780392A/782631S Fysikaalinen kemia II, 5 op / 4 op
|
|
- Emilia Saarinen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 78392A/782631S Fysikaalinen kemia II, 5 op / 4 op Luennot: Ma klo 8-1 PR12 Ti klo PR12 Risto Laitinen ( ) Epäorgaanisen kemian tutkimusyksikkö (KE 313) PL Oulun yliopisto Puh risto.laitinen@oulu.fi Opintojakson sisältö Johdanto Kvanttikemian perusteet Kvanttikemialliset menetelmät Atomin rakenne, atomispektrit Molekyylisymmetria Ryhmäteorian perusteet Molekyyliorbitaaliteoria Värähtelyspektroskopia Siirtymämetallikompleksien elektronispektroskopia P. Atkins, J. de Paula, Atkins Physical Chemistry, 9. p., Oxford University Press: Oxford 21. Luvut 7-14.
2 Kvanttikemian perusteet Sähkömagneettinen säteily Tasopolarisoitu sähkömagneettinen säteily Energia: E = hυ = hc λ = hν c = cp Intensiteetti: I = ce E 2 Aaltoliike: ( ) = ε o e 2πi Ψ x,t # x % $ λ νt & ' ( ) # = εo cos 2π % x $ λ νt &, + ( * '-.+ iε sin ) 2π # % x o $ λ νt &, + (. * '- Mössbauer XRD, ED, XPS UPS UV-vis IR, Raman MW, ESR NMR NQR
3 Klassisen mekaniikan rappio - Materian aaltoliikeominaisuudet - Sähkömagneettisen säteilyn hiukkasluonne Lämpökapasiteetti Dulong-Petit C V,m = 3 C V,m = 3 hυ 2! $! # & # " kt % "! C V,m = 9 kt $ # & " hυ % 3 e hυ 2kT 2 $ & e hυ kt 1 hυ kt % x 4 e x ( e x 1) dx 2 Mustan kappaleen säteily Planck distribution ρ λ,t ρ ( λ,t ) = 8πkT λ 4 ( ) = λ 5 8πhc e hc λkt ( 1) Atomi- ja molekyylispektri Raudan atomispektri SO 2 :n molekyylispektri - Absorptio diskreeteillä aallonpituuksilla - Absorptio diskreeteillä aallonpituuksilla - Elektroninen siirtymä - Värähtelytilojen välisiä siirtymiä - Rotaatiotilojen välisiä siirtymiä
4 Säteilyn hiukkasluonne Planckin laki: ΔE = hν Valosähköilmiö: (1) Elektronit emittoituvat vasta, kun säteilyn taajuus ylittää kullekin aineelle ominaisen kynnysarvon. (2) Elektronin kineettinen energia riippuu säteilyn taajuudesta (3) Elektronin emissio ei riipu säteilyn intensiteetistä Max Planck ja Albert Einstein Esimerkki Valosähköilmiö alkalimetalleilla 1 2 m ev 2 = hυ Φ työfunktio Hiukkasten aaltoluonne Elektronidiffraktio: - G. Davisson, L. Germer (1925) Elektronien diffraktio Ni-kiteestä Aalto-hiukkasdualismi: - L. de Broglie (1924) Aallonpituuden ja liikemäärän väinen riippuvuussuhde λ = h mv G. D. L. G. - G. P. Thomson (1925) Elektronien diffraktio Au-kalvosta
5 Solvay-konferenssi, Brysseli 1927 P. Ehrenfest E. Schrödinger W. Heisenberg W. Pauli P. Dirac L. de Broglie M. Born N. Bohr M. Planck H. Lorentz A. Einstein Schrödingerin aaltoyhtälö Tarkastellaan ajasta riippumatonta yhden elektronin systeemiä 2 2 8π m Ψ + 2 h ( E V ) Ψ = missä Ψ = Ψ(x,y,z) aaltofuntio E = systeemin kokonaisenergia V = systeemin potentiaalienergia
6 Aaltofunktio Schrödingerin aaltoyhtälön ratkaisu: Ratkaisuna ψ ja E Tarkka ratkaisu ainoastaan yksi-elektronisysteemeissä (ns. Hydrogeeniset atomit) Monimutkaisemmissa molekyyleissä yhtälön ratkaisemisessa käytetään erilaisia likimääräismenetelmiä (1) Aaltofunktio on ajasta ja paikasta riippuva funktio ψ = ψ(x,y,z,t). (2) ψ(x,y,z,t) sisältää kaiken mahdollisen informaation hiukkasen paikasta ja liikkeestä. (3) Jos ψ(x,y,z,t) on suuri, todennäköisyys hiukkasen sijainnille pisteessä x, y, z on suuri. (4) Jos ψ(x,y,z,t) =, hiukkanen ei voi sijaita pisteessä x, y, z. (5) Mitä nopeammin aaltofunktion arvo muuttuu pisteestä toiseen, sitä suurempi on hiukkasen kineettinen energia.
7 Muunnos pallokoordinaatistoon: Radiaalifunktio: - funktion arvo riippuu kvanttiluvuista n, l. Kulmafunktio: - funktion arvo riippuu kvanttiluvuista l, m. Ψ( r,θ,φ) = R( r) Θ(θ) Φ(φ) = R( r) Y (θ,φ) Schrödingerin aaltoyhtälö tarkemmin katsottuna Yksiulotteinen aaltoyhtälö: h 2π =1, J s hiukkasen kokonaisenergia d 2 Ψ +V(x)Ψ = EΨ 2m dx 2 hiukkasen massa hiukkasen potentiaalienergia aaltofunktio
8 Esimerkki Schrödingerin aaltoyhtälön ja de Broglien riippuvuussuhde d 2 Ψ dx 2 = 2m! 2 E V ( )Ψ 2m(E V ) Ψ = cos(kx) k =! 2 1/2 = 2π λ Harmooninen värähtelijä E V = E k = 1 2m k 2! 2 = p2 2m Liikemäärä Kineettinen energia p = k! = 2π λ h 2π = h λ Kolmessa ulottuvuudessa: 2m 2 Ψ +VΨ = EΨ x, y, z: 2 = 2 x y z 2 r, θ, ϕ: 2 = 2 r r dr + 1 r 2 Λ2 Λ 2 = 1 sin 2 Θ 2 Θ sinθ Θ sinθ Θ
9 Yleinen ajasta riippumaton tapaus: missä ĤΨ = EΨ Ĥ = 2m 2 +V Ajasta riippuva aaltoyhtälö: ĤΨ = ÊΨ ns. Hamiltonin operaattori missä Ê = i t Schrödingerin aaltoyhtälön ratkaisujen ominaisuuksia: (1) Yhtälöllä on ääretön määrä ratkaisuja: ψ i Ξ E i (ψ i on ominaisfunktio, E i on ominaisarvo) (2) Jos ψ i ψ i ψ i, mutta E i = E j = E k => ψ i, ψ i, ψ i ovat degeneroituja (3) Jos ψ i on ratkaisu => Nψ i on ratkaisu (3) Jos ψ i ja ψ i ovat degeneroidut ratkaisut (E i = E j ) => aψ i + bψ j on ratkaisu (5) Jos ψ i ψ j (E i E j ) => Ψ i * Ψ j dτ = Ψ j * Ψ i dτ = ortogonaalisuusehto (6) Jos ψ i ψ j (E i = E j ) => Ψ i *( Ψ i + cψ j )dτ = ( Ψ i + cψ j )* Ψ i dτ =
10 Aaltofunktion fysikaalinen merkitys: Bornin tulkinta: (1) Ψ 2 määrittelee todennäköisyyden, millä elektroni on löydettävissä avaruuden kussakin pisteessä. (2) Ψ 2 on varaustiheys avaruuden kussakin pisteessä. Max Born Tiheysfunktio Todennäköisyys elektronin löytymiseen tila-alkiosta dτ: P = ψ ψ*(r,θ,φ) dτ missä ψ ψ*(r,θ,φ) = todennäköisyystiheys pisteessä (r,θ,φ) ψ* = ψ:n kompleksikonjugaatti Kun integroidaan yli koko avaruuden: kokoavaruus * ΨΨ ( r,θ,φ) dτ = 1
11 Tilavuusalkio dτ = dxdydz = r 2 sinθdrdφdφ R 2 π 2π 2 * ( r) r dr Y (θ,φ) Y (θ,φ)sinθdθdφ = 1 Radiaaliosa ja kulmaosa voidaan normeerata erikseen: π 2π 2 2 R ( r) r dr = 1 Y *(θ,φ) Y (θ,φ)sinθdθdφ = 1 Atomisäteet Ionisaatioenergiat Elektronegatiivisuus Atomiorbitaalin muoto ja symmetria Molekyylisymmetria, spektroskopia Reaktiomekanismit Radiaalifunktio R n, l = l 3 Zr 4( n l 1)! Z na n+ l [( n + l)! n a 2Zr e na 2l+ L ( x) Normalisointitekijä Aiheuttaa solmukohtia (r ), kun n-l > 2 Aiheuttaa solmukohdan ytimessä, kun l > Vaikuttaa R:n pienemisen r:n funktiona
12 Esimerkki Normalisoi helium-ionin 1s-orbitaalin aaltofunktio
Lisävaatimuksia aaltofunktiolle
Lisävaatimuksia aaltofunktiolle (1) Koska Ψ*Ψ on äärellinen => Ψ on äärellinen. () Koska P = Ψ*Ψdτ => Ψ on yksiselitteinen. (3) Ψ on jatkuva. (4) dψ/dτ on jatkuva. Esimerkki Epäkelpoja aaltofunktioita
Fysiikka 8. Aine ja säteily
Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian
Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi
Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)
Aineaaltodynamiikkaa
Aineaaltodynamiikkaa Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit = kuinka hiukkasen fysikaaliset
Kvanttimekaniikka: Luento 2. Mar$kainen Jani- Petri
Kvanttimekaniikka: Luento 2 Mar$kainen Jani- Petri Assarointimainos Fyssa tarvitsee assareita Noin 30 euroa tun$+ lisiä tyypillises$ n. 4h/viikko, muba voi olla enemmän/vähemmän Opintosuoritukset+ lyhyt
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2011
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2011 Luennot: Henrik Kunttu, Nanoscience Center, huone YN213; puh: 050-5996134; henrik.m.kunttu@jyu.fi Laskuharjoitukset: Lauri Nykänen; lauri.j.a.nykanen@.jyu.fi
Aikariippuva Schrödingerin yhtälö
Aineaaltodynamiikka Aineaaltokenttien riippuvuus ajasta aikariippuva Schrödingerin yhtälö Stationääriset ja ei-stationääriset tilat Aaltopaketit Kvanttimekaniikan postulaatit Aikariippuva Schrödingerin
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016
Fysikaalinen kemia 2 (KEMA225, 4 op) syksy 2016 Luennot: Henrik Kunttu, Nanoscience Center, huone YN213; puh: 050-5996134; henrik.m.kunttu@jyu.fi Vastaanotto torstaisin klo 13-15 Laskuharjoitukset: FM
Osallistumislomakkeen viimeinen palautuspäivä on maanantai
Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
1 Aaltofunktio, todennäköisyystulkinta ja normitus
KEMA5 syksy 16 Kertausta keskeisistä asioista 1 Aaltofunktio, todennäköisyystulkinta ja normitus Kvanttimekaniikassa tarkasteltavaa systeemiä kuvaa aaltofunktio ψ. Aaltofunktio on puhtaan matemaattinen
766326A Atomifysiikka 1 - Syksy 2013
766326A Atomifysiikka 1 - Syksy 2013 Luennot n. 46 tuntia Torstaisin 8-10 sali IT116 Perjantaisin 8-10 sali L6 Poikkeuksia: to 19.9. luento vain 8-9 to 17.10. luento vain 8-9 to 14.11. luento vain 8-9
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE
3. MATERIALISTISTEN HIUKKASTEN AALTOLUONNE 3.1. DE BROGLIE AALLOT 1905: Aaltojen hiukkasominaisuudet 1924: Hiukkasten aalto-ominaisuudet: de Broglien hypoteesi Liikkuvat hiukkaset käyttäytyvät aaltojen
KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI
Aineen aaltoluonne. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 4. Mikro- ja nanotekniikan laitos
Aineen aaltoluonne Harris luku 4 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Aineaallot Heisenbergin epätarkkuusperiaate Fourier-muunnos ja epätarkkuusperiaate Aineaaltojen
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen)
Vapaan hiukkasen Schrödingerin yhtälö (yksiulotteinen Vapaaseen hiukkaseen ei vaikuta voimia, joten U(x = 0. Vapaan hiukkasen energia on sen liike-energia eli E=p /m. Koska hiukkasella on määrätty energia,
S Fysiikka III (EST) Tentti ja välikoeuusinta
S-437 Fysiikka III (EST) Tentti ja välikoeuusinta 65007 Välikoeuusinnassa vastataan vain kolmeen tehtävään Kokeesta saatu pistemäärä kerrotaan tekijällä 5/3 Merkitse paperiin uusitko jommankumman välikokeen,
ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA
ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d df(x) dx dx = d2 f(x) dx 2 = f''(x) = f 2 (x) Yleisemmin merkitään: d n f(x) dx n = f n (x) Esimerkki: 2 atominen molekyyli
Nyt n = 1. Tästä ratkaistaan kuopan leveys L ja saadaan sijoittamalla elektronin massa ja vakiot
S-1146 Fysiikka V (ES) Tentti 165005 1 välikokeen alue 1 a) Rubiinilaserin emittoiman valon aallonpituus on 694, nm Olettaen että fotonin emissioon tällä aallonpituudella liittyy äärettömän potentiaalikuopan
1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria
Kvanttimekaniikka I, tentti 6.. 015 4 tehtävää, 4 tuntia 1. Tarkastellaan kaksiulotteisessa Hilbert avaruudessa Hamiltonin operaattoria ( { ( ( } E iδ H =, E, δ R, kannassa B = 1 =, =. iδ E 0 1 (a (p.
Tilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy
z 2 y 2 x 2 z y x Tilavuusintegroin. f(x,y,z)dxdydz z 2 y 2 x 2 = f(x,y,z)dx dy dz z y x Tyypillises. kemian sovelluksissa f(x,y,z) on massa.heys, jolloin integraalin arvo on massa alueella jota integroin.rajat
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk6o voidaan derivoida uudelleen. d! df(x) $ dx " # dx % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
Johdantoa. 0.1 Mustan kappaleen säteily. Musta kappale (black body): Kvanttimekaniikka. Wienin siirtymälaki jakautuman maksimille on
MNQT, sl 2015 1 MNQT, sl 2015 2 Johdantoa Kvanttimekaniikka tarvittiin selittämään uusia kokeellisia havaintoja korvaa Newtonin yhtälön Schrödingerin yhtälöllä, joka on tavallaan pienten hiukkasten "liikeyhtälö"
Luento 6. Mustan kappaleen säteily
Mustan kappaleen säteily Luento 6 Pintaa, joka absorboi kaiken siihen osuvan sähkömagneettisen säteilyn, kutsutaan mustaksi kappaleeksi. Tällainen pinta myös säteilee kaikilla aallonpituuksilla. Sen sanotaan
S Fysiikka III (EST) (6 op) 1. välikoe
S-114.1327 Fysiikka III (EST) (6 op) 1. välikoe 1.3.21 Ilkka Tittonen 1. Vastaa seuraaviin kysymyksiin perustellusti, mutta ytimekkäästi (esim. 5-1 lausetta) (2p per kohta). a) Mikä on sidottu tila? Anna
Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
kolminkertaisesti tehtäviä tavallisiin harjoituksiin verrattuna, voi sen kokonaan tekemällä saada suunnilleen kolmen tavallisen harjoituksen edestä
Matematiikkaa kemisteille, kevät 2013 Ylimääräisiä laskuharjoituksia Tällä laskuharjoituksella voi korottaa laskuharjoituspisteitään, mikäli niitä ei ole riittävästi kurssin läpäisemiseen, tai vaihtoehtoisesti
1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =
S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio
Tilat ja observaabelit
Tilat ja observaabelit Maksimaalinen informaatio systeemistä tietyllä ajanhetkellä sisältyy tilaan ψ (ket). Tila = vektori Hilbertin avaruudessa sisätulo ψ ψ C ψ c 1 ψ 1 + c 2 ψ 2 = c 1 ψ ψ 1 + c 2 ψ ψ
Korkeammat derivaatat
Korkeammat derivaatat Jo kerran derivoitu funk1o voidaan derivoida uudelleen. d dx! " # df(x) dx $ % & = d2 f(x) = f''(x) = f (2) (x) dx 2 Yleisemmin merkitään: d n f(x) dx n = f (n) (x) Esimerkki: 2-
Sidotut tilat. Yliopistonlehtori, TkT Sami Kujala. Kevät Harris luku 5. Mikro- ja nanotekniikan laitos
Sidotut tilat Harris luku 5 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Tähän asti tutkittu aineaaltojen ominaisuuksia Seuraavaksi ryhdytään käyttämään aineaaltoja
Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2
766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.
Todennäköisyys ja epämääräisyysperiaate
Todennäköisyys ja epämääräisyysperiaate Luento 7 Hiukkas-aaltodualismi vaatii uudenlaisen kielenkäytön omaksumista kuvaamaan iukkasten liikettä ja paikkaa. Newtonin mekaniikassa iukkanen on aina jossain
Fysikaalinen kemia II kaavakokoelma, osa 1
Fysikaalinen kemia II kaavakokoelma, osa 1 Wienin siirtymälaki: T λ max = 0.2898 cm K (1) Stefan Boltzmanin laki: M = σt 4 σ = 5.67 10 8 W m 2 K 4 (2) Planckin jakauma ρ = 8πkT λ 4 ( 1 ) e hc/λkt 1 (3)
1. (a) (2p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori
FYSA5 Kvanttimekaniikka I, Osa B 7.. tentti: 4 tehtävää, 4 tuntia. a) p.) Systeemin infinitesimaalista siirtoa matkan ɛ verran esittää operaattori T ɛ) = iɛ h P. Osoita tämän avulla, että äärellistä siirtoa
J 2 = J 2 x + J 2 y + J 2 z.
FYSA5 Kvanttimekaniikka I, Osa B.. tentti: 4 tehtävää, 4 tuntia. Tarkastellaan pyörimismääräoperaattoria J, jonka komponentit toteuttavat kommutaatiorelaatiot [J x, J y ] = i hj z, [J y, J z ] = i hj x,
5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
Kvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aineaaltokenttä ja todennäköisyystiheys
Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi
Kvanttimekaniikka kolmessa ulottuvuudessa Case vetyatomi Harris luku 7 Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Johdanto Yleistetään viidennen luvun sidottujen tilojen
Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo (suositellaan kuitenkin tekemään ennen välikoetta 30.4!
Matematiikkaa kemisteille, kevät 2012 Ylimääräinen laskuharjoitus Palautus 7.5. klo 16.00 (suositellaan kuitenkin tekemään ennen välikoetta 30.4! Tämä laskuharjoitus ei ole pakollinen, eikä sen pisteitä
(1) (2) Normalisointiehdoksi saadaan nytkin yhtälö (2). Ratkaisemalla (2)+(3) saamme
S-446 Fysiikka IV (Sf) Tentti 3934 Oletetaan, että φ ja φ ovat ajasta riippumattoman Scrödingerin yhtälön samaan ominaisarvoon E liittyviä ominaisfunktioita Nämä funktiot ovat normitettuja, mutta eivät
Luku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 8: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Vibraatio eli värähdysliike Rotaatio eli pyörimisliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
Kvanttimekaniikka I tentti : 4 tehtävää, 4 tuntia
Kvanttimekaniikka I.. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Olkoon H systeemin Hamiltonin operaattori, ja A jotakin observaabelia kuvaava operaattori. Johda Ehrenfestin teoreema d A dt = ī [A, H] + A
Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi
Luku 13: Elektronispektroskopia 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi 1 2-atomisen molekyylin elektronitilan termisymbolia muodostettaessa tärkeä ominaisuus on elektronien
( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V
Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +
Esimerkki: 2- atominen molekyyli. Korkeammat derivaatat 1/24/13. Jo kerran derivoitu funk6o voidaan derivoida uudelleen. Yleisemmin merkitään:
Korkeammat erivaatat Jo kerran erivoitu funk6o voiaan erivoia uuelleen.! f(x) x " # x % & = 2 f(x) = f''(x) = f (2) (x) x 2 Yleisemmin merkitään: n f(x) = f (n) (x) x n erkki: 2- atominen molekyyli Värähtelevän
Infrapunaspektroskopia
ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista
Tfy Fysiikka IIB Mallivastaukset
Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama
1 WKB-approksimaatio. Yleisiä ohjeita. S Harjoitus
S-114.1427 Harjoitus 3 29 Yleisiä ohjeita Ratkaise tehtävät MATLABia käyttäen. Kirjoita ratkaisut.m-tiedostoihin. Tee tuloksistasi lyhyt seloste, jossa esität laskemasi arvot sekä piirtämäsi kuvat (sekä
Shrödingerin yhtälön johto
Shrödingerin yhtälön johto Tomi Parviainen 4. maaliskuuta 2018 Sisältö 1 Schrödingerin yhtälön johto tasaisessa liikkeessä olevalle elektronille 1 2 Schrödingerin yhtälöstä aaltoyhtälöön kiihtyvässä liikkeessä
6. Kompleksiluvut. Kompleksilukuja esiintyy usein polynomiyhtälöiden ratkaisuina. Esim:
6. Kompleksiluvut Yhtälöllä x = 1 ei ole reaalilukuratkaisua: tarvitaan uusia lukuja. Kompleksiluku on kahden reaaliluvun järjesteby "pari" (x,y): Z = x +iy Missä i on imaginääriyksikkö, jolla on ominaisuus
Kvanttisointi Aiheet:
Kvanttisointi Luento 5 4 Aiheet: Valosähköilmiö Einsteinin selitys Fotonit Aineaallot ja energian kvantittuminen Bohrin kvanttimalli atomille Bohrin malli vetyatomille Vedyn spektri Mitä olet oppinut?
ψ(x) = A cos(kx) + B sin(kx). (2) k = nπ a. (3) E = n 2 π2 2 2ma 2 n2 E 0. (4)
76A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 4 Kevät 214 1. Tehtävä: Yksinkertainen malli kovalenttiselle sidokselle: a) Äärimmäisen yksinkertaistettuna mallina elektronille atomissa voidaan pitää syvää potentiaalikuoppaa
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin:
Luku 9: Kvanttimekaniikan soveltaminen eri liiketyyppeihin: Translaatioliike (hiukkanen laatikossa) Rotaatio eli pyörimisliike Vibraatio eli värähdysliike 1 Vapaan hiukkasen (V =0) Schrödingerin yhtälön
2. Fotonit, elektronit ja atomit
Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin
Osittaisdifferentiaaliyhtälöt
Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,
Luku 10: Atomien rakenne ja spektrit. Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit
Luku 10: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit 1 n 1 = 3 n 1 = 4 n 1 = 2 n 1 =1 Vetyatomin spektri koostuu viivoista Viivojen sijainti
Luento Atomin rakenne
Luento 10 5. Atomin rakenne Vetatomi Ulkoisten kenttien aiheuttama energiatasojen hajoaminen Zeemanin ilmiö Elektronin spin Monen elektronin atomit Röntgensäteiln spektri 1 Schrödingerin htälö kolmessa
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
Kvanttimekaniikka. Tapio Hansson
Kvanttimekaniikka Tapio Hansson Kummallinen teoria Kvanttimekaniikka on teoria, jota ei ehkä edes kannata yrittää "käsittää". Arkijärjellä ei tee kvanttimaailmassa juuri mitään. Luonto toimii kuten toimii,
Kvanttimekaniikan perusteet
Kvanttimekaniikan perusteet Schrödingerin yhtälö Sironta potentiaaliaskeleesta Elektronitilat potentiaalikuopassa Harmoninen oskillaattori Tilatiheys lisää sirontailmiöistä Aaltofunktio ja todennäköisyystiheys
BM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
Ch7 Kvanttimekaniikan alkeita. Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset.
Ch7 Kvanttimekaniikan alkeita Tässä luvussa esitellään NMR:n kannalta keskeiset kvanttimekaniikan tulokset. Spinnittömät hiukkaset Hiukkasta kuvaa aineaaltokenttä eli aaltofunktio. Aaltofunktio riippuu
Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
Klassisen fysiikan ja kvanttimekaniikan yhteys
Klassise fysiika ja kvattimekaiika yhteys Scrödigeri yhtälö ei statioäärisistä tiloista muodostuvie aaltopakettie aikakäyttäytymie oudattaa Newtoi lakeja. Newtoi mekaiikka voidaa johtaa Schrödigeri yhtälöstä.
8. Klassinen ideaalikaasu
Statistinen fysiikka, osa B (FYSA242) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL240. Ei kiinteitä vastaanottoaikoja. kl 2016 8. Klassinen ideaalikaasu 1 Fysikaalinen tilanne Muistetaan: kokeellisesti
Fononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan
Tilavuusintegroin3. Tilavuusintegroin3
/5/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x,y,z)dxdydz z 2 # y 2 # x 2 & & = % % f(x,y,z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
Jatko-opintoseminaari Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus. Petteri Laakkonen
Jatko-opintoseminaari 21-211 Kevyttä johdattelua kvanttimekaniikkaan: Tila-avaruus Petteri Laakkonen 23.9.21 Tämä teksti on tiivistelmä kirjan [1] luvun 2 tekstistä. Pyrkimyksenä on esittää perustellusti
Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli
KEMIAN MIKROMAAILMA, KE2 Kvanttimekaaninen atomimalli Aineen rakenteen teoria alkoi hahmottua, kun 1800-luvun alkupuolella John Dalton kehitteli teoriaa atomeista jakamattomina aineen perusosasina. Toki
Tilavuusintegroin3. Tilavuusintegroin3 3/19/13. f(x, y, z)dxdydz. ρ(x,y,z) = x 2 + y 2 + z 2 (kg) Ratkaisu: ρ(x,y,z)dxdydz
/9/ z 2 y 2 x 2 z y x Tilavuusintegoin f(x, y, z)dxdydz z 2 # y 2 # x 2 & & = % % f(x, y, z)dx( dy( dz $ $ ' ' z y x Tyypillises kemian sovelluksissa f(x,y,z) on massaheys, jolloin integaalin avo on massa
pääkiertoakseli #$%%ä 2C 2 C 2!"
Tehtävä 1 Määritä seuraavien molekyylien pisteryhmät: (a) H 3 N H 3 N l o l NH 3 + NH 3 urataan lohkokaaviota: lineaari!"!" suuri symmetria 2s v #$%%ä 2v!" pääkiertoakseli #$%%ä 2 2 2!" s h Vastaavasti:
Kvanttidynamiikka Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin.
Kvanttidynamiikka 30.10.2010 0.1 Bra- ja Ket-merkinnöistä Tarkastellaan ensin hieman bra/ket-merkintää ja vertaillaan sitä muihin merkintätapoihin. Oletetaan, että ket ψ ja bra φ ovat alkioita, jotka liittyvät
Kvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 7 Harjoitus 3: ratkaisut Tehtävä Tarkastellaan äärettömän syvässä laatikossa (väli [, L) olevaa hiukkasta. Kirjoita energiatiloja E n vastaavat aaltofunktiot muodossa ψ n (x,
Luku 9: Atomien rakenne ja spektrit. https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
Luku 9: Atomien rakenne ja spektrit Vedyn kaltaiset atomit Atomiorbitaalit Spektrisiirtymät Monielektroniset atomit https://www.youtube.com/watch? v=bmivwz-7gmu https://www.youtube.com/watch? v=dvrzdcnsiyw
Atomimallit. Tapio Hansson
Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista
Bohr Einstein -väittelyt. Petteri Mäntymäki Timo Kärkkäinen
Bohr Einstein -väittelyt Petteri Mäntymäki Timo Kärkkäinen Esityksen sisältö Kvanttivallankumous Epätarkkuusperiaate Väittelyt Yhteenveto 24.4.2013 2 Kvanttivallankumous Alkoi 1900-luvulla (Einstein, Planck,
AINEAALTODYNAMIIKKA...105
AINEAALTODYNAMIIKKA...105 3.1 Aikariippuva Schrödingerin yhtälö... 105 3.1.1 Stationääriset tilat... 108 3.1.. Ei-stationääriset tilat... 109 3.1.3 Aaltofunktioon liittyvä todennäköisyysvirta... 113 3.1.4
5. lukujonot ja sarjat.
5. lukujonot ja sarjat. Lukujono on järjeste1y joukko lukuja x 1, x 2, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan summa: N x i = x 1 + x 2 + x 3 +...+ x N i=1 Jos lukujono on ääre1ömän pitkä
T R Hψ = H(r + R)ψ(r + R) = H(r)ψ(r + R) Kahden peräkkäisen translaation vaikutus ei riipu
Elektronit periodisessa potentiaalissa Tarkastellaan täydellistä Bravais n hilan kuvaamaa kidettä. Vaikka todelliset kiinteät aineet eivät esiinnykään täydellisinä hiloina, voidaan poikkeamat periodisuudesta
Talousmatematiikan perusteet: Luento 13. Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 13 Rajoittamaton optimointi Hessen matriisi Ominaisarvot ja vektorit Ääriarvon laadun tarkastelu Viime luennolla Aloimme tarkastella yleisiä, usean muuttujan funktioita
S Fysiikka III (Est) 2 VK
S-37 Fysiikka III (Est) VK 500 Tarkastellaan vedyn p energiatasoa a) Mikä on tämän tason energia Bohrin mallissa? b) Oletetaan että spinratavuorovaikutus voidaan jättää huomiotta Kirjoita kaikki tähän
ATOMIN KVANTTIMEKAANINEN MALLI...133
ATOMIN KVANTTIMEKAANINEN MALLI...133 4.1 Johdanto...133 4. Atomin ydinmallin kehittyminen...134 4.3 Rutherfordin sironta...136 4.4 Rutherfordin sironnan kulmariippuvuus...138 4.5 Makroskooppisen vaikutusalan
Kvanttimekaaninen atomimalli. "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman
Kvanttimekaaninen atomimalli "Voi hyvin sanoa, että kukaan ei ymmärrä kvanttimekaniikkaa. -Richard Feynman Tunnin sisältö 1. 2. 3. 4. 5. 6. 7. Kvanttimekaaninen atomimalli Orbitaalit Kvanttiluvut Täyttymisjärjestys
5. lukujonot ja sarjat.
5. lukujonot ja sarjat. Lukujono on järjeste1y joukko lukuja x 1, x 2, x 3,..., x N Kun jonon alkiot lasketaan yhteen, saadaan sarja: N x i = x 1 + x 2 + x 3 +...+ x N i=1 Yhteenlaskun tulosta sanotaan
Kvanttifysiikan perusteet, harjoitus 5
Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan
Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu
Talousmatematiikan perusteet: Luento 14 Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu Luennolla 6 Tarkastelimme yhden muuttujan funktion f(x) rajoittamatonta optimointia
Mat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ
Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan
Ionisoiva säteily. Tapio Hansson. 20. lokakuuta 2016
Tapio Hansson 20. lokakuuta 2016 Milloin säteily on ionisoivaa? Milloin säteily on ionisoivaa? Kun säteilyllä on tarpeeksi energiaa irrottaakseen aineesta elektroneja tai rikkoakseen molekyylejä. Milloin
FYSA2031 Potentiaalikuoppa
FYSA2031 Potentiaalikuoppa Työselostus Laura Laulumaa JYFL YK216 laura.e.laulumaa@student.jyu.fi 16.10-2.11. 2017 Ohjaus Työn ja ohjelman esittely ( 30 min) Harjoitellaan ohjelman käyttöä Harmoninen potentiaali
3.6 Feynman s formulation of quantum mechanics
3.6 Feynman s formulation of quantum mechanics Course MAT-66000: Quantum mechanics and the particles of nature Ilkka Kylänpää Tampere University of Technology 14.10.2010 Sisältö Johdattelua Klassinen action
KVANTTIMEKANIIKKA I Johdatus alkuaineiden jaksolliseen järjestelmään A/S
KVANTTIMEKANIIKKA I Johdatus alkuaineiden jaksolliseen järjestelmään 76331A/S Mikko Saarela 13. elokuuta 013 Oppimateriaali Cohen-Tannoudji, Diu ja Laloë: Quantum Mechanics (volume one), 1977 Powell &
2m 2 r + V (r) ψ n (r) = ɛ n ψ n (r)
Kvanttimekaniikka I. 5. 4 tentti : 4 tehtävää, 4 tuntia. (a (p. Tarkastellaan keskeisliikettä potentiaalissa V (r = V (r, missä r = r on keskeisliikkeeseen liittyvä suhteellinen etäisyys. Separoi Schrödingerin
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
Teoreetikon kuva. maailmankaikkeudesta
Teoreetikon kuva Teoreetikon kuva hiukkasten hiukkasten maailmasta maailmasta ja ja maailmankaikkeudesta maailmankaikkeudesta Jukka Maalampi Fysiikan laitos Jyväskylän yliopisto Lapua 5. 5. 2012 Miten
Energian säilymislain perusteella elektronin rekyylienergia on fotnien energioiden erotus: (1)
S-11446 Fysiikka IV (Sf), I Väliko 544 1 Osoita, ttä Comptonin sironnassa lktronin suurin mahdollinn rkyylinrgia voidaan sittää muodossa E Kin hf 1 + mc /hf Enrgian säilymislain prustlla lktronin rkyylinrgia
Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen
Atomi- ja ydinfysiikka -verkkokurssin toteuttaminen Janne Klemola Oulun yliopisto Fysiikan tutkinto-ohjelma Pro gradu -tutkielma Toukokuu 2017 Sisältö Johdanto 1 1 Kurssin asiasisältö 2 1.1 Sähkömagneettisten
Mustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi