ELEC C4140 Kenttäteoria (syksy 2015)

Koko: px
Aloita esitys sivulta:

Download "ELEC C4140 Kenttäteoria (syksy 2015)"

Transkriptio

1 ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015

2 Antennit (Ulaby , 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja piirimalli Puolenaallon dipoli Sieppauspinta Friisin kaava radiolinkille Kahden antennin ryhmä 2 (18)

3 Annetun virtajakauman säteily Jos antennin virrantiheys J = J(R) on tiedossa, säteilykenttien laskeminen on periaatteessa suoraviivaista (mutta usein työlästä): Ã = µ V 0 J(R ) e jkr dv 4π R, H = 1 µ 0 Ã, Ẽ = 1 jωε 0 H. 3 (18)

4 Hertzin dipoli l z θ I 0 R H R Ẽ Hertzin dipoli on virta-alkio, jonka pituus l λ ja jossa on tasainen virtajakauma I 0. Laskemalla saadaan kenttäkomponentit H φ = V [ 0k 1 η 0 kr j (kr) [ 2 Ẽ R = 2V 0 k [ 1 Ẽ θ = V 0 k kr j (kr) (kr) 3 ] e jkr sin θ, j (kr) 2 1 (kr) 3 ] e jkr sin θ ] e jkr sin θ Riittävän kaukana 1/(kR)-termit dominoivat. V 0 = jkη 0I 0 l 4π 4 (18)

5 Hertzin dipolin kaukokenttä z R Kaukokentässä (kr 1) saatiin siis l θ I 0 R H Ẽ ( ) Ẽ = θ e jkr V 0 sin θ R H = φ V ( ) 0 e jkr sin θ η 0 R missä vakio V 0 = jkη 0I 0 l 4π, e jkr /R on palloaaltotekijä, sin θ on (kentän) suuntakuvio ja η 0 = µ 0 /ε 0 on tyhjiön väliaineimpedanssi. 5 (18)

6 Kaukokenttä yleisemmin Kaukokenttäapproksimaation rajana pidetään usein R > 2λ (pieni antenni) R > 2d2 λ (iso antenni) missä d on antennin suurin halkaisija (tai pituus). Tällöin kenttälausekkeissa approksimoidaan kr 1, jolloin antennin kaukokentän etäisyysriippuvuus on muotoa Ẽ e jkr R. (Tämä pätee myös aallonpituuteen nähden isokokoisille antenneille, mutta silloin suuntakuvio on toki paljon monimutkaisempi kuin Hertzin dipolilla.) 6 (18)

7 Normalisoitu tehosäteilykuvio Hertzin dipolin kaukokentän keskimääräinen etenevä tehotiheys on S av = 1 [Ẽ 2 Re H ] = R V 0 2 2η 0 R }{{ 2 sin 2 θ = R S(R, θ, φ). } S 0 (R) Yleisesti määritellään antennin normalisoitu tehosäteilykuvio F(θ, φ) = S(R, θ, φ) S max kiinteällä etäisyydellä R kaukokentässä. 7 (18)

8 Suuntaavuus Antennin (maksimi)suuntaavuus D = maksimi tehotiheys kaukokentässä keskimääräinen tehotiheys samalla etäisyydellä Normalisoidun tehosäteilykuvion avulla ilmaistuna suuntaavus D = F max F av = 1 4π 4π 1 F(θ, φ) dω = 4π Ω p missä Ω p on säteilykuvion avaruuskulma 2π π Ω p = F(θ, φ) sin θ dθ dφ 0 0 Esim: Hertzin dipolin suuntaavus D = 3/2 = 1.76 db (muista) 8 (18)

9 Tulkintaa Säteilykuvion avaruuskulma 1 F(θ, φ) F = 1 within the cone 1 Ω p Antennin pääkeilan suunnassa tehotiheys kaukokentässä on suuntaavuus kertaa isotrooppisen säteilijän tehotiheys: (a) Actual pattern [Ulabyn kuvasta (b) Equivalent 9 11] solid angle S = D P rad 4πR 2 Figure Jos9-11 antennilla The patternon solid vain angleyksi Ω p defines pääkeila an tai sivukeilat ovat hyvin equivalent cone over which all the radiation of the actual pieniä, voidaan säteilykuvion avaruuskulmaa approksimoida antenna is concentrated with uniform intensity equal to the maximum of the actual pattern. Ω p β xz β yz, missä β xz, β yz ovat puolentehon keilanleveydet kahdessa päätasossa. 9 (18)

10 Esimerkki Tehosäteilykuviot xz- ja yz-tasoissa (pääkeilan suunta on ẑ): db 23.0 db Tämän antennin sivukeilataso on 13.3 db ja suuntaavuus D = 20.2 db. Puolentehon keilanleveyksillä saadaan Ω p β xz β yz sr ja D 20.9 db. 10 (18)

11 Antennin vahvistus Antenniin syötetään tehoa P t = P rad + P loss missä P rad on säteilyteho ja P loss on häviöteho. Tällöin antennin säteilyhyötysuhde ξ = P rad P t = P rad P rad + P loss 1 ja vahvistus G = ξd 11 (18)

12 Antennin piirimalli I 0 Syöttöpisteimpedanssi: R g + V g R rad R loss jx in Z in Z in = R rad + R loss + jx in R rad = säteilyresistanssi R loss = häviöresistanssi Säteilyhyötysuhde: ξ = P rad P t = R rad R rad + R loss Esim: Hertzin dipolin R rad = 80π 2 (l/λ) 2 Ω ja R loss voidaan arvioida pintaresistanssin avulla. 12 (18)

13 Puolenaallon dipoli Virtajakaumaksi voidaan olettaa (miksi?) Ĩ(z) = I 0 cos(kz), λ 4 z λ 4. Antenniparametreiksi saadaan [Ulabyn luku 9 3]: ( cos [(π/2) cos θ] F(θ) = sin θ D = 1.64 R rad 73 Ω Käytännössä valitaan useimmiten hieman lyhennetty dipoli (l 0.48λ), jolla X in 0. Hyvällä johteella R loss R rad. ) 2 13 (18)

14 Sieppauspinta A e Jos tuleva tehotiheys vastaanottoantennin luona on S i, antennin sieppaama teho P int = A e S i ja vastaanotettu teho P rec = ξ P int. Kirjassa on Hertzin dipolille johdettu (yleisemminkin pätevä) yhteys D = 4π A e λ 2 Toisaalta D = 4π/Ω p, joten säteilykuvion avaruuskulma Ω p = λ2 A e = 1 normalisoitu sieppauspinta 14 (18)

15 Kahden antennin välinen radiolinkki G t G r = ξd = ξ 4π λ 2 A e P t P rec =? R Tehotiheys vastaanottimen luona P t S i = G t 4πR 2 Antenni sieppaa tästä tehon P int = A e S i, joten vastaanotettu teho ( ) λ 2 ( ) ( ) G r P t λ 2 P rec = ξa e S i = ξ G t 4π ξ 4πR 2 = P t G t G r 4πR 15 (18)

16 Friisin kaava Saatiin Friisin kaava radiolinkille: P rec P t = G t G r ( λ ) 2 4πR Huom: Tässä on oletettu, että antennit ovat toistensa kaukokentässä resiprookkisia impedanssisovitettuja syöttöjohtoihin oikein suunnattuja (myös polarisaatio) Huom: Vahvistukset ja suuntaavuudet annetaan usein desibeleissä, mutta kaavoissa käytetään paljaita lukuja. 16 (18)

17 Kahden antennin ryhmä I 0 y φ d R 0 = R R 1 R d cos φ I 1 = I 0 ψ x Kenttäpiste R on hyvin kaukana ja erityisesti kaukokentässä. Jos antennielementtien säteilykuviot aluksi unohdetaan, antenniryhmän kaukokentän amplitudi Ẽ I 0 e jkr 0 R 0 + I 1 e jkr1 R 1 I 0 e jkr R ( 1 + e jψ e jkd cos φ), kun amplitudikerroin 1/R 1 1/R 0 = 1/R, mutta vaihetekijässä käytetään tarkempaa approksimaatiota R 1 R d cos φ. 17 (18)

18 Kahden antennin ryhmä Antenniryhmän kaukokentän tehotiheys voidaan yleisesti kirjoittaa muodossa S(R, θ, φ) = S e (R, θ, φ) F a (θ, φ) missä S e on yksittäisen elementin säteilemä tehotiheys ja F a on ryhmäkerroin. Tässä tapauksessa saadaan (merkinnällä γ = kd cos φ + ψ): F a = 1 + e jγ 2 e = jγ/2 2 e jγ/2 + e jγ/2 2 = 4 cos 2 (γ/2) Jos antennielementeiksi valitaan ẑ-suuntaiset Hertzin dipolit, saadaan normalisoiduksi tehosäteilykuvioksi ( kd F(θ, φ) = sin 2 (θ) cos 2 }{{} 2 cos φ + ψ ) }{{ 2 } elementti ryhmä 18 (18)

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 21. marraskuuta 2016 Tasoaaltojen heijastus ja läpäisy (Ulaby 8.1 8.5) Kohtisuora heijastus ja läpäisy Tehon heijastus ja läpäisy Snellin laki

Lisätiedot

1 Perussuureiden kertausta ja esimerkkejä

1 Perussuureiden kertausta ja esimerkkejä 1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008

Antennin impedanssi. Z A = R A + jx A, (7 2 ) jossa R A on sy öttöresistanssi ja X A sy öttöreak tanssi. 6. maaliskuuta 2008 Antennin impedanssi Antennin sy ö ttö impedanssi on se impedanssi, jolla antenni näk y y sen sy öttöpisteisiin. S y öttöimpedanssiin v aik u ttav at k aik k i antennin läh istöllä olev at rak enteet ja

Lisätiedot

Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa.

Resonanssiantennit. Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa. Resonanssiantennit Resonanssiantenni on antenni, jossa esiintyy seisova aalto ja syöttöreak tanssi on nolla resonanssissa. E sim erk k ejä: S u orat lank ad ip olit V -d ip olit T aittod ip olit (folded

Lisätiedot

5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT

5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT 5. Sähkömagnetismi: Sähkömagneettinen säteily ja antennit 5. SÄHKÖMAGNEETTINEN SÄTEILY JA ANTENNIT Olemme tarkastelleet sähkömagneettisten aaltojen etenemistä tasoaaltoina tyhjössä ja homogeenisessa materiassa

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 4 / versio 30. syyskuuta 2015 Sähköstatiikka (Ulaby, luku 4.1 4.5) Maxwellin yhtälöt statiikassa Coulombin voimalaki Gaussin laki Potentiaali

Lisätiedot

RF-tekniikan perusteet BL50A0300

RF-tekniikan perusteet BL50A0300 RF-tekniikan perusteet BL50A0300 5. Luento 30.9.2013 Antennit Radioaaltojen eteneminen DI Juho Tyster Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3

521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 51384A RADIOTEKNIIKAN PERUSTEET Harjoitus 3 1. Tutkitaan mikroliuskajohtoa, jonka substraattina on kvartsi (ε r 3,8) ja jonka paksuus (h) on,15 mm. a) Mikä on liuskan leveyden w oltava, jotta ominaisimpedanssi

Lisätiedot

4. Erään antennin normalisoitu tehosäteilykuvio on pallokoordinaatiston muuttujia käyttäen seuraava: π P n

4. Erään antennin normalisoitu tehosäteilykuvio on pallokoordinaatiston muuttujia käyttäen seuraava: π P n 58A RAIOTEKNIIKAN ERUTEET Hajoitus 7. uoakulmainen onteloesonaattoi on valmistettu messingistä, jonka johtavuus on σ,57 7 /m. Ontelon mitat ovat a b d 5 cm. Mikä on tyhjän ontelon alimman esonanssimuodon

Lisätiedot

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 10: Moninkertaisten integraalien sovelluksia MS-A22 ifferentiaali- ja integraalilaskenta 2 (SCI) Luento 1: Moninkertaisten integraalien sovelluksia Antti Rasila Aalto-yliopisto Syksy 215 Antti Rasila (Aalto-yliopisto) MS-A22 Syksy 215 1 / 2 Moninkertaisten

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit

VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Maarit Vesapuisto SATE.2010 DYNAAMINEN KENTTÄTEORIA. Opetusmoniste: Antennit VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Maarit Vesapuisto SATE.010 DYNAAMINEN KENTTÄTEOIA Opetusmoniste: Antennit Vaasassa 04.1.009 ALKULAUSE Tämä opetusmoniste laadittiin marras-joulukuun

Lisätiedot

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

X-kaistan mikroliuska-antennin suunnittelu Suomi 100-satelliittiin.

X-kaistan mikroliuska-antennin suunnittelu Suomi 100-satelliittiin. I Aalto-yliopisto Sähkötekniikan korkeakoulu Elektroniikan ja sähkötekniikan koulutusohjelma Antti Pärnänen X-kaistan mikroliuska-antennin suunnittelu Suomi 100-satelliittiin. Diplomityö 18. huhtikuuta

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa

SATE2010 Dynaaminen kenttäteoria syksy /6 Laskuharjoitus 6 / Siirtojohdot ja transientit häviöttömissä siirtojohdoissa ATE2010 Dynaaminen kenttäteoria syksy 2011 1 /6 Tehtävä 1. 0,67 m pitkä häviötön siirtojohdon (50 Ω) päässä on kuorma Z L = (100 - j50) Ω. iirtojohtoa syötetään eneraattorilla (e (t) = 10sin(ωt + 30º)

Lisätiedot

AALTOLIIKEOPPIA FYSIIKASSA

AALTOLIIKEOPPIA FYSIIKASSA 1 AALTOLIIKEOPPIA FYSIIKASSA Miten aallot käyttäytyvät väliaineissa & esteissä? Mitä ovat Maxwellin yhtälöt? HUYGENSIN PERIAATE 2 Aaltoa voidaan pitää jokaisesta aallon jo läpäisemästä väliaineen pisteestä

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Antennit ja syöttöjohdot. OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY

Antennit ja syöttöjohdot. OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Antennit ja syöttöjohdot OH3NE:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Desibeli Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Yleisiä antenneja Aallonpituus Aallonpituus = valon

Lisätiedot

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit

9 Maxwellin yhtälöt. 9.5 Aaltoyhtälö ja kenttien lähteet Aaltoyhtälö tyhjössä Potentiaaliesitys Viivästyneet potentiaalit 9 Maxwellin yhtälöt 9.5 Aaltoyhtälö ja kenttien lähteet 9.5.1 Aaltoyhtälö tyhjössä 9.5.2 Potentiaaliesitys 9.5.3 Viivästyneet potentiaalit 9.5.4 Aaltoyhtälön Greenin funktio 9.6 Mittainvarianssi Typeset

Lisätiedot

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN

RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni.

Luku 14. z L/2 y L/2. J(r,t)=I(t)δ(x)δ(y)θ(L/2 z)θ(z + L/2) e z (14.1) Kuva 14.1: Yksinkertainen dipoliantenni. Luku 14 Säteilevät systeemit Edellisessä luvussa käsiteltiin vain yhden varauksellisen hiukkasen säteilykenttiä. Nyt tutustutaan esimerkinomaisesti yksinkertaisiin antenneihin ja varausjoukon aiheuttamaan

Lisätiedot

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa

SATE2010 Dynaaminen kenttäteoria syksy /8 Laskuharjoitus 7 / Smithin-kartan käyttö siirtojohtojen sovituksessa SATE2010 Dynaaminen kenttäteoria syksy 2010 1 /8 Tehtävä 1. Häviötön linja (70 Ω), joka toimii taajuudella 280 MHz, on päätetty kuormaan Z = 60,3 /30,7 Ω. Käytä Smithin karttaa määrittäessäsi, kuinka suuri

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

SMG-5450 Antennit ja ohjatut aallot

SMG-5450 Antennit ja ohjatut aallot Luennot SMG-5450 Antennit ja ohjatut aallot ti 10-12 SC105B pe 11-13 SC105B Luennoijat Tuomas Kovanen, SC307, tuomas.kovanen@tut.fi Jukka Uusitalo, SC305b, jukka-pekka.uusitalo@tut.fi (Luentokalvot: Janne

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

Antenni ja säteilykuvio

Antenni ja säteilykuvio POHDIN projekti Antenni ja säteilykuvio Nykyaikana sekä tietoliikennekulttuuri että ylipäätään koko infrastruktuuri perustuvat hyvin voimallisesti sähkömagneettiseen säteilyyn ja antenneihin. Kun tarkastellaan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 13. lokakuuta 2016 Luentoviikko 7 Dynaamiset kentät (Ulaby, luku 6) Maxwellin yhtälöt Faradayn induktiolaki ja Lenzin laki Muuntaja Generaattori

Lisätiedot

Talousmatematiikan perusteet, L2 Kertaus Aiheet

Talousmatematiikan perusteet, L2 Kertaus Aiheet Talousmatematiikan perusteet, L2 Kertaus 1 Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat lausekkeet (alkaen sisältä ulospäin) 2. potenssit ja juurilausekkeet 3. kerto-

Lisätiedot

Aaltoputket ja mikroliuska rakenteet

Aaltoputket ja mikroliuska rakenteet Aaltoputket ja mikroliuska rakenteet Luku 3 Suorat aaltojohdot Aaltojohdot voidaan jakaa kahteen pääryhmääm, TEM ja TE/TM sen mukaan millaiset kentät niissä etenevät. TEM-aallot voivat edetä vain sellaisissa

Lisätiedot

Luento 3: Käyräviivainen liike

Luento 3: Käyräviivainen liike Luento 3: Käyräviivainen liike Kertausta viime viikolta Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike Luennon sisältö Kertausta viime viikolta Käyräviivainen liike

Lisätiedot

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V

Huygensin periaate Jos kuvan 7-3a mukaisessa tilanteessa tehtävää muutetaan siten, että alueen V pinnalla S reunaehdot pysyvät samoina, ja lähteet V Aukko-antennit Neljästä an ten n ien p ääry h m ästä o n en ää k äsittelem ättä y k si, au k k o an ten n it. A u k k o an ten n ien rak en teessa o n jo k in au k k o, jo n k a k au tta säh k ö m ag n

Lisätiedot

Antennit ja. syöttöjohdot. http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY

Antennit ja. syöttöjohdot. http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf. OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Antennit ja http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf syöttöjohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Kulmaheijastinantenni

Kulmaheijastinantenni Kulmaheijastinantenni Asettamalla syö ttö an ten n i jo h d elev yjen k u lmaan k u v an 5-4 2 mu k aisesti, saad aan n o stettu a v ah v istu sta 1 0-1 2 d B p u o liaalto d ip o lin taso sta. S en an

Lisätiedot

Ei-inertiaaliset koordinaatistot

Ei-inertiaaliset koordinaatistot orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}

Lisätiedot

Säteilevät systeemit. Luku 15. z L/2 y L/2

Säteilevät systeemit. Luku 15. z L/2 y L/2 Luku 15 Säteilevät systeemit Edellisessä luvussa käsiteltiin vain yhden varauksellisen hiukkasen säteilykenttiä. Nyt tutustutaan esimerkinomaisesti yksinkertaisiin antenneihin ja varausjoukon aiheuttamaan

Lisätiedot

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle 13. Taylorin polynomi; funktioiden approksimoinnista 13.1. Taylorin polynomi 552. Muodosta funktion f (x) = x 4 + 3x 3 + x 2 + 2x + 8 kaikki Taylorin polynomit T k (x, 2), k = 0,1,2,... (jolloin siis potenssien

Lisätiedot

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla.

Tehtävä 4.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. Tehtävä.7 Tarkastellaan hiukkasta, joka on pakotettu liikkumaan toruksen pinnalla. x = (a + b cos(θ)) cos(ψ) y = (a + b cos(θ)) sin(ψ) = b sin(θ), a > b, θ π, ψ π Figure. Toruksen hajoituskuva Oletetaan,

Lisätiedot

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 /

Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / M-A3x Differentiaali- ja integraalilaskenta 3, IV/216 Differentiaali- ja integraalilaskenta 3 Laskuharjoitus 7 / 14.-16.3. Harjoitustehtävät 37-4 lasketaan alkuviikon harjoituksissa. Kotitehtävät 41-43

Lisätiedot

Desibeli. OH3TR radioamatöörikurssi 2009 OH3HNY 1. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia.

Desibeli. OH3TR radioamatöörikurssi 2009 OH3HNY 1. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia. Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia Desibeli Tiiti Kellomäki, Yleisiä antenneja Desibeliasteikko Desibelilaskentaa Kaikki piirit vahvistavat tai vaimentavat tehoa. A = P o /P

Lisätiedot

(0 desimaalia, 2 merkitsevää numeroa).

(0 desimaalia, 2 merkitsevää numeroa). NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx

Lisätiedot

Radiokontinuumi. Centaurus A -radiogalaksi. Cassiopeia A -supernovajäänne

Radiokontinuumi. Centaurus A -radiogalaksi. Cassiopeia A -supernovajäänne Radiokontinuumi Centaurus A -radiogalaksi Cassiopeia A -supernovajäänne Radiosäteilyn lähteet Molekyyleillä ja atomeilla on diskreettejä energiatiloja, joiden väliset siirtymät lähettävät viivasäteilyä,

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 7 Ti 27.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 7 Ti 27.9.2011 p. 1/39 p. 1/39 Interpolointi Ei tunneta funktion f : R R lauseketta, mutta tiedetään funktion

Lisätiedot

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30 DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia

Lisätiedot

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 2 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertaus edelliseltä luennolta sekä ristituloista. Mekaniikan koordinaatistot: pallokoordinaatisto. Vakiovektorin muutosnopeus (kantavektorin

Lisätiedot

Elektrodynamiikka, kevät 2002

Elektrodynamiikka, kevät 2002 Elektrodynamiikka, kevät 2002 Painovirheiden ja epätäsmällisyyksien korjauksia sekä muita pieniä lisäyksiä luentomonisteeseen Tähän on korjattu sellaiset painovirheet ja epämääräisyydet, joista voi olla

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Antennit. Säteilyn syntyminen antennissa

Antennit. Säteilyn syntyminen antennissa Antennit Antenneilla lähetetään ja vastaanotetaan radioaaltoja. Lähetysleho pyritään saamaan antennilla mahdollisimman tehokkaasti radiotielle tai radiotieltä vastaanottimeen. Antenneja tarvitaan lahes

Lisätiedot

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1 2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia

Lisätiedot

2.7.4 Numeerinen esimerkki

2.7.4 Numeerinen esimerkki 2.7.4 Numeerinen esimerkki Karttusen kirjan esimerkki 2.3: Laske Jupiterin paikka taivaalla..2. Luennoilla käytetty rataelementtejä a, ǫ, i, Ω, ω, t Ω nousevan solmun pituus = planeetan nousevan solmun

Lisätiedot

TEKNIIKAN JA LIIKENTEEN TOIMIALA. Tietotekniikka. Tietoliikennetekniikka INSINÖÖRITYÖ TIETOKONEOHJATTU ANTENNIMITTAUSJÄRJESTELMÄ

TEKNIIKAN JA LIIKENTEEN TOIMIALA. Tietotekniikka. Tietoliikennetekniikka INSINÖÖRITYÖ TIETOKONEOHJATTU ANTENNIMITTAUSJÄRJESTELMÄ TEKNIIKAN JA LIIKENTEEN TOIMIALA Tietotekniikka Tietoliikennetekniikka INSINÖÖRITYÖ TIETOKONEOHJATTU ANTENNIMITTAUSJÄRJESTELMÄ Työn tekijä: Soile Sallinen Työn valvoja: Antti Koivumäki Työn ohjaaja: Antti

Lisätiedot

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 28 1. Olkoon A = Määrää ( 2 1 ) 3 4 1 a) A + B b) AB BA d) A 2 e) A T f) A T B g) 3A ja B = 2 1 6 3 1 2. Laske seuraavat determinantit

Lisätiedot

SWR eli SAS Antennien ominaisuuksia. Tiiti Kellomäki, OH3HNY. antenneja

SWR eli SAS Antennien ominaisuuksia. Tiiti Kellomäki, OH3HNY. antenneja Aallonpituus Siirtojohdot, SWR eli SAS Antennien ominaisuuksia i i Tiiti Kellomäki, OH3HNY Yleisiä antenneja ylikurssia! ylikurssia! ylikurssia! ylikurssia! ylikurssia! Desibeli ylikurssia! i ylikurssia!

Lisätiedot

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN

SÄHKÖMAGNEETTINEN KYTKEYTYMINEN SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2016

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät 214 1. Tutki seuraavia jonoja a) (a n )=(3n 1) ( ) 2 b) (a n )= 3 n ( ) 1 c) (a n )= (n + 1)(n +2) 2. Tutki seuraavia sarjoja a) (3k 1)

Lisätiedot

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r

Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely

Lisätiedot

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO

SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO SMG KENTTÄ JA LIIKKUVA KOORDINAATISTO LiikeJla vaiku5aa siihen, miten kentät syntyvät ja miten hiukkaset kokevat kenben väli5ämät vuorovaikutukset ja miltä kentät näy5ävät. Vara5u hiukkanen kokee sähkömagneebsen

Lisätiedot

AURINKOENERGIAA AVARUUDESTA

AURINKOENERGIAA AVARUUDESTA RISS 16. 9. 2009 AURINKOENERGIAA AVARUUDESTA Pentti O A Haikonen Adjunct Professor University of Illinois at Springfield Aurinkoenergiasatelliitin tekninen perusta Auringon säteilyn tehotiheys maapallon

Lisätiedot

KANDIDAATIN TYÖ. Niko Ruohonen

KANDIDAATIN TYÖ. Niko Ruohonen KANDIDAATIN TYÖ Niko Ruohonen SÄHKÖTEKNIIKAN KOULUTUSOHJELMA 2015 KANDIDAATINTYÖ Kahden tehonjakajatyypin vertailu tukiasema-antennin syöttöverkossa Niko Ruohonen Ohjaajat: Jari Hannu Kimmo Koskiniemi

Lisätiedot

Visibiliteetti ja kohteen kirkkausjakauma

Visibiliteetti ja kohteen kirkkausjakauma Visibiliteetti ja kohteen kirkkausjakauma Interferoteriassa havaittava suure on visibiliteetti V (u, v) = P n (x, y)i ν (x, y)e i2π(ux+vy) dxdy kohde Taivaannapa m Koordinaatisto: u ja v: B/λ:n projektioita

Lisätiedot

Antennit ja syöttöjohdot

Antennit ja syöttöjohdot Antennit ja syöttöjohdot http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf Siirtojohdot OH3TR:n radioamatöörikurssi Tiiti Kellomäki, OH3HNY Aallonpituus Siirtojohdot, SWR eli SAS http://ham.zmailer.org/rolletiini/rolletiini_4_2004.pdf

Lisätiedot

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r

Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic

Lisätiedot

DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi

DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi DYNAMIIKKA II, LUENTO 4 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta: jäykkä kappale, kulma-asema, Eulerin kulmat, kulmanopeus. Suhteellinen liike: Vektorin muutosnopeudet eri koordinaatistoissa.

Lisätiedot

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus

EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 6 varuusintegraali iemmin laskimme yksiulotteisia integraaleja b a f (x)dx, jossa integrointialue on x-akselin väli [a, b]. Lisäksi laskimme kaksiulotteisia integraaleja

Lisätiedot

LABORATORIOTYÖ (4 h) LIITE 1/1 ANTENNIMITTAUKSIIN TUTUSTUMINEN

LABORATORIOTYÖ (4 h) LIITE 1/1 ANTENNIMITTAUKSIIN TUTUSTUMINEN LABORATORIOTYÖ (4 h) LIITE 1/1 ANTENNIMITTAUKSIIN TUTUSTUMINEN LABORATORIOTYÖ (4 h) LIITE 1/2 SISÄLTÖ 1 TYÖN KUVAUS... 3 2 MITTAUKSET... 3 2.1 Antennin suuntakuvion mittaus... 4 2.2 Piirianalysaattorimittauksia...

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:

Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta: LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen

Lisätiedot

Suodatus ja näytteistys, kertaus

Suodatus ja näytteistys, kertaus ELEC-C7230 Tietoliikenteen siirtomenetelmät Luento 6: Kantataajuusvastaanotin AWGN-kanavassa II: Signaaliavaruuden vastaanotin a Olav Tirkkonen Aalto, Tietoliikenne- ja tietoverkkotekniikan laitos a [10.6.3-10.6.6;

Lisätiedot

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2

1 Kompleksiluvut 1. y z = (x, y) Kuva 1: Euklidinen taso R 2 Sisältö 1 Kompleksiluvut 1 1.1 Määritelmä............................ 1 1. Kertolasku suorakulmaisissa koordinaateissa.......... 4 1.3 Käänteisluku ja jakolasku..................... 9 1.4 Esimerkkejä.............................

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Maan laadun, antennin korkeuden ja polarisaation vaikutus HF-antennin suorituskykyyn

Maan laadun, antennin korkeuden ja polarisaation vaikutus HF-antennin suorituskykyyn Maan laadun, antennin korkeuden ja polarisaation vaikutus HF-antennin suorituskykyyn Esitelmä SRAL:n syyspäivillä Äänekoskella 19.11.2016 Pekka Ketonen, OH1TV 14.11.2016 OH1TV 1 Antennin suorituskykyyn

Lisätiedot

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti 14 Ristitulo Avaruuden R 3 vektoreille voidaan määritellä pistetulon lisäksi niin kutsuttu ristitulo. Pistetulosta poiketen ristitulon tulos ei ole reaaliluku vaan avaruuden R 3 vektori. Ristitulosta on

Lisätiedot

ADAPTIIVISTEN ANTENNIEN MITTAUSLÄHE- TIN

ADAPTIIVISTEN ANTENNIEN MITTAUSLÄHE- TIN 25.11.2004 ADAPTIIVISTEN ANTENNIEN MITTAUSLÄHE- TIN Marko Sonkki Sonkki M. (2004) Adaptiivisten antennien mittauslähetin. Oulun yliopisto, sähköja tietotekniikan osasto. Diplomityö, 75 s. TIIVISTELMÄ Tässä

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö Johdatus diskreettiin matematiikkaan Harjoitus 5, 14.10.2015 1. Ratkaise rekursioyhtälö x n+4 2x n+2 + x n 16( 1) n, n N, alkuarvoilla x 1 2, x 2 14, x 3 18 ja x 4 42. Ratkaisu. Vastaavan homogeenisen

Lisätiedot

RADIOTIETOLIIKENNEKANAVAT

RADIOTIETOLIIKENNEKANAVAT 1 RADIOTIETOLIIKENNEKANAVAT Millaisia stokastisia ilmiöitä kanavassa tapahtuu? ONGELMAT: MONITIE-ETENEMINEN & KOHINA 2 Monitie-eteneminen aiheuttaa destruktiivista interferenssia eri reittejä edenneiden

Lisätiedot

UGR -arvo voidaan laskea yhtälöllä (4.1). UGR=8 lg 0,25 L (4.1)

UGR -arvo voidaan laskea yhtälöllä (4.1). UGR=8 lg 0,25 L (4.1) S-118.3218 VALAISTUSTEKNIIKKA II LASKUHARJOITUS 2 HÄIKÄISY Tehtävä 4 Laske oheisen yhtälön avulla UGR (Unified Glare Rating) -arvo kuvan 4a tilanteessa, kun havaitsija istuu kohdassa A katsoen suoraan

Lisätiedot

Ch4 NMR Spectrometer

Ch4 NMR Spectrometer Ch4 NMR Spectrometer Tässä luvussa esitellään yleistajuisesti NMR spektrometrin tärkeimmät osat NMR-signaalin mittaaminen edellyttää spektrometriltä suurta herkkyyttä (kykyä mitata hyvin heikko SM-signaali

Lisätiedot

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Jonot Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ). Lukujonon täsmällinen tulkinta on funktio f : N R, jolle f

Lisätiedot

LABORATORIOTYÖ 2 (8 h) LIITE 2/1 WLAN-ANTENNIEN TUTKIMINEN JA AALTOJOHTOMITTAUKSET

LABORATORIOTYÖ 2 (8 h) LIITE 2/1 WLAN-ANTENNIEN TUTKIMINEN JA AALTOJOHTOMITTAUKSET LABORATORIOTYÖ 2 (8 h) LIITE 2/1 WLAN-ANTENNIEN TUTKIMINEN JA AALTOJOHTOMITTAUKSET LABORATORIOTYÖ 2 (8 h) LIITE 2/2 1 TYÖN KUVAUS Työssä tutustutaan antennien ominaisuuksiin rakentamalla ja mittaamalla

Lisätiedot

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme KJR-C1001 Statiikka ja dynamiikka Luento 22.3.2016 Susanna Hurme Päivän aihe: Rotaatioliikkeen kinematiikka: kulmanopeus ja -kiihtyvyys (Kirjan luvut 12.7, 16.3) Osaamistavoitteet Osata analysoida jäykän

Lisätiedot

LIITTEET. Leena Korpinen, Jarmo Elovaara, Lauri Puranen

LIITTEET. Leena Korpinen, Jarmo Elovaara, Lauri Puranen LIITTEET Leena Korpinen, Jarmo Elovaara, Lauri Puranen SISÄLLYSLUETTELO Liite 1 Voimalinjojen sähkö- ja magneettikentän laskenta... 530 Liite 2 Radiotaajuisen kentän laskentamalleja... 537 Liite 3 Mikroaaltoantennin

Lisätiedot

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos Malinen/Ojalammi MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016 Laskuharjoitus 4A (Vastaukset) alkuviikolla

Lisätiedot

6.1 Autokovarianssifunktion karakterisaatio aikatasossa

6.1 Autokovarianssifunktion karakterisaatio aikatasossa 6. Spektraalianalyysi Tällä kurssilla on käyty läpi eräitä stationääristen aikasarjojen ominaispiirteitä, kuten aikasarjaa mallintavan stokastisen prosessin X t odotusarvo E[X t ] ja autokovarianssifunktio

Lisätiedot

Antenni ilmanlaadun mittauslaitteessa

Antenni ilmanlaadun mittauslaitteessa Aalto-yliopisto Teknillinen korkeakoulu Elektroniikan, tietoliikenteen ja automaation tiedekunta Radiotieteen ja -tekniikan laitos Tuomas Pennanen Antenni ilmanlaadun mittauslaitteessa Diplomityö, joka

Lisätiedot

Ydin-Haskell Tiivismoniste

Ydin-Haskell Tiivismoniste Ydin-Haskell Tiivismoniste Antti-Juhani Kaijanaho 8. joulukuuta 2005 1 Abstrakti syntaksi Päätesymbolit: Muuttujat a, b, c,..., x, y, z,... Tyyppimuuttujat α, β, γ,... Koostimet (data- ja tyyppi-) C, D,...,

Lisätiedot

Hitaustensori. Inertiaalikoordinaatisto {x} Kappaleen (mahd. ei-inertiaalinen) lepokoordinaatisto {y} )2 x = 1 2 T = 1.

Hitaustensori. Inertiaalikoordinaatisto {x} Kappaleen (mahd. ei-inertiaalinen) lepokoordinaatisto {y} )2 x = 1 2 T = 1. Torstai 2.10.2014 1/20 Hitaustensori Inertiaalikoordinaatisto {x} Kappaleen (mahd. ei-inertiaalinen) lepokoordinaatisto {y} T = 1 m i ( r i 2 )2 x = 1 m i ( R + ω ri ) 2 2 i i = 1 2 M R 2 + 1 2 ω i I ik

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35 Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen

Lisätiedot