSTUVA POLTTOAINEEN PALAMINEN Voimalaitoksessa käytetään polttoaineena
Lisätiedotluku 1.notebook Luku 1 Mooli, ainemäärä ja konsentraatio
Luku 1 Mooli, ainemäärä ja konsentraatio 1 Kemian kvantitatiivisuus = määrällinen t ieto Kemian kaavat ja reaktioyhtälöt sisältävät tietoa aineiden rakenteesta ja aineiden määristä esim. 2 H 2 + O 2 2
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
LisätiedotHarjoitus 2: Hydrologinen kierto 30.9.2015
Harjoitus 2: Hydrologinen kierto 30.9.2015 Harjoitusten aikataulu Aika Paikka Teema Ke 16.9. klo 12-14 R002/R1 1) Globaalit vesikysymykset Ke 23.9 klo 12-14 R002/R1 1. harjoitus: laskutupa Ke 30.9 klo
LisätiedotAlkuaineita luokitellaan atomimassojen perusteella
IHMISEN JA ELINYMPÄRISTÖN KEMIAA, KE2 Alkuaineen suhteellinen atomimassa Kertausta: Isotoopin määritelmä: Saman alkuaineen eri atomien ytimissä on sama määrä protoneja (eli sama alkuaine), mutta neutronien
LisätiedotMamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus
Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus KATTILAN VESIHÖYRYPIIRIN SUUNNITTELU Höyrykattilan on tuotettava höyryä seuraavilla arvoilla.
LisätiedotKOSTEUSKARTOITUS. Ruusuvuoren koulu Kisatie Vantaa 1/5. Työnumero: Scan-Clean Oy Y-tunnus:
1/5 KOSTEUSKARTOITUS Ruusuvuoren koulu Kisatie 21 01450 Vantaa Työnumero: 09089 Scan-Clean Oy Y-tunnus: 0690693-8 www.asb.fi 24 h päivytys puh: +358 40 717 9330 Konalankuja 4, 00390 Helsinki puh: 0207
LisätiedotEnnakoiva Laadunohjaus 2016 Kosteudenhallinta. Vaasa Tapani Hahtokari
Ennakoiva Laadunohjaus 2016 Kosteudenhallinta Rakennuksen kosteuslähteet Rakennusfysikaalinen toimivuus Materiaalien säilytys työmaalla Rakennekosteus ja materiaalien kuivuminen Rakennedetaljit Rakennuksen
LisätiedotKäyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
LisätiedotPERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus
Oulun yliopisto Fysiikan opetuslaboratorio 1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden
LisätiedotLaskun vaiheet ja matemaattiset mallit
Laskun vaiheet ja matemaattiset mallit Jukka Sorjonen sorjonen.jukka@gmail.com 26. syyskuuta 2016 Jukka Sorjonen (Jyväskylän Normaalikoulu) Mallit ja laskun vaiheet 26. syyskuuta 2016 1 / 14 Hieman kertausta
LisätiedotOsio 1. Laskutehtävät
Osio 1. Laskutehtävät Nämä palautetaan osion1 palautuslaatikkoon. Aihe 1 Alkuaineiden suhteelliset osuudet yhdisteessä Tehtävä 1 (Alkuaineiden suhteelliset osuudet yhdisteessä) Tarvitset tehtävään atomipainotaulukkoa,
LisätiedotFysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä
Fysiikan laboratoriotyöt 1, työ nro: 2, Harmoninen värähtelijä Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä: 04.02.2013 Työn
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
Lisätiedot1 Tieteellinen esitystapa, yksiköt ja dimensiot
1 Tieteellinen esitystapa, yksiköt ja dimensiot 1.1 Tieteellinen esitystapa Maan ja auringon välinen etäisyys on 1 AU. AU on astronomical unit, joka määritelmänsä mukaan on maan ja auringon välinen keskimääräinen
LisätiedotEsim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
LisätiedotLämmöntalteenotto ekologisesti ja tehokkaasti
Hallitun ilmanvaihdon merkitys Lämmöntalteenotto ekologisesti ja tehokkaasti on ekologinen tapa ottaa ikkunan kautta poistuva hukkalämpö talteen ja hyödyntää auringon lämpövaikutus. Ominaisuudet: Tuloilmaikkuna
LisätiedotPERUSMITTAUKSIA. 1. Työn tavoitteet. 1.1 Mittausten tarkoitus
1 PERUSMITTAUKSIA 1. Työn tavoitteet 1.1 Mittausten tarkoitus Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan tiheyden määritelmästä eli kappaleen massan
LisätiedotIdeaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
LisätiedotSentinel House Instituutin testi Epatherm kalsium-silikaattilevyjen puhtaudesta.
EPATHERM 1/4 Sentinel House Instituutin testi Epatherm kalsium-silikaattilevyjen puhtaudesta. Epasit GmbH tuotteen valmistajana teetti testin kyseisessä laitoksessa. Testin tuloksena Epatherm levyt ja
Lisätiedota) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
Lisätiedot0, mol 8,3145 (273,15 37)K mol K. Heliumkaasun paine saadaan kaasujen tilanyhtälöstä pv = nrt. K mol kpa
4. Kaasut 9. Palauta ieleen Reaktio 1 s. 19 olouodoista ja niiden eroista. a) Kaasussa rakenneosat ovat kaukana toisistaan, joten kaasu on aljon harveaa kuin neste. Ts. kaasun tiheys on ienei kuin nesteen
LisätiedotPERUSMITTAUKSIA. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 1 PERUSMITTAUKSIA 1 Työn tavoitteet Tässä työssä määrität tutkittavaksesi annetun metallikappaleen tiheyden laskemalla sen suoraan
Lisätiedot