FYSA234 Potentiaalikuoppa, selkkarityö
|
|
- Kalle Aho
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S lokakuuta 2014
2 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali Etsitään kymmenen alinta ominaisenergiaa
3 Klassinen mekaniikka vs kvanttimekaniikka Klassinen systeemi: Newtonin lait ja Hamiltonin mekaniikka Eristetty systeemi, Etot = K + V = 1 2 mv 2 + V = p2 2m + V Etot voi saada mitä hyvänsä arvoja Kvanttimekaniikka: Schrödingerin yhtälö Eψ(x) = Ĥψ(x) Kokonaisenergiaoperaattori Ĥ = 2 2 2m + V (x) x 2 Etot voi saada vain tiettyjä arvoja Voidaan mitata vain observaabeleja: energia, pyörimismäärä, spin jne. Aaltofunktiota EI voida mitata NASA
4 Mitä tutkitaan? Tässä työssä ei mitata mitään! Lasketaan potentiaalikuopien energiatiloja tasapohjainen äärettömän syvä potentiaalikuoppa porraspohjainen äärettömän syvä potentiaalikuoppa Esim. porraspotentiaalia ei voida ratkaista analyyttisesti Numeerinen ratkaisu mahdollista tietokoneella Ratkaisua voidaan verrata analyyttisiin approksimaatioihin suurilla ja pienillä energioilla häiriöteoria äärettömän syvä kuoppa L L/2 L/2
5 Äärettömän syvä tasapohjainen kuoppa Ominaisenergiat 2 2 ψ(x) + V (x)ψ(x) = Eψ(x) 2m x 2 (1) V (x) = {, x L 2 0, x < L 2, (2) E n = 2 π 2 2mL 2 (n + 1)2, n N, (3) Ominaistilat ( 2 L ψ n (x) = cos (n+1)π L ( 2 L sin (n+1)π L x ) x, n parillinen ), n pariton. (4)
6 1 kl differentiaaliyhtälön ratkaiseminen ensimmäisen kertaluvun differentiaaliyhtälö on muotoa f (x) = g(x, f (x)) (5) tiedetään funktion arvo jossain pisteessä f (x 0 ) = y derivaatan määritelmä f f (x + x) f (x) (x) = x f (x + x) = f (x) + xf (x) = ratkeaa x askel kerrallaan, x n = x 0 + n x f (x 0 ) = y f (x 1 ) = f (x 0 ) + x g(x 0, f (x 0 )) = y + x g(x 0, y) f (x 2 ) = f (x 1 ) + x g(x 1, f (x 1 )). f (x n ) = f (x n 1 ) + x g(x n 1, f (x n 1 )) Tämä on Eulerin menetelmä. Oikeasti käytetään parempia. (6) (7)
7 Schrödingerin yhtälön ratkaiseminen numeerisesti = 1 ja m = ψ (x) + V (x)ψ = Eψ(x) ψ (x) = 2(V (x) E)ψ(x) (8) jaettu kahdeksi 1 kl differentiaaliyhtälöksi φ (x) = 2(V (x) E)ψ(x) = g(x, ψ(x)) ψ (x) = φ (9) laskettava samaan aikaan sekä ψ(x), ψ(x), että ψ(x) tarvitaan alkuarvot äärellinen potentiaalikuoppa upotettava äärettömän laatikkopontentiaaliin reunaehdot ψ(x0 ) = 0, ψ (x 0 ) = a, a 0 tiedetään V (x), iteroidaan E
8 Schrödingerin yhtälön ratkaiseminen numeerisesti differentiaaliyhtälöt ovat siis φ (x) = 2(V (x) E)ψ(x) = g(x, ψ(x)) ψ (x) = φ (10) joten φ(x 0 ) = 1 ψ(x 0 ) = 0 φ(x 1 ) = φ(x 0 ) + x φ (x 0 ) = φ(x 0 ) + x 2(V (x 0 ) E)ψ(x 0 ) ψ(x 1 ) = ψ(x 0 ) + x φ(x 0 ) (11). φ(x n ) = φ(x n 1 ) + x 2(V (x n 1 ) E)ψ(x n 1 ) ψ(x n ) = ψ(x n 1 ) + x φ(x n 1 )
9 Ohjelman ratkaisualgoritmi iteroi E:tä ratkaisee ψ:n jokaisella kerralla oikea E vain, jos ψ( L 2 ) = 0 äärettömän syvän kuopan toisessa reunassa ohjelmalle annetaan E lower ja E upper etsii ominaisenergiaa näiden välistä toisella oltava ψ( L 2 ) > 0 ja toisella ψ( L 2 ) < 0 jatka iterointi tällä ehdolla laskemalla ψ:n energialla E lower +E upper ψ(x) ψ(x) ψ(x) x x x (a) ψ( L 2 ) < 0, E = 4.38 (b) ψ( L 2 ) > 0, E = 5.15 (c) ψ( L 2 ) 0, E = 4.93 Kuva: Äärettömän pot. kuopan 1. ominaistila. E 0 = π2 2
10 Numeerisen ratkaisun virhe DY:n ratkaisun virhe δ h k vaikuttaa ominaisenergian arvoon askelkoko h ratkaisualgoritmin kertaluku k Euler: 1. kertaluvun algoritmi Runge-Kutta: 4. kertaluvun algoritmi... äärellisen potentiaalikuopan koko vääristää sekä aaltofunktioita, että ominaisenergioita Kuva: org/wiki/file: Numerical_integration_ illustration,_h%3d1.png
11 Selkkari Normaali selkkari... paitsi Teoreettiset lähtökohdat Äärettömän syvän potentiaalikuopan ratkaisut Vähintään häiriöteorian antama ensimmäisen kertaluvun korjaus porraspotentiaalille Numeeriset menetelmät Schrödingerin yhtälön ratkaiseminen kahden ensimmäisen kertaluvun differentiaaliyhtälön avulla Ensimmäisen kertaluvun differentiaaliyhtälön ratkaiseminen Eulerin menetelmän avulla Ohjelman toimintaperiaate (iteraatioprosessi) Ohjelman tärkeimmät asetukset ja mihin ne vaikuttavat
12 Selkkari Tulokset analyyttisten ja numeeristen ratkaisujen vertaaminen äärettömän syvälle potentiaalikuopalle 1. kertaluvun approksimaation ja numeeristen ratkaisujen vertaaminen porraspotentiaalille kahdella eri kuopan leveydellä voidaanko porraspotentiaalin tiloja approksimoida yksinkertaisten aproksimaatioiden avulla (äärettömän syvä potentiaalikuoppa ja häiriöteoria tai pelkkä äärettömän syvä potentiaalikuoppa)? Miten, miksi ja milloin?
13 Ohjelma Kuva: Ohjelman käyttöliittymä
14 Harjoitustehtävä Ohjelma löytyy osoitteesta: japapepa/potkuoppa/potku.zip Pura johonkin kansioon Avaa Matlabilla gui.m Tarkastellaan harmonista potentiaalia Sovellus: molekyylien värähtely Energiatilat En = ω(n ), n = 0, 1, 2, 3,... = 1, ω = 1 Tehtävä: Etsi kymmenen alinta energiatilaa Laatikkopotentiaalin rajat aluksi ±4 Tuleeko ongelmia? Vertaa teoreettisiin arvoihin Selkkarit voi palauttaa osoitteeseen: japapepa@jyu.fi tai jani.komppula@jyu.fi
FYSA234 Potentiaalikuoppa, selkkarityö
FYSA234 Potentiaalikuoppa, selkkarityö Jari Partanen, Jani Komppula JYFL FL246, S118 japapepa@jyu.fi, jani.komppula@jyu.fi 16. lokakuuta 2013 Ohjaus Työn ja ohjelman esittely (15-30 min) Harjoitellaan
FYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
Potentiaalikuoppa, työohje
Potentiaalikuoppa, työohje 16. lokakuuta 013 Johdanto Kvanttimekaniikassa potentiaalikuopalla tarkoitetaan järjestelmää, jossa hiukkasen liike on rajoitettu äärelliseen alueeseen. Tästä seuraa ominaisenergian
Potentiaalikuoppa, työohje
Potentiaalikuoppa, työohje 16. lokakuuta 2018 Johdanto Kvanttimekaniikassa potentiaalikuopalla tarkoitetaan järjestelmää, jossa hiukkasen liike on rajoitettu äärelliseen alueeseen. Tästä seuraa ominaisenergian
Potentiaalikuoppa, työohje 12. lokakuuta 2015
Potentiaalikuoppa, työohje 12. lokakuuta 2015 12. lokakuuta 2015 Johdanto Kvanttimekaniikassa potentiaalikuopalla tarkoitetaan järjestelmää, jossa hiukkasen liike on rajoitettu äärelliseen alueeseen. Tästä
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
FysA230/3 Potentiaalikuoppa Suppea raportti
Tiia Monto Työ tehty: 8.5.9 tiia.monto@jyu. 475856 FysA3/3 Potentiaalikuoppa Suppea raportti Assistentti: Joni Pasanen Hyväksytty/hylätty: Työ jätetty: Abstract I studied how the Matlab program can calculate
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
Tilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
Numeeriset menetelmät
Numeeriset menetelmät Luento 12 To 13.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 12 To 13.10.2011 p. 1/38 p. 1/38 Tavalliset differentiaaliyhtälöt Yhtälöissä tuntematon funktio Tavalliset
Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos
Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja
Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia
Kvanttimekaniikka I.. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Olkoon H systeemin Hamiltonin operaattori, ja A jotakin observaabelia kuvaava operaattori. Johda Ehrenfestin teoreema d A dt = ī [A, H] + A
Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
Kvanttifysiikan perusteet, harjoitus 5
Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan
Kvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
2m 2 r + V (r) ψ n (r) = ɛ n ψ n (r)
Kvanttimekaniikka I. 5. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Tarkastellaan keskeisliikettä potentiaalissa V (r = V (r, missä r = r on keskeisliikkeeseen liittyvä suhteellinen etäisyys. Separoi Schrödingerin
Numeeriset menetelmät TIEA381. Luento 12. Kirsi Valjus. Jyväskylän yliopisto. Luento 12 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 12 Kirsi Valjus Jyväskylän yliopisto Luento 12 () Numeeriset menetelmät 25.4.2013 1 / 33 Luennon 2 sisältö Tavallisten differentiaaliyhtälöiden numeriikasta Rungen
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
3 Derivoituvan funktion ominaisuuksia
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017
Differentiaaliyhtälöryhmä
Differentiaaliyhtälöryhmä Ensimmäisen kertaluvun differentiaaliyhtälöryhmä vaikkapa korkeamman kertaluvun yhtälöä vastaava normaaliryhmä voidaan ratkaista numeerisesti täsmälleen samanlaisilla kaavoilla
Lisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
Kvanttimekaniikkaa yhdessä ulottuvuudessa
Kvanttimekaniikkaa yhdessä ulottuvuudessa Kvanttiefektit ovat tärkeitä nanoskaalassa. Tässä on ksenon-atomeilla tehtyjä kirjaimia metallipinnalla. Luennon tavoite: Ymmärtää kvanttimekaniikan perusperiaatteet
2v 1 = v 2, 2v 1 + 3v 2 = 4v 2.. Vastaavasti ominaisarvoa λ 2 = 4 vastaavat ominaisvektorit toteuttavat. v 2 =
TKK, Matematiikan laitos Pikkarainen/Tikanmäki Mat-1.1320 Matematiikan peruskurssi K2 Harjoitus 12, A=alku-, L=loppuviikko, T= taulutehtävä, P= palautettava tehtävä, W= verkkotehtävä 21. 25.4.2008, viikko
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
2. Viikko. CDH: luvut (s ). Matematiikka on fysiikan kieli ja differentiaaliyhtälöt sen yleisin murre.
2. Viikko Keskeiset asiat ja tavoitteet: 1. Peruskäsitteet: kertaluku, lineaarisuus, homogeenisuus. 2. Separoituvan diff. yhtälön ratkaisu, 3. Lineaarisen 1. kl yhtälön ratkaisu, CDH: luvut 19.1.-19.4.
3.6 Feynman s formulation of quantum mechanics
3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
Muutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
Schrödingerin yhtälön sidottujen tilojen numeerisesta ratkaisemisesta
Schrödingerin yhtälön sidottujen tilojen numeerisesta ratkaisemisesta Joonas Koskinen joonas.a.koskinen@jyu.fi Pro Gradu Fysiikan laitos Jyväskylän yliopisto 3. joulukuuta 03 Tiivistelmä Esittelemme yksiulotteisen,
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)
MS-A4 Differentiaali- ja integraalilaskenta (ELEC2) MS-A6 Differentiaali- ja integraalilaskenta (ENG2) Harjoitukset 3L, syksy 27 Tehtävä. a) Määritä luvun π likiarvo käyttämällä Newtonin menetelmää yhtälölle
Differentiaaliyhtälöryhmän numeerinen ratkaiseminen
numryh.nb Differentiaaliyhtälöryhmän numeerinen ratkaiseminen Ensimmäisen kertaluvun differentiaaliyhtälöryhmä vaikkapa korkeamman kertaluvun yhtälöä vastaava normaaliryhmä voidaan ratkaista numeerisesti
Aineen ja valon vuorovaikutukset
Aineen ja valon vuorovaikutukset Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tutkitaan aineen ja valon vuorovaikutuksia Ensiksi tutustutaan häiriöteoriaan, jonka
Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään:
Korkeammat erivaatat Jo kerran erivoitu funk6o voiaan erivoia uuelleen.! f(x) x " # x % & = 2 f(x) = f''(x) = f (2) (x) x 2 Yleisemmin merkitään: n f(x) = f (n) (x) x n erkki: 2- atominen molekyyli Värähtelevän
Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
1 Aaltofunktio, todennäköisyystulkinta ja normitus
KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen
y (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Kompleksiluvun logaritmi: Jos nyt z = re iθ = re iθ e in2π, missä n Z, niin saadaan. ja siihen vaikuttava
Kompleksiluvun logaritmi: ln z = w z = e w Jos nyt z = re iθ = re iθ e inπ, missä n Z, niin saadaan w = ln z = ln r + iθ + inπ, n Z Logaritmi on siis äärettömän moniarvoinen funktio. Helposti nähdään että
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
S Fysiikka III (EST) (6 op) 1. välikoe
S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
6. Toisen ja korkeamman kertaluvun lineaariset
SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia
Matematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
Perustilan fotonit. Taneli Tolppanen. LuK-tutkielma Fysiikan koulutusohjelma Teoreettinen fysiikka Oulun yliopisto 2019
Perustilan fotonit Taneli Tolppanen LuK-tutkielma Fysiikan koulutusohjelma Teoreettinen fysiikka Oulun yliopisto 019 Sisältö 1 Johdanto Kubitti ja harmoninen värähtelijä 3.1 Kubitti...............................
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Varatun hiukkasen liike
Luku 15 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
Shorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
Matemaattinen Analyysi
Vaasan yliopisto, kevät 01 / ORMS1010 Matemaattinen Analyysi. harjoitus, viikko 1 R1 ke 1 16 D11 (..) R to 10 1 D11 (..) 1. Määritä funktion y(x) MacLaurinin sarjan kertoimet, kun y(0) = ja y (x) = (x
KVANTTIMEKANIIKAN PERUSTEET...57
KVANTTIMEKANIIKAN PERUSTEET...57.1 Johdanto... 57. Aaltofunktio ja todennäköisyystiheys... 58.3 Schrödingerin yhtälö... 61.3.1 Vapaan hiukkasen aaltofunktio... 6.4 Hiukkasen sironta potentiaaliaskeleesta...
Osa IX. Z muunnos. Johdanto Diskreetit funktiot
Osa IX Z muunnos A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 298 / 322 A.Rasila, J.v.Pfaler () Mat-.33 Matematiikan peruskurssi KP3-i 9. lokakuuta 2007 299 / 322 Johdanto
Osittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
Jatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen
Jatko-opintoseminaari 21-211 Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus Petteri Laakkonen 23.9.21 Tämä teksti on tiivistelmä kirjan [1] luvun 2 tekstistä. Pyrkimyksenä on esittää perustellusti
LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että
LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,
Epälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
= 2 L L. f (x)dx. coshx dx = 1 L. sinhx nπ. sin. sin L + 2 L. a n. L 2 + n 2 cos. tehdään approksimoinnissa virhe, jota voidaan arvioida integraalin
BMA7 - Integraalimuunnokset Harjoitus 9. Määritä -jaksollisen funktion f x = coshx, < x < Fourier-sarja. Funktion on parillinen, joten b n = kun n =,,3,... Parillisuudesta johtuen kertoimet a ja a n saadaan
S Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
mlnonlinequ, Epälineaariset yhtälöt
Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos -e mlnonlinequ, Epälineaariset yhtälöt 1. Historiallisesti mielenkiintoinen yhtälö on x 3 2x 5 = 0, jota Wallis-niminen matemaatikko käsitteli,
OPETUSSUUNNITELMALOMAKE
OPETUSSUUNNITELMALOMAKE v0.90 Tällä lomakkeella dokumentoit opintojaksoasi koskevaa opetussuunnitelmatyötä. Lomake on suunniteltu niin, että se palvelisi myös Oodia varten tehtävää tiedonkeruuta. Voit
.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek
S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä
Varatun hiukkasen liike
Luku 16 Varatun hiukkasen liike SM-kentässä Tarkastellaan lopuksi varatun hiukkasen liikettä sähkömagneettisessa kentässä. Liikeyhtälö on tullut esiin useaan otteeseen kurssin aikana aiemminkin. Yleisesti
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle
13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien
Voima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
Integrointialgoritmit molekyylidynamiikassa
Integrointialgoritmit molekyylidynamiikassa Markus Ovaska 28.11.2008 Esitelmän kulku MD-simulaatiot yleisesti Integrointialgoritmit: mitä integroidaan ja miten? Esimerkkejä eri algoritmeista Hyvän algoritmin
Toispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Ensimmäisen kertaluvun yhtälön numeerinen ratkaiseminen
nummen.nb 1 Ensimmäisen kertaluvun yhtälön numeerinen ratkaiseminen Eulerin menetelmä alkaurvoprobleeman y' = f Hx, yl, yhx 0 L = y 0 ratkaisemiseksi voidaan ohjelmoida Mathematicalle euler-nimiseksi funktioksi
infoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
Fysikaalinen kemia II kaavakokoelma, osa 1
Fysikaalinen kemia II kaavakokoelma, osa 1 Wienin siirtymälaki: T λ max = 0.2898 cm K (1) Stefan Boltzmanin laki: M = σt 4 σ = 5.67 10 8 W m 2 K 4 (2) Planckin jakauma ρ = 8πkT λ 4 ( 1 ) e hc/λkt 1 (3)
BM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)
Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo.
Kun yhtälöä ei voi ratkaista tarkasti (esim yhtälölle x-sinx = 1 ei ole tarkkaa ratkaisua), voidaan sille etsiä likiarvo. Iterointi on menetelmä, missä jollakin likiarvolla voidaan määrittää jokin toinen,
3. Simulaatioiden statistiikka ja data-analyysi
[5B] TIETOKONESIMULAATIOISTA Luennolla esiteltiin fysiikan alan tietokonesimulaatiomenetelmiä. Esimerkkien puitteissa koodejakin katsellen tarkastelimme samalla joitakin vähemmälle huomiolle jääneitä aiheita
Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246
Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331
Numeeriset menetelmät
Numeeriset menetelmät Luento 2 To 8.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 2 To 8.9.2011 p. 1/33 p. 1/33 Lukujen tallennus Kiintoluvut (integer) tarkka esitys aritmeettiset operaatiot
Este- ja sakkofunktiomenetelmät
Este- ja sakkofunktiomenetelmät Keijo Ruotsalainen Mathematics Division Luennon kulku Este- ja sisäpistemenetelmät LP-ongelmat ja logaritminen estefunktio Polun seuranta Newtonin menetelmällä Sakkofunktiomenetelmistä
saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi
Tehtävä 1 Tornadon virtauskenttää voidaan approksimoida kaksiulotteisen nielun ja pyörteen summana Oleta, että nielun voimakkuus on m < ja pyörteen voimakkuus on > (a Määritä tornadon potentiaali- ja virtafunktiot
dt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö
Mathematican version 8 mukainen. (25.10.2012 SKK) Tavallinen heiluri Otetaan tarkastelun kohteeksi tavallinen yksinkertainen heiluri. Tämä koostuu kitkattomaan niveleen kiinnitetystä (massattomasta) varresta
Numeerinen integrointi ja derivointi
Numeerinen integrointi ja derivointi Keijo Ruotsalainen Division of Mathematics Interpolaatiokaavat Approksimoitava integraali I = b a f(x)dx. Tasavälinen hila: x i = a+ (b a)i n, i = 0,...,n Funktion
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 4: Liikkeen kuvausta, differentiaaliyhtälöt Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa Matlab-esittelyä 1 / 20 Luennon sisältö Digress: vakio-