MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 10: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali.
|
|
- Viljo Lehtinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 MS-A25/MS-A26 Differentiaali- ja integraalilaskenta 2 Luento 1: Napa-, sylinteri- ja pallokoordinaatistot. Pintaintegraali. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät Perustuu Antti Rasilan luentomonisteeseen vuodelta 215. Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
2 Napakoordinaatit 1/2 Piste (x, y) R 2 voidaan kirjoittaa muodossa (r, θ), missä r ja θ < 2π. Napakulma θ on yksikäsitteinen jos r >. y r (x,y) Alkeisgeometriasta saadaan kaavat { { x = r cos θ, r 2 = x 2 + y 2 y = r sin θ, tan θ = y/x. Vrt. kompleksiluvun polaarimuoto x + iy = re iθ. θ Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19 x
3 Napakoordinaatit 2/2 Koordinaatistomuunnoksen (r, θ) (x, y) Jacobin determinantille saadaan kaava (x, y) (r, θ) = x x r θ = cos θ r sin θ sin θ r cos θ = r. y r y θ Siten muuttujanvaihtokaavaa varten saadaan pinta-alan venytys dx dy = (x, y) (r, θ) dr dθ = r dr dθ. Piirrä kuva! Tasointegraali napakoordinaateissa f (x, y) dx dy = missä g(r, θ) = f (r cos θ, r sin θ). D G g(r, θ)r dr dθ, Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
4 Esimerkki 1 Olkoon D = {(x, y) R 2 : 1 < x 2 + y 2 < 4}. Lasketaan napakoordinaateissa integraali 1 I = x 2 dx dy. + y 2 Saadaan I = ˆ 2π ˆ 2 1 D ˆ 1 2π ˆ 2 dr r dr dθ = dθ r 2 1 r = 2π ln r 2 r=1 = 2π ln 2. Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
5 Esimerkki 2 1/2 Integraali ˆ e x2 dx on erittäin tärkeä mm. todennäköisyyslaskennassa ja tilastotieteessä. Tämä integraali on vaikea, koska integraalifunktiota ei ole mahdollista kirjoittaa alkeisfunktioiden avulla. Integraali on kuitenkin mahdollista laskea seuraavan tempun avulla: Huomataan aluksi, että I = ˆ ˆ ( ˆ e x2 y 2 dx dy = 2 e dx) x2. Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
6 Esimerkki 2 2/2 Laskemalla epäoleellinen tasointegraali napakoordinaateissa I = ˆ 2π ˆ = 2π ˆ e r 2 r dr dθ = ˆ 2π re r 2 dr = π lim R dθ ˆ R ˆ re r 2 dr ( 2r)e r 2 dr jossa viimeinen askel on ovela. Nyt d dr e r 2 = 2re r 2, joten integraali saadaan analyysin peruslauseella antiderivaatan hypystä integroimisvälillä: ˆ R ( 2r)e r 2 dr = e R2 1 Viemällä R tulee I = π ja siitä alkuperäisen integraalin arvo ˆ e x2 dx = I = π. Miksi temppu toimi? Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
7 Muuttujanvaihto avaruusintegraalissa (kertaus) Muunnoskaavat (u, v, w) (x, y, z) x = x(u, v, w), y = y(u, v, w), z = z(u, v, w). Tällöin missä dx dy dz = (x, y, z) (u, v, w) du dv dw, (x, y, z) (u, v, w) = x u y u z u x v y v z v x w y w z w Jos siis g(u, v, w) = f (x(u, v, w), y(u, v, w), z(u, v, w)), niin f (x, y, z) dx dy dz = g(u, v, w) (x, y, z) (u, v, w) du dv dw. D G. Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
8 Sylinterikoordinaatit 1/2 Koordinaatit (r, θ, z), missä r, θ < 2π, z R. Suoralla r = (eli z-akselilla) napakulma θ ei ole yksikäsitteinen. z v (x,y,z) θ r y x Sylinterikoordinaateissa on helppo esittää pyörähdyskappaleita z-akselin ympäri muodossa r = f (z), jossa z [a, b] ja θ [, 2π), missä f on ei-negatiivinen funktio. Sylinterisymmetriset tehtävät! Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
9 Sylinterikoordinaatit 2/2 Muunnoskaavat (r, θ, z) (x, y, z): x = r cos θ, y = r sin θ, z = z. Muunnoksen Jacobin determinantiksi saadaan dx dy dz = (x, y, z) (r, θ, z) dr dθ dz = r dr dθ dz. Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
10 Esimerkki 3 Lasketaan funktion f määräämän pyörähdyskappaleen Ω tilavuus = Ω ˆ b mikä lienee tuttu kaava. a dx dy dz = ˆ b ˆ 2π ˆ f (z) a r dr dθ dz ( 2π 1 ) ˆ b 2 f (z)2 dz = π f (z) 2 dz, a Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
11 Pallokoordinaatit 1/2 Koordinaatit (r, θ, φ), missä r, θ < 2π, φ π. z v (x,y,z) φ r θ y x Kulmaa π/2 φ kutsutaan korotus- eli napakulmaksi, ja sitä käytetään usein φ:n sijasta. Atsimuuttikulma θ ja korotuskulma ovat yksikäsitteisiä jos pisteen etäisyys z-akselista >. Pallosymmetriset ja eräät sylinterisymmetriset tehtävät! Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
12 Pallokoordinaatit 2/2 Muunnoskaavat: x = r sin φ cos θ, y = r sin φ sin θ, z = r cos φ. Muunnoksen Jacobin determinantiksi saadaan dx dy dz = (x, y, z) (r, θ, φ) dr dθ dφ = r 2 sin φ dr dθ dφ. Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
13 Esimerkki 4 Lasketaan R-säteisen pallon B 3 (R) tilavuus: = B 3 (R) ˆ R ˆ 2π = 1 dx dy dz = r 2 cos φ ˆ R ˆ R ˆ 2π ˆ π π φ= dθ dr = 4πr 2 dr = 4πr 3 3 R r= r 2 sin φ dφ dθ dr ˆ R ˆ 2π = 4πR3 3. 2r 2 dθ dr Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
14 Kaksiulotteinen pinta-ala avaruudessa 1/3 z k n γ y x Tutkitaan kaksiulotteista kaareutuvaa pintaa S, joka on (piirtämisen helpottamiseksi) xy-tason yläpuolella avaruudessa R 3. Tarkastellaan aluksi xy-tason neliön yläpuolelle jäävän osan pinta-alaa. Se on ilmeisesti suurempi tai yhtäsuuri kuin vastaavan neliön pinta-ala. Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
15 Kaksiulotteinen pinta-ala avaruudessa 2/3 Tästä johtuen pinta-aladifferentiaali ds on suurempi tai yhtäsuuri kuin kuin dx dy. Itseasiassa dx dy saadaan, jos ds projisoidaan xy-tasoon. Projektio voidaan kirjoittaa kaavana dx dy = cos γ ds, missä γ on pinnan S normaalivektorin n ja z-akselin suuntaisen yksikkövektorin k välinen kulma. Toisaalta pistetulon määritelmästä saadaan n k = n k cos γ, ja siis ds = 1 n k dx dy = dx dy. cos γ n k Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
16 Kaksiulotteinen pinta-ala avaruudessa 3/3 Aikaisemmin on johdettu pinnan (ylöspäin suunnatulle) normaalivektorille esitys Saadaan n = n = z x i z y j + k. 1 + ( z x ) 2 ( z ) 2 + y Lisäksi k = 1 ja n k = 1, joten ( z ) 2 ( z ) 2 ds = dx dy. x y Kaarevuuden huomioiva korjaustekijä yleistää tasointegraalin pintaintegraaliksi. Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
17 Esimerkki 5 1/3 Tarkastellaan sylinterin x 2 + y 2 = a 2, a > leikkaamaa palasta hyperbolisesta paraboloidista z = x 2 y 2. Mikä on palasen pinta-ala? Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
18 Esimerkki 5 2/3 Lasketaan x z = 2x, y z = 2y. Siten pinta-aladifferentiaaliksi saadaan ( z ) 2 ( z ) 2 ds = dx dy x y = 1 + 4(x 2 + y 2 ) dx dy napakoordinaateissa ilmaistuna. = 1 + 4r 2 r dr dθ, Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
19 Esimerkki 5 3/3 Lasketaan nyt integraali napakoordinaateissa: = π 4 Ala(S) = = π 4 a r= ˆ 2π ˆ a ˆ a r 1 + 4r 2 dr dθ 8r 1 + 4r 2 dr 2 3 (1 + 4r 2 ) 3/2 = π [ (1 + 4a 2 ) 3/2 1 ]. 6 Jarmo Malinen (Aalto-yliopisto) MS-A25/MS-A26 Kevät / 19
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa
MS-A24 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 9: Muuttujanvaihto taso- ja avaruusintegraaleissa Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kevät 216 Antti Rasila
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 217 Antti Rasila (Aalto-yliopisto)
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia
MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento : Moniulotteiset integraalit Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 26 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 8: Newtonin iteraatio. Taso- ja avaruusintegraalit Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Mikä on pinta?
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia
MS-A25/MS-A26 ifferentiaali- ja integraalilaskenta 2 Luento 11: Taso- ja tilavuusintegraalien sovellutuksia Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 216 1 Perustuu
LisätiedotDifferentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 2017
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Harjoitus 4/ Syksy 217 Alkuviikon harjoituksissa ratkaistaan kolme tehtävää assistentin avustuksella (läsnäololaskarit).
LisätiedotMS-A0202 Di erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit
MS-A22 i erentiaali- ja integraalilaskenta 2 (SCI) Luento 8: Taso- ja avaruusintegraalit Antti Rasila Aalto-yliopisto Syksy 25 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 25 / 8 Tasointegraali Olkoon R
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015
LisätiedotDifferentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /
M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43
Lisätiedot(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:
7 VEKTORIANALYYSI Luento 11 7. Tilavuusintegraalit A 14.5 Funktion f( xyz,, ) tilavuusintegraali yli kolmiulotteisen alueen V on raja-arvo summasta V f( xyz,, ) V kun tilavuusalkiot V =. Tarkastellaan
LisätiedotTäydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä.
1 Laaja matematiikka 5 Kevät 009 Integrointi n-ulotteisessa avaruudessa Täydennetään ja kerrataan Fitzpatrickin lukujen 18 ja 19 esitystä. Tasointegraali Tasointegraali f voidaan laskea kaksinkertaisena
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit
MS-A35 ifferentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A35 Syksy 215 1 / 24 Skalaarikenttä Olkoon R
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /
M-A5 ifferentiaali- ja integraalilaskenta, I/17 ifferentiaali- ja integraalilaskenta Mallit laskuharjoitusviikkoon 5 / 9. 1.1. Alkuviikon tehtävät Tehtävä 1: Määritä (ilman Gaussin lausetta) vektorikentän
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016
Lisätiedotkaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ
58 VEKTORIANALYYSI Luento 9 Ortogonaaliset käyräviivaiset koordinaatistot Olemme jo monta kertaa esittäneet karteesiset x, y ja z koordinaatit uusia koordinaatteja käyttäen: x= xuvw (,, ), y= yuvw (,,
LisätiedotDifferentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 2016
MS-A35 Differentiaali- ja integraalilaskenta 3 Differentiaali- ja integraalilaskenta 3 Mallit 2 (alkuviikko) / Syksy 216 Tuntitehtävä 1: Laske sylinterikoordinaatteja käyttämällä sen kappaleen tilavuus,
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja
LisätiedotF dr = F NdS. VEKTORIANALYYSI Luento Stokesin lause
91 VEKTORIANALYYI Luento 13 9. tokesin lause A 16.5 tokesin lause on kuin Gaussin lause, mutta yhtä dimensiota alempana: se liittää toisiinsa kentän derivaatasta pinnan yli otetun integraalin ja pinnan
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 9: Greenin lause Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 19 Esimerkki Olkoon F : R 3 R 3 vakiofunktio
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotELEC C4140 Kenttäteoria (syksy 2015)
ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Vesanen MS-A0205/6 Differentiaali- ja integraalilaskenta 2, kevät 2017 Laskuharjoitus 4A (Vastaukset) alkuviikolla
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot
MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot Harri Hakula Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2018 1 Perustuu Antti Rasilan luentomonisteeseen
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 1: Parametrisoidut käyrät ja kaarenpituus Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotJYVÄSKYLÄN YLIOPISTO. Integraalilaskenta 2 Harjoitus Olkoon A := {(x, y) R 2 0 x π, sin x y 2 sin x}. Laske käyräintegraali
JYVÄSKYLÄN YLIOPISTO MTEMTIIKN J TILSTOTIETEEN LITOS Integraalilaskenta Harjoitus 4 5.4.4. Olkoon := {(x, y) R x π, sin x y sin x}. Laske käyräintegraali + (y dx + x dy) a) suoraan; ja b) Greenin lauseen
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto)
LisätiedotTällaisessa tapauksessa on usein luontevaa samaistaa (u,v)-taso (x,y)-tason kanssa, jolloin tason parametriesitys on *** VEKTORIANALYYSI.
39 VEKTORIANALYYI Luento 6 5. Pinnat ja pintaintegraalit Pintojen parametriesitys. Aikaisemmin käsittelimme käyrän esittämistä parametrimuodossa. iihen riitti yksi reaalinen parametri (t), joka sai aroja
LisätiedotOletetaan sitten, että γ(i) = η(j). Koska γ ja η ovat Jordan-polku, ne ovat jatkuvia injektiivisiä kuvauksia kompaktilta joukolta, ja määrittävät
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 18 Harjoitus 6 Ratkaisuehdotukset Tehtävä 1. Osoita, että sileille Jordan-poluille on voimassa : I R n ja : J R n (I) = (J) jos ja vain
LisätiedotVektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
Lisätiedot4.3.7 Epäoleellinen integraali
Esimerkki 4.3.16. (Lineaarinen muuttujien vaihto) Olkoot A R m sellainen kompakti joukko, että A on nollajoukko. Olkoon M R m m säännöllinen matriisi (eli det(m) 0) ja f : R m R jatkuva funktio. Tehdään
Lisätiedotf x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.
13. Erityyppisten integraalien väliset yhteydet 13.1. Gaussin lause 364. Laske A f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y
Lisätiedot1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.
ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0004/A0006 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 8.9.015 Reaalinen
LisätiedotELEC C4140 Kenttäteoria (syksy 2016)
ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä
Lisätiedot1. Integrointi n-ulotteisessa avaruudessa
1 Laaja matematiikka 5 Kevät 2010 1. Integrointi n-ulotteisessa avaruudessa Taso-integraali 2 Yleistetään määrätyn integraalin käsite ensin tasoon, sitten 3 n kolmiulotteiseen avaruuteen ja lopuksi yleiseen
LisätiedotLuento 4: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 4: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Pyörimisliikkeestä Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia Luennon sisältö Suhteellinen translaatioliike
LisätiedotMS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus
MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Parametrisoidut käyrät ja kaarenpituus Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0202 Syksy 2015 1 / 18
LisätiedotLuento 6: Suhteellinen liike ja koordinaatistomuunnoksia
Luento 6: Suhteellinen liike ja koordinaatistomuunnoksia Suhteellinen translaatioliike Suhteellinen pyörimisliike Tyypillisiä koordinaatistomuunnoksia extraa 1 / 31 Luennon sisältö Suhteellinen translaatioliike
LisätiedotMS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Tentti ja välikokeiden uusinta 8..206 Gripenberg, Nieminen, Ojanen, Tiilikainen, Weckman Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi
LisätiedotVektorilaskenta. Luennot / 66. Vektorilaskenta Lineaarikuvauksen vaikutus mittaan Sijoitus integraaliin.
Luennot 03.10. - 05.10.2018 1 / 66 Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien vaihto 2 / 66 Mitta Mitta Yleistä Laatikko Venytys Venytys, 2 Rivin lisääminen toiseen Rivien
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 5 Tasointegraalin laskeminen iemmin tutkimme ylä- ja alasummien antamia arvioita tasointegraalille f (x, ydxdy. Tässä siis funktio f (x, y integroidaan muuttujien x
Lisätiedotx n e x dx = n( e x ) nx n 1 ( e x ) = x n e x + ni n 1 x 4 e x dx = x 4 e x +4( x 3 e x +3( x 2 e x +2( xe x e x ))) = e x
Osittaisintegrointia käyttäen osoita integraalille I n x n e x dx oikeaksi reduktiokaava I n x n e x + ni n ja laske sen avulla mitä on I 4 kun x. x n e x dx n( e x ) nx n ( e x ) x n e x + ni n x 4 e
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 5: Kaarenpituus ja skalaarikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 /
LisätiedotTilavuusintegroin. f(x,y,z)dxdydz. = f(x,y,z)dx dy
z 2 y 2 x 2 z y x Tilavuusintegroin. f(x,y,z)dxdydz z 2 y 2 x 2 = f(x,y,z)dx dy dz z y x Tyypillises. kemian sovelluksissa f(x,y,z) on massa.heys, jolloin integraalin arvo on massa alueella jota integroin.rajat
LisätiedotTehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
LisätiedotVektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa
Viikon aiheet Pistetulo (skalaaritulo Vektorien tulot Pistetulo Ristitulo Skalaari- ja vektorikolmitulo Integraalifunktio, alkeisfunktioiden integrointi, yhdistetyn funktion derivaatan integrointi Vektoreiden
LisätiedotTodista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f,
7. Taso- ja avaruusintegraali 7.1. Tasointegraalin määrittely 205. Tarkastellaan funktiota f (x,y) = x+y neliössä {(x,y) 0 x 1, 0 y 1}. Neliö jaetaan suorilla x = a ja y = b neljään osasuorakulmioon; 0
LisätiedotGaussin lause eli divergenssilause 1
80 VEKTOIANALYYI Luento 1 8. Gaussin lause eli divergenssilause 1 A 16.4 Kurssin jäljellä olevassa osassa käymme läpi joukon fysiikan kannalta tärkeitä vektorikenttien integrointia koskevia tuloksia, nimittäin
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 6: Vektorikentän viivaintegraali
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 6: Vektorikentän viivaintegraali Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 27 Esimerkki: funktion
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotKompleksianalyysi, viikko 4
Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat. Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotSijoitus integraaliin
1 / 32 Muunnetaan funktion f integraali yli joukon U integraaliksi yli joukon V tekemällä sijoitus x = g(y), missä g : V U on bijektio (ainakin), kun se rajoitetaan funktioksi g : V U. Uudeksi integroitavaksi
Lisätiedotu = 2 u (9.1) x + 2 u
9. Poissonin integraali 9.. Poissonin integraali. Ratkaistaan Diriclet n reuna-arvotehtävä origokeskisessä, R-säteisessä ympyrässä D = {(x, y) R x +y < R }, t.s. kun f : D R on annettu jatkuva funktio,
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 5: Taylor-polynomi ja sarja Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 26.9.2016 Pekka Alestalo,
LisätiedotVektorilaskenta, tentti
Vektorilaskenta, tentti 27102017 Tentin kesto n 3 tuntia Vastaa NELJÄÄN tehtävään Jos vastaat kaikkiin, niin neljä PARASTA otetaan huomioon Kuvat vievät tilaa, joten muista kurkistaa paperin toiselle puolelle
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 28.9.2016 Pekka Alestalo,
LisätiedotMuutoksen arviointi differentiaalin avulla
Muutoksen arviointi differentiaalin avulla y y = f (x) y = f (x + x) f (x) dy y dy = f (x) x x x x x + x Luento 7 1 of 15 Matematiikan ja tilastotieteen laitos Turun yliopisto Muutoksen arviointi differentiaalin
LisätiedotKompleksianalyysi, viikko 6
Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
Lisätiedot( ds ) A (2) ψ ξ dv + ψ 2 ξ dv = ψ 2 ξ ξ 2 ψ ) V
Kenttäteorian matemaattisia apuneuvoja 4..7. Gaussin ja Stokesin lauseet V S ds A = dl A = V S A dv, =, tai ) ds ) A ). Greenin kaavat I : II : 3. Diracin deltafunktio 4. Vektorilaskentaa V V ψ ξ dv +
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Lisätiedot1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
LisätiedotInsinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut
Insinöörimatematiikka D, 29.3.2016 4. laskuharjoituksien esimerkkiratkaisut 1. Olkoon u (4,0,4,2) ja v ( 1,1,3,5) vektoreita vektoriavaruudessa R 4. Annetun sisätulon (x,y) indusoima normi on x (x,x) ja
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Kompleksiluvut Riikka Korte (muokannut Riikka Kangaslammen materiaalin pohjalta) Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.11.2015 1 /
LisätiedotMS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi
MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 4: Ketjusäännöt ja lineaarinen approksimointi Jarmo Malinen Matematiikan ja systeemianalyysin laitos 1 Aalto-yliopisto Kevät 2016 1 Perustuu
LisätiedotLuennoitsija: Jukka Maalampi Luennot: , ma 9-10 ja ke Luentoja ei ole viikoilla 15 (pääsiäisviikko).
1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2017 Luennoitsija: Jukka Maalampi Luennot: 63 35, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 15 (pääsiäisviikko) Harjoitusassistentit: Petri Kuusela ja Tapani
Lisätiedot5. Integrointi n-ulotteisessa avaruudessa
71 5. Integrointi n-ulotteisessa avaruudessa Taso-integraali 2 Yleistetään edellä esitetty määrätyn integraalin käsite ensin tasoon, 3 n sitten kolmiulotteiseen avaruuteen ja lopuksi yleiseen :ään. Kaikissa
Lisätiedotedition). Luennot seuraavat tätä kirjaa, mutta eivät orjallisesti.
1 VEKTORIANALYYSI FYSA114 (3 op), kevät 2014 Luennoitsija: Jukka Maalampi Luennot: 53-55, ma 9-10 ja ke 12-14 Luentoja ei ole viikoilla 16 ja 17 eli 14 274 Harjoitusassistentti: Ville Kotimäki Laskuharjoitukset:
LisätiedotDifferentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L
Differentiaali- ja integraalilaskenta 2 TFM Laskuharjoitus 2L Tehtävät 1-3 ovat kotitehtäviä, jotka on tarkoitus laskea ennen loppuviikon harjoitusta. Tehtävät 4-6 palautetaan kirjallisena A4-paperilla
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotPyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty
Pyramidi Integraalilaskenta harjoituskokeiden ratkaisut sivu 98 Päivitetty.5. Pyramidi Harjoituskokeet 6.5.7 Ensimmäinen julkaistu versio..7.7 Korjattu ulkoasua ja painovirheitä..8.7 Täydennetty ratkaisuja
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
Lisätiedot(b) = x cos x 1 ( cos x)dx. = x cos x + cos xdx. = sin x x cos x + C, C R.
Calculus Kurssikoe..7. Laske (a) x sin x, (b) x x + x. (a) Merkitään u(x) = x ja v (x) = sin x, jolloin u (x) =, v(x) = cos x ja osittaisintegroimalla saadaan x sin x = u(x)v (x) = u(x)v(x) u (x)v(x) =
LisätiedotVektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus
8. Vektoriarvoiset funktiot 8.1. Vektoriarvoisen funktion jatkuvuus ja derivoituvuus 320. Olkoon u reaalimuuttujan vektoriarvoinen funktio R R n ja lim t a u(t) = b. Todista: lim t a u(t) = b. 321. Olkoon
LisätiedotA B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1
Mapu I Viikko 4 tehtävä malli Millä q:n arvoilla vektori A(q) (, q, q ) on kohtisuora vektorin B (, 0, ) kanssa? Ovatko A:n eri ratkaisut keskenään kohtisuoria? Jos eivät, määrää niiden välinen kulma!
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotPYÖRÄHDYSKAPPALEEN PINTA-ALA
PYÖRÄHDYSKAPPALEEN PINTA-ALA PYÖRÄHDYSKAPPALEEN PINTA-ALA Pyörädyskappaleen pinta syntyy, kun funktion kuvaaja pyörätää suoran ympäri., suomennos Matti Pauna LIERIÖ JA KARTIO Lieriöt ja kartiot ovat yksinkertiaisimpia
LisätiedotDifferentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
LisätiedotMS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin
LisätiedotMS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät
MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015 1 / 24 Motivaatio Tässä tutustutaan
LisätiedotFr ( ) Fxyz (,, ), täytyy integroida:
15 VEKTORIANALYYSI Luento Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin ja voima
LisätiedotAalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016
Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A23 Differentiaali- ja integraalilaskenta 2, kevät 216 Laskuharjoitus 2A (Vastaukset) Alkuviikolla
Lisätiedot= ( F dx F dy F dz).
17 VEKTORIANALYYSI Luento 2 3.4 Vektorikentän käyräintegraali Voiman tekemä työ on matka (d) kertaa voiman (F) projektio liikkeen suunnassa, yksinkertaisimmillaan W Fd. Jos liike tapahtuu käyrää pitkin
LisätiedotKuva 1: Tehtävä 1a. = 2π. 3 x3 1 )
BMA58 - Integraalilaskenta ja sovellukset Harjoitus 3, Kevät 6 = Kuva : Tehtävä a. a Slinterinkuorelle tässä h = ja r = ja kä läpi välin [,], joka johtaa lausekkeeseen: V = π 6 / 3 d 3 3 3 = 3 Kuva : Tehtävä
Lisätiedot1. Viikko. K. Tuominen MApu II 1/17 17
1. Viikko Keskeiset asiat ja tavoitteet: 1. Kompleksiluvut, kompleksitaso, polaariesitys, 2. Kompleksilukujen peruslaskutoimitukset, 3. Eulerin ja De Moivren kaavat, 4. Potenssi ja juuret, kompleksinen
Lisätiedotpeitteestä voidaan valita äärellinen osapeite). Äärellisen monen nollajoukon yhdiste on nollajoukko.
Esimerkki 4.3.9. a) Piste on nollajoukko. Suoran rajoitetut osajoukot ovat avaruuden R m, m 2, nollajoukkoja. Samoin suorakaiteiden reunat koostuvat suoran kompakteista osajoukoista. b) Joukko = Q m [0,
LisätiedotLUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto
LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen
LisätiedotMATEMATIIKAN PERUSKURSSI II
MTEMTIIKN PERUKURI II Harjoitustehtäviä kevät 17 1. Tutki, suppenevatko seuraavat lukujonot: a) d) ( k ) + 5 k, b) k 1 x 5 dx, e) ( ln(k + 1) k ), c) k 1 cos(πx) dx, f) k e x dx, 1 k e k k kx dx.. Olkoon
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
LisätiedotMatriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa
Matriisilaskenta Luento 10: Polaarimuoto ja kompleksilukujen geometriaa Antti Rasila 2016 Polaarimuoto Kuvasta nähdään: { x = r cos θ, y = r sin θ. Siis z = x + iy = r cos θ + ir sin θ. Saadaan kompleksiluvun
Lisätiedot