2m 2 r + V (r) ψ n (r) = ɛ n ψ n (r)
|
|
- Teija Aino Katajakoski
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia. (a (p. Tarkastellaan keskeisliikettä potentiaalissa V (r = V (r, missä r = r on keskeisliikkeeseen liittyvä suhteellinen etäisyys. Separoi Schrödingerin yhtälöstä ( h m r + V (r ψ n (r = ɛ n ψ n (r radiaaliyhtälö ( [ h d m dr + ] d + h l(l + + V (r R r dr m r nl (r = ɛ n R nl (r. Edellä merkintä r tarkoittaa derivointia suhteellisen koordinaatin r suhteen. Redusoi radiaaliyhtälö edelleen yksiulotteisen liikkeen Schrödingerin yhtälöksi efektiivisessä potentiaalissa V eff (r. (Vinkki: kirjoita R(r = u(r/r. Oleta sitten V (r = e /(4πɛ r, ja hahmottele efektiivisen potentiaalin V eff (r kuvaaja kun l =, ja l. (b (p. Arvioi variaatiomenetelmällä δ-funktiopotentiaalin, d H = h m d αδ(, α > perustilaa käyttäen yritteenä aaltofunktioita ψ( = Ae b, missä b >. Vertaa saamaasi tulosta eksaktiin perustilan energiaan E gs = mα /( h.. Tarkastellaan Hamiltonin operaattoria missä H = H + H, ( E H =, H E = ( ia, ia ja häiriö a E E kun E E ja a E jos E = E. Ominaisenergioita E ja E vastaavat häiritsemättömän järjestelmän ominaistilat ( ( ( =, ( =. (a (p. Oletetaan E E, eli järjestelmällä on kaksi degeneroitumatonta ominaisenergiaa. Laske häiriöteoriaa käyttäen ensimmäisen ja toisen kertaluvun korjaukset energioihin E ja E. (b (p. Olkoon sitten E = E. Laske häiriöteoreettiset ensimmäisen kertaluvun energiakorjaukset tässä tapauksessa. (c (p. Ratkaise Hamiltonin operaattorin H = H + H ominaisarvot eksaktisti ja vertaa edellisissä kohdissa laskemiisi tuloksiin. Kehitelmästä + + / +... saattaa olla apua.
2 . (a (p. Spinoperaattori on vektorioperaattori S = (S, S y, S z ja kolmiulotteisen avaruuden yksikkövektori on n = sin θ cos φ + sin θ sin φy + cos θz. Laske mitä mahdollisia arvoja voidaan saada tulokseksi, kun mitataan spin-/ hiukkasen spinin komponentti S n yksikkövektorin n määräämässä suunnassa. (Vihje: muista, että S i = hσ i /, missä σ i on Paulin matriisi (i =, y, z. (b (4p. Tarkastellaan vetyatomin perustilaa,, m s e m s p, missä siis huomioidaan sekä elektronin (e, että protonin (p spin, joten perustilan energian degeneraation on 4. Tarkastellaan yksinkertaista mallia ylihienorakenteelle H = H + λ(s e S p, H = p m e 4πɛ r. Tutki mitä perustilan degeneraatiolle tapahtuu. Piirrä energiatasokaavio ja perustele piirrustuksesi häiriöteoreettisin laskuin. Tarvittavat Clebsch-Gordan kertoimet voi lukea liitteen taulukosta. 4. Sironta-amplitudi elastiselle sironnalle potentiaalista V (r on f k (θ, φ = π d r Φ k f (r U(r Ψ ki (r, missä k f on sironneen hiukkasen aaltovektori ja k i on hiukkasen aaltovektori ennen sirontaa, k f = k i = k = µe/ h, ja Φ kf (r = e ik (π / f r, ja U(r = µ V (r. h Aaltofunktio Ψ ki (r toteuttaa integraaliyhtälön Ψ k (r = Φ k (r + d r G k (r r U(r Ψ k (r, missä G k (r r on operaattorin +k Greenin funktio (jonka eksplisiittistä muotoa ei tarvita tässä tehtävässä. (a (p. Selitä miten sironta-amplitudin Bornin kehitelmä muodostetaan ja kirjoita kehitelmän kaksi ensimmäistä termiä eksplisiittisesti. Osoita, että Bornin approksimaatiossa sironta-amplitudi on oleellisesti potentiaalin Fourier muunnos: f B (θ, φ = µ 4π h d re i(k i k f r V (r. (b (p. Sovella Bornin approksimaatiota ja laske sironta-amplitudi f(θ, differentiaalinen vaikutusala dσ/dω ja kokonaisvaikutusala σ sironnalle potentiaalista V (r = V e λ r, λ >.
3 HYÖTYTIETOA: Fouriermuunnos: f(p = d (π e ip f( f( = d p (π eip f(p Sopivin oletuksin funktioille f( ja g( pätee: d d (π f( g( = (π ( f(g(. g( = /(σ (πσ / e σk g(k = e Pallokoordinaatit ja palloharmoniset funktiot: = r r (r r h r ˆL d r = r drdω = r dr sin θdθdϕ dω = 4π Y (θ, ϕ = R = ˆL = h [ sin θ Y lm (θ, ϕ = ( m+ m ˆL Y lm (θ, ϕ = h l(l + Y lm (θ, ϕ ˆLz Y lm (θ, ϕ = hmy lm (θ, ϕ θ (sin θ θ + ] sin θ ϕ l + 4π dω Y l m (θ, ϕy lm(θ, ϕ = δ ll δ mm (l m! (l + m! P m l (cos θe imϕ Y l, m (θ, ϕ = ( m Y l,m(θ, ϕ Pl k (z = ( z k/ dk dz P l(z P k l (z = d l l l! dz l (z l Y (θ, ϕ = Y (θ, ϕ = 4π 4π cos θ Y ±(θ, ϕ = sin θe±iϕ 8π 5 ( cos θ 5 5 Y ± (θ, ϕ = 6π 8π cos θ sin θe±iϕ Y ± (θ, ϕ π sin θe ±iϕ Vetyatomin(kaltaisen ionin elektronin aaltofunktiot: R nl (r = Ψ nlm ( = R nl (ry lm (θ, ϕ κ = Z na (n l! (κ n(n + l! (κrl e κr L l+ n l (κr Lq p( = a = 4πɛ h µe ( / Z e Zr/a R = ( / ( Z Zr e Zr/a R = a a a 6 Trigonometriaa: p ( k (p + q! k (p k!(q + k!k! k= cos = cos sin, cos + sin = ( 5/ Z re Zr/a a
4 Besselin ja von Neumannin pallofunktiot: r d R(r dr + r dr(r dr j l ( = l l j ( = sin Integrointiapuja: d n e a = n! a n+, s= + [ (kr l(l + ] R(r = R(r = Aj l (kr + Bn l (kr ( s (s + l! s!(s + l +! s j ( = sin cos de a = π a, n l ( = ( l+ l l+ n ( = cos Resf(z ( d n [(z z z=z = lim n f(z], z z (n! dz Pyörimismäärä: s= d n e a = C ( s (s l! s!(s l! s n ( = cos dzf(z = πi Ĵ j, m = h j(j + j, m, Ĵ z j, m = hm j, m sin 5 (n + π/ n/ a (n+/ n Resf(z z=zj. j= Sarjoja: Ĵ ± = Ĵ ± iĵy, Ĵ ± j, m = h (j m(j ± m + j, m ± [Ĵi, Ĵj] = i h ɛ ijk Ĵ k, [Ĵ, Ĵi] = k= e = n= Paulin matriisit: n n! σ = ( cos = ( n n (n! n= σ y = ( i i sin = σ z = n= ( n n+ (n +! ( [σ i, σ j ] = iɛ ijk σ k {σ i, σ j } = δ ij Häiriöteoria: ( σ a( σ b = ( a b + i( a b σ Sirontateoria: f B (θ, φ = µ 4π h E n ( = n V n, E n ( = m n d re i(k i k f r V (r, n V m E n ( E m ( dσ dω = f(θ, φ, σ = 4π k Imf(. ψ( k (l + e iδ l sin δ l P l (cos θ. l=
5 4. Clebsch-Gordan coefficients - 4. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS, AND d FUNCTIONS Note: A square-root sign is to be understood over every coefficient, e.g., for 8/5 read 8/5. m m + Y = 4π cos θ 5/ / m +/ +/ +5/ 5/ / m Coefficients +/ +/.. +/ / / / + +/ Y =.. / +/ / / sin θeiφ + / /5 4/5 5/ /.. / / 8π + +/ 4/5 /5 +/ +/ 5 ( Y = 4π cos θ + / /5 /5 5/ / +/ /5 /5 / / / / +/ / / / /5 /5 5/ / + +/ +/ +/ 5 Y = +/ /5 /5 / / sin θ cos θeiφ 8π + / / / / / / 4/5 /5 5/ Y = / / + / / +/ / / +/ /5 4/5 5/ 5 4 π sin θe iφ +/ +/ + + / / / / / +/ / / / +/ / /4 /4 +/ +/ /4 /4 / 5/ + / +/ / / / +5/ 5/ / / + +/ +/ / +/ / / + / / +/ /5 /5 5/ / / / / /4 /4 + + / / / + /5 /5 +/ +/ +/ / +/ /4 /4 + /5 / /5 +/ / /5 / / / + 8/5 /6 / +/ /5 /5 / 5/ / / + + /5 / / / + / 8/5 /6 / / / /5 / / +/ / 8/5 /6 + / / /5 /5 / /5 /5 / 5/ / + / / + /5 / / / + / /5 / / / + /6 / / /5 / / / /5 /5 5/ / / 8/5 /6 / / /5 /5 5/ + /6 / / + /5 / /5 / Yl m =( m Yl m / / / / / / / / j j m m j j JM 4π d l =( J j j j m, = j m m j j JM l + Ym l e imφ / / Notation: d j m,m =( m m d j m,m = d j / / m, m + d, =cosθ d/ /,/ =cosθ d, = + cos θ +/ +/ + + / 7/ +/ +/ / / d / /, / = sin θ d, = sin θ +7/ 7/ 5/ +/ +/ / / / +5/ +5/ +/ / /5 / / + +/ /7 4/7 7/ 5/ / +/ +/ /5 /5 d, = cos θ + +/ 4/7 /7 +/ +/ +/ / +/ /5 / / + / /7 6/5 /5 +/ / / /4 9/ /4 + +/ 4/7 /5 /5 7/ 5/ / / 4 +/ / 9/ /4 / /4 +/ /7 8/5 /5 +/ +/ +/ +/ +4 4 / +/ 9/ /4 / / / /5 6/5 /5 /5 / +/ / /4 9/ /4 + / /5 5/4 / + + / / / / / 8/5 7/ 5/ +/ 4/5 7/7 / / / +/ / /5 / / /5 /5 /5 / / / /5 /5 /5 / / / / +/ /5 / / + /4 / /7 + / 4/5 7/7 /5 / + + 4/7 /7 4 / / / / / 8/5 /5 /5 /5 + /4 / / / / / / +/ /5 5/4 / 7/ 5/ / + /4 / /7 /5 +/ /5 6/5 /5 /5 / / / / / + /7 /5 /4 / / /7 8/5 /5 + /7 /5 /4 / 4 / 4/7 /5 /5 7/ 5/ + /4 / /7 /5 +/ /7 6/5 /5 5/ 5/ + /7 / /7 /5 /5 / 4/7 /7 7/ + 8/5 /5 /4 / /5 / /7 4/7 7/ 8/5 /7 /5 d / /,/ = + cos θ cos θ + 8/5 /5 /4 / /5 4 / + /7 / /7 /5 /5 + /4 / /7 /5 d / /,/ = + cos θ sin θ ( + cos θ d, = /7 /5 /4 / /7 /5 /4 / 4 + /4 / /7 /5 d / /, / = cos θ cos θ d + cos θ /4 / /7, = sin θ 4/7 /7 4 d / cos θ = sin θ 6 d /, /, = 4 sin θ d, = + cos θ /4 / /7 ( cos θ / / 4 d / /,/ = cosθ cos θ / / 4 d cos θ, = sin θ d, = sin θ cos θ d / /, / = cosθ+ sin θ ( cos θ d, = d, = cos θ ( ( cos θ + d, = cos θ Figure 4.: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 959, also used by Condon and Shortley (The Theory of Atomic Spectra, Cambridge Univ. Press, New York, 95, Rose (Elementary Theory of Angular Momentum, Wiley, New York, 957, and Cohen (Tables of the Clebsch-Gordan Coefficients, North American Rockwell Science Center, Thousand Oaks, Calif., 974. The coefficients here have been calculated using computer programs written independently by Cohen and at LBNL. J M J M......
1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia
Kvanttimekaniikka I.. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Olkoon H systeemin Hamiltonin operaattori, ja A jotakin observaabelia kuvaava operaattori. Johda Ehrenfestin teoreema d A dt = ī [A, H] + A
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
FYSA235, Kvanttimekaniikka I, osa B, tentti Tentin yhteispistemäärä on 48 pistettä. Kaavakokoelma ja CG-taulukko paperinipun lopussa.
FYSA5, Kvanttimekaniikka I, osa B, tentti..4 Tentin yhteispistemäärä on 48 pistettä. Kaavakokoelma ja CG-taulukko paperinipun lopussa.. Selitä lyhyesti (a) Larmorin prekessio [ pt] (b) Clebsch-Gordan kertoimet
Tilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
FYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
Valon sironta - ilmiöt ja mallinnus. Jouni Mäkitalo Fysiikan seminaari 2014
Valon sironta - ilmiöt ja mallinnus Jouni Mäkitalo Fysiikan seminaari 2014 Sisältö Johdanto Sironnan sähkömagneettinen mallinnus Analyyttinen sirontateoria Sironta ei-pallomaisista hiukkasista Johdanto
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 13. lokakuuta 2014 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Osittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
Fysikaalinen kemia II kaavakokoelma, osa 1
Fysikaalinen kemia II kaavakokoelma, osa 1 Wienin siirtymälaki: T λ max = 0.2898 cm K (1) Stefan Boltzmanin laki: M = σt 4 σ = 5.67 10 8 W m 2 K 4 (2) Planckin jakauma ρ = 8πkT λ 4 ( 1 ) e hc/λkt 1 (3)
1 Aaltofunktio, todennäköisyystulkinta ja normitus
KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V
Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +
Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi
Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Harris luku 7 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Yleistetään viidennen luvun sidottujen tilojen
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016 1. Hahmottele karkeasti funktion f : R R 2 piirtämällä sen arvoja muutamilla eri muuttujan arvoilla kaksiulotteiseen koordinaatistoon
S Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
u = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä
Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti
JYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu
Elektronit periodisessa potentiaalissa Tarkastellaan täydellistä Bravais n hilan kuvaamaa kidettä. Vaikka todelliset kiinteät aineet eivät esiinnykään täydellisinä hiloina, voidaan poikkeamat periodisuudesta
1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
Nyt. = R e ik R ψ n (r + R R ) = e ik R [ = e ik R b n ψ n (r R),
Tiukan sidoksen malli Tarkastellaan sellaisia kiderakenteita, joissa atomien elektronien aaltofunktiot ovat lokalisoituneet isäntäionien läheisyyteen. Jos unohdetaan periodisuuden vaikutukset, elektronien
9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit
9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset
Vaihdetaan ryhmässä (1) summausindeksiksi K, jolloin saadaan (E E 0 k K 1
Heikot periodiset potentiaalit Useiden metallien (alkuaineryhmissä I, II, III ja IV) johde-elektronit liikkuvat heikossa kiteen ionien muodostamassa potentiaalissa, sillä näillä metalleilla on s- tai p-elektroni
766334A Ydin- ja hiukkasfysiikka
1 766334A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 1 Juhani Lounila Oulun yliopisto, Fysiikan laitos, 2011 1 Ytimen rakenne Luentomonisteen sivulla 3 oleva nuklidien N Z-diagrammi
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
y x1 σ t 1 = c y x 1 σ t 1 = y x 2 σ t 2 y x 2 x 1 y = σ(t 2 t 1 ) x 2 x 1 y t 2 t 1
1. Tarkastellaan funktiota missä σ C ja y (y 1,..., y n ) R n. u : R n R C, u(x, t) e i(y x σt), (a) Miksi funktiota u(x, t) voidaan kutsua tasoaalloksi, jonka aaltorintama on kohtisuorassa vektorin y
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30
DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia
Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.
Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät
Ch10 Spin-1/2 systeemi. Spin-1/2 kvanttimekaniikkaa
Ch1 Spin-1/2 systeemi Spin-1/2 kvanttimekaniikkaa Ominaistilat Vain kaksi tilaa sillä kvanttimekaniikan mukaan m = I, I + 1,..., I 1, I siis yhteensä 2I + 1 kpl I JOS I = 1/ 2 niin 2I + 1 = 2! Spinin kantafunktiot
F dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
Aineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 018 Harjoitus 4 Ratkaisuehdotukset Tehtävä 1. Olkoon U R avoin joukko ja ϕ = (ϕ 1, ϕ, ϕ 3 ) : U R 3 kaksiulotteisen C 1 -alkeispinnan
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
Osallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
Luento Atomin rakenne
Luento 10 5. Atomin rakenne Vetatomi Ulkoisten kenttien aiheuttama energiatasojen hajoaminen Zeemanin ilmiö Elektronin spin Monen elektronin atomit Röntgensäteiln spektri 1 Schrödingerin htälö kolmessa
Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1)
S-11446 Fysiikka IV (Sf), I Väliko 544 1 Osoita, ttä Comptonin sironnassa lktronin suurin mahdollinn rkyylinrgia voidaan sittää muodossa E Kin hf 1 + mc /hf Enrgian säilymislain prustlla lktronin rkyylinrgia
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
4. Liikemäärämomentti
4. Liikemäärämomentti Jatkossa tarkastellaan toisaalta yleisiä (ja tarkkoja) menetelmiä, sellaisia kuin liikemäärämomenttialgebra ja ryhmäteoria, sekä toisaalta approksimointimenetelmiä, sellaisia kuin
6. Kompleksiluvut. Kompleksilukuja esiintyy usein polynomiyhtälöiden ratkaisuina. Esim:
6. Kompleksiluvut Yhtälöllä x = 1 ei ole reaalilukuratkaisua: tarvitaan uusia lukuja. Kompleksiluku on kahden reaaliluvun järjesteby "pari" (x,y): Z = x +iy Missä i on imaginääriyksikkö, jolla on ominaisuus
Fourier-analyysi, I/19-20, Mallivastaukset, Laskuharjoitus 7
MS-C14, Fourier-analyysi, I/19- Fourier-analyysi, I/19-, Mallivastaukset, Laskuharjoitus 7 Harjoitustehtävä 7.1. Hetkellä t R olkoon s(t) 1 + cos(4πt) + sin(6πt). Laske tämän 1-periodisen signaalin s Fourier-kertoimet
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät y' P. α φ
76336A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 1 Kevät 217 1. Koordinaatiston muunnosmatriisi (a) y' P r α φ ' Tarkastellaan, mitä annettu muunnos = cos φ + y sin φ, y = sin φ + y cos φ, (1a) (1b) tekee
Aineen ja valon vuorovaikutukset
Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Harjoituksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Määritelmä Olkoon T i L (V i, W i ), 1 i m. Yksikäsitteisen lineaarikuvauksen h L (V 1 V 2 V m, W 1 W 2 W m )
Määritelmä 519 Olkoon T i L V i, W i, 1 i m Yksikäsitteisen lineaarikuvauksen h L V 1 V 2 V m, W 1 W 2 W m h v 1 v 2 v m T 1 v 1 T 2 v 2 T m v m 514 sanotaan olevan kuvausten T 1,, T m indusoima ja sitä
ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
(K- suurienergiainen) (p levossa)
FYS300 Hiukkasfysiikka 7.5.2010 1. valikoe, 4 tehtavaa, 3h. Palauta kysymyspaperi ja taulukot vastauspaperisi mukana! 1. a) Mika on vaikutusalan kokeellinen maaritelma? (lp) b) Hiukkasjoukon invarianttiin
Mat Matematiikan peruskurssi K2
Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,
l 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy
z 2 y 2 x 2 z y x Tilavuusintegroin. f(x,y,z)dxdydz z 2 y 2 x 2 = f(x,y,z)dx dy dz z y x Tyypillises. kemian sovelluksissa f(x,y,z) on massa.heys, jolloin integraalin arvo on massa alueella jota integroin.rajat
12. Derivointioperaattoreista geometrisissa avaruuksissa
12. Derivointioperaattoreista geometrisissa avaruuksissa 12.1. Gradientti, divergenssi ja roottori 328. Laske u, kun u on vektorikenttä a) (z y)i + (x z)j + (y x)k, b) e xyz (i + xlnyj + x 2 zk), c) (x
Ei-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
Kvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
Kompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
MEI Kontinuumimekaniikka
MEI-55300 Kontinuumimekaniikka 1 MEI-55300 Kontinuumimekaniikka 3. harjoitus matemaattiset peruskäsitteet, kinematiikkaa Ratkaisut T 1: Olkoon x 1, x 2, x 3 (tai x, y, z) suorakulmainen karteesinen koordinaatisto
Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
ELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja
Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo (suositellaan kuitenkin tekemään ennen välikoetta 30.4!
Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo 16.00 (suositellaan kuitenkin tekemään ennen välikoetta 30.4! Tämä laskuharjoitus ei ole pakollinen, eikä sen pisteitä
MATP153 Approbatur 1B Harjoitus 4 Maanantai
MATP53 Approbatur B Harjoitus 4 Maanantai 3..05. Halutaan määritellä funktio f siten, että f() =. Missä pisteissä + funktio voidaan määritellä tällä lausekkeella? Missä pisteissä funktio on näin määriteltynä
Kvanttifysiikan perusteet, harjoitus 5
Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 406 6 laskuharjoituksien esimerkkiratkaisut Ratkaistaan differentiaaliyhtälö y = y () Tässä = d dy eli kyseessä on lineaarinen kertaluvun differentiaaliyhtälö: Yhtälön () homogenisoidulle
Kaavoja: Aalto-yliopisto. Hyperboliset ja trigonometriset funktiot: coshz = ez +e z. , sinhz = ez e z. 1. (a) Esitä polaarimuodossa kompleksiluku
Aalto-yliopisto Rasila/Murtola Mat-1.130 peruskurssi S3 Syksy 011 1. välikoe Ti 11.10.011 klo 16.00-19.00 Kokeessa saa käyttää ylioppilaskirjoituksessa sallittua laskinta mutta ei taulukkokirjaa. 1. (a)
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää
Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit
Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: 5.9.-15.11.216 Ma klo 8-1 PR12 Ti klo 12-14 PR12 Risto Laitinen (22.2.-14.3.) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL 3 914 Oulun yliopisto
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
MATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
LUKU 3. Ulkoinen derivaatta. dx i 1. dx i 2. ω i1,i 2,...,i k
LUKU 3 Ulkoinen derivaatta Olkoot A R n alue k n ja ω jatkuvasti derivoituva k-muoto alueessa A Muoto ω voidaan esittää summana ω = ω i1 i 2 i k dx i 1 dx i 2 1 i 1
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );
LINEAARIALGEBRA Ratkaisuluonnoksia, Syksy 2016 1. Olkoon n Z +. Osoita, että (R n, +, ) on lineaariavaruus, kun vektoreiden x = (x 1,..., x n ), y = (y 1,..., y n ) identtisyys, yhteenlasku ja reaaliluvulla
Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
Vektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy 014 1. Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä
Vedynkaltaiset radiaaliaaltofunktiot Roothaan Hall- ja CI-menetelmissä Pro Gradu -tutkielma Henrik Kurkela henrik.kurkela@gmail.com Oulun Yliopisto Luonnontieteellinen tiedekunta Fysiikan koulutusohjelma
KVANTTIMEKANIIKKA II A. Mikko Saarela
KVANTTIMEKANIIKKA II 76333A Mikko Saarela kevät 0 i Sisältö Matriisimekaniikkaa 3. Lineaariset vektoriavaruudet..................... 3.. Diracin merkinnät...................... 3.. Ortonormaalit kantajärjestelmät..............
Värähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva