Analyysi 1. Harjoituksia lukuihin 4 7 / Syksy Tutki funktion f(x) = x 2 + x 2 jatkuvuutta pisteissä x = 0 ja x = 1.
|
|
- Hanna Härkönen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Analyysi 1 Harjoituksia lukuihin 4 7 / Syksy Tutki funktion x + x jatkuvuutta pisteissä x = 0 ja x = 1.. Määritä vakiot a ja b siten, että funktio a x cos x + b x + b sin x, kun x 0, x 4, kun x = 0, tulee jatkuvaksi pisteessä x = Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion f jatkuvuudesta tällöin väitetään? Kirjoita väite myös käyttäen tavanomaisia kirjainsymboleja ε, δ jne. 4. Olkoot c > 0 ja d > 0 vakioita, a R ja f : R R sellainen funktio, että kaikilla ε > 0 on olemassa δ > 0 siten, että f(x) f(a) < c ε aina, kun x a < d δ. Osoita, että f on jatkuva pisteessä a. 5. Anna esimerkki funktiosta f : R R, joka on epäjatkuva pisteissä 1, 1, 1 3, 1 4,... ja jatkuva muualla. Tässä tehtävässä funktion jatkuvuutta tai epäjatkuvuutta ei tarvitse perustella täsmällisesti. Esimerkiksi funktion kuvaajaan tukeutuva perustelu on riittävä. 6. Olkoon f : [0, π] R sellainen funktio, että f on oikealta jatkuva pisteessä x = 0 ja f(x) > sin x kaikilla x [0, π]. Osoita, että funktio on rajoitettu välillä [0, π ]. g(x) = 1 f(x) 7. Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jatkuvan ja epäjatkuvan funktion yhdistetty funktio on aina epäjatkuva.
2 8. Olkoon f sellainen pisteen a jossakin ympäristössä U δ (a) määritelty funktio, että f on jatkuva pisteessä a. Osoita todeksi tai (vastaesimerkillä) epätodeksi, että jos f(x) > 0 kaikilla x U δ(a), niin f(a) > Määritä luvut a ja b siten, että b a = 1 4 ja yhtälöllä on ainakin yksi ratkaisu välillä [a, b]. x = x x 10. Oletetaan, että funktio f on jatkuva välillä [0, ] ja että 0 < f(x) < kaikilla x [0, ]. Osoita, että on olemassa sellainen c ]0, [, että f(c) = c. Vihje: Tarkastele sopivaa apufunktiota. 11. Olkoon f : R R sellainen jatkuva funktio, että lim. x Osoita, että f on rajoitettu kaikilla x Olkoon f : [a, b] R jatkuva ja aidosti kasvava funktio ja g : [f(a), f(b)] R jatkuva ja aidosti vähenevä funktio. Osoita, että funktiolla g f on käänteisfunktio välillä [a, b]. Mikä on käänteisfunktion on määrittelyväli? 13. Osoita, että funktio 3x + on tasaisesti jatkuva välillä [1, [. 14. Anna esimerkki välillä ]5, 7[ jatkuvasta funktiosta, joka ei ole tällä välillä tasaisesti jatkuva. 15. Määritä derivaatan määritelmää käyttäen f (x), kun 1 x (x > 0). 16. Tutki, onko funktio x + x x derivoituva pisteessä x = 1. Jos funktio ei ole derivoituva pisteessä x = 1, niin tutki oikean- ja vasemmanpuolisen derivaatan olemassaoloa. 17. Olkoon f sellainen pisteessä x = 0 derivoituva funktio, että f (0) = c (c R) ja f(x + y) = f(x)f(y) x, y R. Oletetaan lisäksi, että f ei ole vakiofunktio. Osoita, että f on derivoituva kaikilla x R ja että f (x) = cf(x) x R.
3 18. Osoita, että funktio { sin x, kun x > 0, x + x, kun x 0, on derivoituva mutta ei ole kahdesti derivoituva pisteessä x = Olkoon Ratkaise yhtälö f (x) = 0. ( ) sin x tan 1 + sin. x 0. Määritä funktion x 1 (x > 1 ) derivaatta sekä yhdistetyn funktion että käänteisfunktion derivoimissäännön avulla. 1. Olkoot f : R R ja g : R R sellaisia funktioita, että f(0) = g(0) ja f (0) > g (0). Osoita, että on olemassa a > 0 siten, että f(x) g(x) kaikilla x [0, a].. Osoita, että funktiolla x 5 + 3x 3 9x + 1 on täsmälleen kaksi positiivista nollakohtaa. 3. Osoita, että sin x sin y x y kaikilla x, y R. 4. Osoita väliarvolausetta käyttämällä, että funktio x cos 1 x on tasaisesti jatkuva välillä ]0, 1[. 5. Olkoon a > 0 ja f : R R sellainen derivoituva funktio, että f (x) 1 + a kaikilla x R. Osoita, että on olemassa sellainen c R, että f(x) > x aina, kun x > c. Vihje: Tarkastele erotusta f(x) x.
4 6. Osoita, että funktiolla 6x 5 15x x on käänteisfunktio, joka on jatkuva kaikilla x R. Missä pisteissä käänteisfunktion derivaattaa ei voida määrittää? 7. Määritä vakiot a ja b siten, että funktio a + arc cos ( 1 x +1), kun x < 0, π, kun x = 0, b arc tan ( 1 x), kun x > 0, tulee jatkuvaksi pisteessä x = Osoita, että kun x > 0. arc tan x > x x3 3, 9. Määritä käyttämättä laskinta tai taulukkokirjaa cos(arc tan x) ja sin(arc cot x), kun x =. 30. Määritä raja-arvo lim x 0 e x 1. x 31. Olkoon f : R R sellainen välillä [a, b] jatkuva ja välillä ]a, b[ derivoituva funktio, että f(a) = f(b) = 0. Osoita, että on olemassa sellainen välin ]a, b[ piste ξ, että f (ξ) = f(ξ). Vihje: Sovella Rollen lausetta sopivaan apufunktioon. 3. Olkoon ex + e x ja ( g(x) = log x + ) x 1 Osoita, että (g f)(x) = (f g)(x) kaikilla x 1. (x 1). 33. Olkoon a, b > 0 ja x R. Todista, että (ab) x = a x b x.
5 34. Olkoon x > 0. Määritä laajin väli, jolla funktio on aidosti vähenevä. (3x) log x 35. Määritä 36. Määritä 37. Olkoon a Z +. Määritä lim x 1 x 500 5x 17 3x x x 3 13 lim (1 + x 0 x)cot x. lim x(log x 0+ x)a. 38. Määritä funktion (arc tan x) arc tan x (x > 0) paikalliset ääriarvokohdat ja ääriarvojen laatu. 39. Määritä funktion { x x, kun x <, log (x + ), kun x, paikalliset ääriarvokohdat ja ääriarvojen laatu. 40. Osoita, että kun x < 1. e x 1 1 x,
5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
Lisätiedot5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 5 Funktion jatkuvuus 5.1 Määritelmä ja perustuloksia 1. Tarkastellaan väitettä a > 0: b > 0: c > 0: d U c (a): f(d) / U b (f(a)), missä a, b, c, d R. Mitä funktion
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2018 2 Funktion derivaatta 1. Määritä derivaatan määritelmää käyttäen f (), kun (a), (b) 1 ( > 0). 2. Tutki, onko funktio sin(2) sin 1, kun 0, 2 0, kun = 0, derivoituva
Lisätiedot2 Funktion derivaatta
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 2 Funktion derivaatta 2.1 Määritelmiä ja perusominaisuuksia 1. Määritä suoraan derivaatan määritelmää käyttäen f (0), kun (a) + 1, (b) (2 + ) sin(3). 2. Olkoon
Lisätiedot3 Derivoituvan funktion ominaisuuksia
ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 2019 3 Derivoituvan funktion ominaisuuksia 31 l Hospitalin sääntö 1 Määritä 2 5 4 2 + 2 7 12 + 11, e 1 2, (c) tan sin 2 Määritä 2012 3 704 + 2 6 30 13 10 + 7, 3 2017
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 4 Funktion raja-arvo 4. Määritelmä. Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: f) A < ε aina, kun 0 < a < δ, saadaan kvanttorien järjestystä vaihtamalla
Lisätiedotsaadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla
LisätiedotJATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.
JATKUVAT FUNKTIOT JATKUVUUS Jatkuva funktio Epäjatkuva funktio Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista., suomennos Matti Pauna JATKUVUUS Jatkuva funktio Epäjatkuva
Lisätiedot6 Eksponentti- ja logaritmifunktio
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 019 6 Eksponentti- ja logaritmifunktio 6.1 Eksponenttifunktio 1. Määritä (a) e 3 e + 5, (b) e, (c) + 3e e cos.. Tutki, onko funktiolla f() = 1 e tan + 1 ( π + nπ, n
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
LisätiedotAnalyysi 1. Harjoituksia lukuihin 1 3 / Syksy Osoita täsmällisesti perustellen, että joukko A = x 4 ei ole ylhäältä rajoitettu.
Analyysi Harjoituksia lukuihin 3 / Syksy 204. Osoita täsmällisesti perustellen, että joukko { 2x A = x ]4, [. x 4 ei ole ylhäältä rajoitettu. 2. Anna jokin ylä- ja alaraja joukoille { x( x) A = x ], [,
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
Lisätiedot3 Lukujonon raja-arvo
ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 209 3 Lukujonon raja-arvo 3 Määritelmä Osoita, että 6n + 2n + 3 3 < 4 n ja määritä jokin sellainen n 0 Z +, että 6n + 2n + 3 3 < 0 87 aina, kun n > n 0 2 Olkoon x n
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 7. 2. 2009 alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan
LisätiedotLuku 4. Derivoituvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 1 Risto Silvennoinen Luku 4 Derivoituvien funktioiden ominaisuuksia Derivaatan olemassaolosta seuraa funktioille eräitä säännöllisyyksiä Näistä on jo edellisessä luvussa
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /
MS-A008 Differentiaali- ja integraalilaskenta, V/207 Differentiaali- ja integraalilaskenta Ratkaisut 2. viikolle / 8. 2.4. Jatkuvuus ja raja-arvo Tehtävä : Määritä raja-arvot a) 3 + x, x Vihje: c)-kohdassa
LisätiedotMATP153 Approbatur 1B Harjoitus 6 Maanantai
. (Teht. s. 93.) Määrää raja-arvo MATP53 Approbatur B Harjoitus 6 Maanantai 7..5 cos x x. Ratkaisu. Suora sijoitus antaa epämääräisen muodon (ei auta). Laventamalla päädytään muotoon ja päästään käyttämään
LisätiedotOletetaan, että funktio f on määritelty jollakin välillä ]x 0 δ, x 0 + δ[. Sen derivaatta pisteessä x 0 on
Derivaatta Erilaisia lähestymistapoja: geometrinen (käyrän tangentti sekanttien raja-asentona) fysikaalinen (ajasta riippuvan funktion hetkellinen muutosnopeus) 1 / 19 Derivaatan määritelmä Määritelmä
Lisätiedotd Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali
6. Derivaatta 6.. Derivaatta ja differentiaali 72. Olkoon f () = 4. Etsi derivaatan määritelmän avulla f ( 3). f ( 3) = 08. 73. Muodosta funktion f () = derivaatta suoraan määritelmän mukaan, so. tarkastelemalla
LisätiedotFunktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.
Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],
LisätiedotJohdatus reaalifunktioihin P, 5op
Johdatus reaalifunktioihin 802161P, 5op Osa 2 Pekka Salmi 1. lokakuuta 2015 Pekka Salmi FUNK 1. lokakuuta 2015 1 / 55 Jatkuvuus ja raja-arvo Tavoitteet: ymmärtää raja-arvon ja jatkuvuuden määritelmät intuitiivisesti
LisätiedotAnalyysi I (mat & til) Demonstraatio IX
Analyysi I (mat & til) Demonstraatio IX 16.11. 2018 II välikoe 19.11. klo 9 salissa IX. Ilmoittaudu NettiOpsussa 12.11. mennessä. Koealue: Funktion raja-arvo, jatkuvuus ja Bolzanon lause, ts. kirjan luku
LisätiedotMikäli funktio on koko ajan kasvava/vähenevä jollain välillä, on se tällä välillä monotoninen.
4.1 Polynomifunktion kulun tutkiminen s. 100 digijohdanto Funktio f on kasvava jollain välillä, jos ehdosta a < b seuraa ehto f(a) < f(b). Funktio f on vähenevä jollain välillä, jos ehdosta a < b seuraa
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausluento 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat:. Potenssisarjojen suppenemissäde, suppenemisväli ja suppenemisjoukko. 2. Derivaatan
LisätiedotAnalyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
Lisätiedot1. Olkoon f :, Ratkaisu. Funktion f kuvaaja välillä [ 1, 3]. (b) Olkoonε>0. Valitaanδ=ε. Kun x 1 <δ, niin. = x+3 2 = x+1, 1< x<1+δ
Matematiikan tilastotieteen laitos Differentiaalilaskenta, syksy 2015 Lisätehtävät 1 Ratkaisut 1. Olkoon f :, x+1, x 1, f (x)= x+3, x>1 Piirrä funktion kuvaa välillä [ 1, 3]. (a) Tutki ra-arvon (ε, δ)-määritelmän
LisätiedotDIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS
DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1 Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS Huomautus. Analyysin yksi keskeisimmistä käsitteistä on jatkuvuus! Olkoon A R mielivaltainen joukko
LisätiedotMS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 4: Derivaatta Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 21.9.2016 Pekka Alestalo, Jarmo
LisätiedotHY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
LisätiedotMATP153 Approbatur 1B Harjoitus 4 Maanantai
MATP53 Approbatur B Harjoitus 4 Maanantai 3..05. Halutaan määritellä funktio f siten, että f() =. Missä pisteissä + funktio voidaan määritellä tällä lausekkeella? Missä pisteissä funktio on näin määriteltynä
Lisätiedot1. Määritä funktion f : [ 1, 3], f (x)= x 3 3x, suurin ja pienin arvo.
Matematiikan ja tilastotieteen laitos Differentiaalilaskenta, syksy 01 Lisätetävät Ratkaisut 1. Määritä funktion f : [ 1, 3], suurin ja pienin arvo. f (x)= x 3 3x, Ratkaisu. Funktio f on jatkuva suljetulla
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Lisätiedotl 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +
Lisätiedotsin x cos x cos x = sin x arvoilla x ] π
Matematiikan johdantokurssi, syksy 08 Harjoitus 0, ratkaisuista. Todenna, että = + tan x. Mutta selvitäppä millä reaaliarvoilla se oikeasti pitää paikkansa! Ratkaisu. Yhtälön molemmat puolet ovat määriteltyjä
LisätiedotMatematiikan perusteet taloustieteilij oille I
Matematiikan perusteet taloustieteilijöille I Harjoitukset syksy 2006 1. Laskeskele ja sieventele a) 3 27 b) 27 2 3 c) 27 1 3 d) x 2 4 (x 8 3 ) 3 y 8 e) (x 3) 2 f) (x 3)(x +3) g) 3 3 (2x i + 1) kun, x
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 24.10.2016 Sisältö Derivaatta 1.1 Derivaatta Erilaisia lähestymistapoja: I geometrinen
LisätiedotRatkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)
Matematiikan TESTI 3, Maa7 Trigonometriset funktiot RATKAISUT Sievin lukio II jakso/07 VASTAA JOKAISEEN TEHTÄVÄÄN! MAOL/LIITE/taulukot.com JA LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT
Lisätiedot8 Potenssisarjoista. 8.1 Määritelmä. Olkoot a 0, a 1, a 2,... reaalisia vakioita ja c R. Määritelmä 8.1. Muotoa
8 Potenssisarjoista 8. Määritelmä Olkoot a 0, a, a 2,... reaalisia vakioita ja c R. Määritelmä 8.. Muotoa a 0 + a (x c) + a 2 (x c) 2 + olevaa sarjaa sanotaan c-keskiseksi potenssisarjaksi. Selvästi jokainen
LisätiedotMATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +
LisätiedotMAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio
MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen
Lisätiedotl 1 2l + 1, c) 100 l=0
MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)
Lisätiedot3.1 Väliarvolause. Funktion kasvaminen ja väheneminen
Väliarvolause Funktion kasvaminen ja väheneminen LAUSE VÄLIARVOLAUSE Oletus: Funktio f on jatkuva suljetulla välillä I: a < x < b f on derivoituva välillä a < x < b Väite: On olemassa ainakin yksi välille
LisätiedotMATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
LisätiedotMatematiikan tukikurssi: kurssikerta 12
Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.
LisätiedotRatkaisuehdotus 2. kurssikokeeseen
Ratkaisuehdotus 2. kurssikokeeseen 4.2.202 (ratkaisuehdotus päivitetty 23.0.207) Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin
LisätiedotTehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen,
Funktiotehtävät, 10. syyskuuta 005, sivu 1 / 4 Perustehtävät Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x. kun x on parillinen, f : N {0, 1, }, f(x) = 1 kun x on alkuluku,
LisätiedotRatkaisuehdotus 2. kurssikoe
Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen
Lisätiedot0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
LisätiedotLuku 2. Jatkuvien funktioiden ominaisuuksia.
1 MAT-1343 Laaja matematiikka 3 TTY 21 Risto Silvennoinen Luku 2. Jatkuvien funktioiden ominaisuuksia. Jatkossa väli I tarkoittaa jotakin seuraavista reaalilukuväleistä: ( ab, ) = { x a< x< b} = { x a
LisätiedotA = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
Lisätiedot5 Differentiaalilaskentaa
5 Differentiaalilaskentaa 5.1 Raja-arvo Esimerkki 5.1. Rationaalifunktiota g(x) = x2 + x 2 x 1 ei ole määritelty nimittäjän nollakohdassa eli, kun x = 1. Funktio on kuitenkin määritelty kohdan x = 1 läheisyydessä.
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 8 Väliarvolause Oletetaan, että funktio f on jatkuva jollain reaalilukuvälillä [a, b] ja derivoituva avoimella välillä (a, b). Funktion muutos tällä välillä on luonnollisesti
LisätiedotDifferentiaalilaskenta 1.
Differentiaalilaskenta. a) Mikä on tangentti? Mikä on sekantti? b) Määrittele funktion monotonisuuteen liittyvät käsitteet: kasvava, aidosti kasvava, vähenevä ja aidosti vähenevä. Anna esimerkit. c) Selitä,
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 10. Kurssikerta Petrus Mikkola 22.11.2016 Tämän kerran asiat Globaali ääriarvo Konveksisuus Käännepiste L Hôpitalin sääntö Newtonin menetelmä Derivaatta ja monotonisuus
LisätiedotA-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
Lisätiedota) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.
Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin
LisätiedotTodista raja-arvon määritelmään perustuen seuraava lause: Jos lukujonolle a n pätee lima n = a ja lima n = b, niin a = b.
2 Lukujonot 21 Lukujonon määritelmä 16 Fibonacci n luvut määritellään ehdoilla Osoita: 17 a 1 = a 2 = 1; a n+2 = a n+1 + a n, n N a n = 1 [( 1 + ) n ( 2 1 ) n ] 2 Olkoon a 1 = 3, a 2 = 6, a n+1 = 1 n (na
LisätiedotDI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30
DI matematiikan opettajaksi: Tädennskurssi, kevät Luentorunkoa ja harjoituksia viikolle : ti 6 klo :-5: Kädään läpi: funktioita f : D f R n R m ja integrointia R n :ssä Oletetaan, että, R n ovat mielivaltaisia
LisätiedotMATA172 Sami Yrjänheikki Harjoitus Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki!
MATA17 Sami Yrjäheikki Harjoitus 7 1.1.018 Tehtävä 1 Totta vai Tarua? Lyhyt perustelu tai vastaesimerkki! (a) Jokaie jatkuva fuktio f : R R o tasaisesti jatkuva. (b) Jokaie jatkuva fuktio f : [0, 1[ R
LisätiedotMATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
LisätiedotIV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
LisätiedotSeurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa
Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään
Lisätiedoty = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
LisätiedotDerivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
LisätiedotFunktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen
4. Funktiojonot ja funktiotermiset sarjat 4.1. Funktiojono ja funktioterminen sarja 60. Tutki, millä muuttujan R arvoilla funktiojono f k suppenee, kun Mikä on rajafunktio? a) f k () = 2k 2k + 1, b) f
LisätiedotVASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN
Matematiikan kurssikoe, Maa6 Derivaatta RATKAISUT Sievin lukio Torstai 23.9.2017 VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN MAOL-taulukkokirja on sallittu. Vaihtoehtoisesti voit käyttää aineistot-osiossa olevaa
LisätiedotMATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdoituksia Rami Luisto Sivuja: 5
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus 9 3.11.009 alkavalle viikolle Ratkaisuedoituksia Rami Luisto Sivuja: 5 Näissä arjoituksissa saa käyttää kaikkia koulusta tuttuja koulusta tuttujen
LisätiedotPerusidea: Jaetaan väli [a, b] osaväleihin ja muodostetaan osavälejä vastaavat suorakulmiot/palkit, joiden korkeus funktion arvot kyseisellä välillä.
Lähtötilanne Lähtötilanne Tavoite: Määritellään funktion f : [a, b] R integraali siten, että integraalin arvo yhtyy funktion f kuvaajan ja x-akselin väliin jäävän alueen pinta-alaan. Perusidea: Jaetaan
LisätiedotMaksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
LisätiedotSinin jatkuvuus. Lemma. Seuraus. Seuraus. Kaikilla x, y R, sin x sin y x y. Sini on jatkuva funktio.
Sinin jatkuvuus Lemma Kaikilla x, y R, sin x sin y x y. Seuraus Sini on jatkuva funktio. Seuraus Kosini, tangentti ja kotangentti ovat jatkuvia funktioita. Pekka Salmi FUNK 19. syyskuuta 2016 22 / 53 Yhdistetyn
Lisätiedotsin(x2 + y 2 ) x 2 + y 2
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 2017 Harjoitus 2 Ratkaisuedotukset 2.1. Tutki funktion g : R 2 R, g(0, 0) = 0, jatkuvuutta. g(x, y) = sin(x2 + y 2 ) x 2 + y 2, kun (x,
LisätiedotFunktiojonon tasainen suppeneminen
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Taina Saari Funktiojonon tasainen suppeneminen Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen
LisätiedotMAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
LisätiedotMatemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 4. Kurssikerta Petrus Mikkola 4.10.2016 Tämän kerran asiat Funktion raja-arvo Raja-arvon määritelmä Toispuolinen raja-arvo Laskutekniikoita Rationaalifunktion esityksen
LisätiedotMatriisit ja optimointi kauppatieteilijöille
Matriisit ja optimointi kauppatieteilijöille Harjoitus 4, kevät 2019 1. a) f(x) = x 3 6x 2 + 9x + 1, 3 x 3 Funktio f(x) on jatkuva ja derivoituva. Funktio f(x) saavuttaa suurimman ja pienimmän arvonsa
Lisätiedotr > y x z x = z y + y x z y + y x = r y x + y x = r
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi I, syksy 018 Harjoitus Ratkaisuehdotukset Tehtävä 1. Osoita, että avoin kuula on avoin joukko ja suljettu kuula on suljettu joukko. Ratkaisu.
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
LisätiedotTalousmatematiikan perusteet: Luento 5. Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus
Talousmatematiikan perusteet: Luento 5 Käänteisfunktio Yhdistetty funktio Raja-arvot ja jatkuvuus Tähän mennessä Funktiolla f: A B, y = f x kuvataan muuttujan y B riippuvuutta muuttujasta x A Jotta funktio
LisätiedotTodennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset
Todennäköisyyslaskenta IIa, syys lokakuu 2019 / Hytönen 3. laskuharjoitus, ratkaisuehdotukset 1. Olkoon X satunnaismuuttuja, ja olkoot a R \ {0}, b R ja Y = ax + b. (a) Olkoon X diskreetti ja f sen pistetodennäköisyysfunktio.
LisätiedotTopologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus
Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on
Lisätiedotx = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) + 1 3 1 + 4 2 + 5 2 = 21 21 = 21 tosi
Mallivastaukset - Harjoituskoe F F1 a) (a + b) 2 (a b) 2 a 2 + 2ab + b 2 (a 2 2ab + b 2 ) a 2 + 2ab + b 2 a 2 + 2ab b 2 4ab b) tan x 3 x π 3 + nπ, n Z c) f(x) x2 x + 1 f (x) 2x (x + 1) x2 1 (x + 1) 2 2x2
LisätiedotMATP153 Approbatur 1B Harjoitus 3, ratkaisut Maanantai
MATP53 Approbatur B Harjoitus 3, ratkaisut Maanantai 6..5. (Teht. 5 ja s. 4.) Olkoot z = + y i ja z = + y i. Osoita, että (a) z + z = z +z, (b) z z = z z, (c) z z = z ja (d) z = z z, kun z. (a) z + z =
LisätiedotJohdantoa INTEGRAALILASKENTA, MAA9
Lyhyehkö johdanto integraalilaskentaan. Johdantoa INTEGRAALILASKENTA, MAA9 Integraalilaskennan lähtökohta 1: Laskutoimitukset + ja ovat keskenään käänteisiä, samoin ja ovat käänteisiä, kunhan ei jaeta
LisätiedotInjektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )
Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään
LisätiedotÄänekosken lukio Mab4 Matemaattinen analyysi S2016
Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut
LisätiedotMATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai
MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.
Lisätiedotf(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
LisätiedotReaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011
Kuudennen eli viimeisen viikon luennot Reaaliarvoisen yhden muuttujan funktion derivaatta LaMa 1U syksyllä 2011 Perustuu Trench in verkkokirjan lukuihin 2.3. ja 2.4. Esko Turunen esko.turunen@tut.fi Jatkuvuuden
Lisätiedot1 Määrittelyjä ja aputuloksia
1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia
Lisätiedot, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä
Pitkä matematiikka 8.9.0, ratkaisut:. a) ( x + x ) = ( + x + x ) 6x + 6x = + 6x + 6x x = x =. b) Jos x > 0, on x = + x x = + x. Tällä ei ole ratkaisua. Jos x 0, on x = + x x = + x x =. c) x = x ( x) =
LisätiedotEpälineaaristen yhtälöiden ratkaisumenetelmät
Epälineaaristen yhtälöiden ratkaisumenetelmät Keijo Ruotsalainen Division of Mathematics Perusoletus Lause 3.1 Olkoon f : [a, b] R jatkuva funktio siten, että f(a)f(b) < 0. Tällöin funktiolla on ainakin
LisätiedotSelvästi. F (a) F (y) < r x d aina, kun a y < δ. Kolmioepäyhtälön nojalla x F (y) x F (a) + F (a) F (y) < d + r x d = r x
Seuraavaksi tarkastellaan C 1 -sileiden pintojen eräitä ominaisuuksia. Lemma 2.7.1. Olkoon S R m sellainen C 1 -sileä pinta, että S on C 1 -funktion F : R m R eräs tasa-arvojoukko. Tällöin S on avaruuden
LisätiedotHelsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo -. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x +9, b) log (x) 7, c) x + x 4 =.. Määrää kaikki ne
LisätiedotVektorianalyysi II (MAT21020), syksy 2018
Vektorianalyysi II (MAT21020), syksy 2018 Ylimääräisiä harjoitustehtäviä 1. Osoita, että normin neliö f : R n R, f(x) = x 2 on differentioituva pisteessä a R n ja, että sen derivaatalle on voimassa 2.
Lisätiedot1 Supremum ja infimum
Pekka Alestalo, 2018 Tämä moniste täydentää reaalilukuja ja jatkuvia reaalifunktioita koskevaa kalvosarjaa lähinnä perustelujen ja todistusten osalta. Suurin osa määritelmistä jms. on esitetty jo kalvoissa,
LisätiedotYleisiä integroimissääntöjä
INTEGRAALILASKENTA, MAA9 Yleisiä integroimissääntöjä Integroiminen eli annetun funktion f integraalifunktion F määrittäminen (löytäminen) on yleisesti haastavaa. Joskus joutuu jopa arvata tai kokeilla.
LisätiedotMS-A0102 Differentiaali- ja integraalilaskenta 1
MS-A0102 Differentiaali- ja integraalilaskenta 1 Riikka Korte (Pekka Alestalon kalvojen pohjalta) Aalto-yliopisto 15.11.2016 Sisältö Alkeisfunktiot 1.1 Funktio I Funktio f : A! B on sääntö, joka liittää
LisätiedotRatkaisu: Ensimmäinen suunta. Olkoon f : R n R m jatkuva eli kaikilla ε > 0 on olemassa sellainen δ > 0, että. kun x a < δ. Nyt kaikilla j = 1,...
HY / Matematiikan ja tilastotieteen laitos Vektorianalyysi II, syksy 2017 Harjoitus 1 Ratkaisuehdotukset 11 Osoita, että vektorifunktio f = (f 1,, f m ): R n R m, on jatkuva, jos ja vain jos jokainen komponenttifunktio
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kertausta 2. välikokeeseen Toisessa välikokeessa on syytä osata ainakin seuraavat asiat: 1. Potenssisarjojen suppenemissäe, suppenemisväli ja suppenemisjoukko. 2. Derivaatan laskeminen
Lisätiedot