Luento 3. Fourier-sarja

Koko: px
Aloita esitys sivulta:

Download "Luento 3. Fourier-sarja"

Transkriptio

1 Fourier-muuos Rayleigh eoreema Spekriiheys Lueo Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla jaksoaika? 4..7

2 Fourier-muuos Esieää sigaali Fourier-sarjaa: Raja-arvo : k, d, i k = i V() Euler iegral Fourier-muuos Fourier-muuos Kääeismuuos Dirichle ehdo Fourier muuuvalle eergiasigaalille I: Sigaali o iseisesi iegroiuva v () d< II: Sigaali maksimi- ja miimiarvo ova äärellisiä jokaisella äärellisellä aikavälillä ( a, b) sup {(, )} s( ) ( ), i i i s i a i i b + + < < + i III: Sigaali epäjakuvuuskohia o rajallie määrä lim äärellisessä määrässä ε s ( + ε) v ( ε) piseiä välillä (-,)

3 Symmeria omiaisuude Jos v (), V() o hermiiie: oisi saoe Parillie Asia o helppo odeaa: iπ ( ) iπ ( ) = ( ) = ( ) * * iπ iπ V v e d v e d V ( ) = v ( ) e d = v( ) e d = V( ) v v v * () () = () Vasaavasi, jos v() o imagiäärie, V() o aihermiiie: V V * ( ) = ( ) Pario Symmeria omiaisuude arkasellaa apausa, jossa v () Jos v() o parillie v(-)=v() o reaalie. ällöi * V( ) = V ( ) = V( ) eli V() o reaalie ja parillie Jos v() o pario v(-)=-v() ( π ) V( ) = v( )cos d V( ) = i v( )si( π ) d o imagiäärie. ällöi * V( ) = V ( ) = V( ) eli V() o imagiäärie ja pario

4 Symmeria omiaisuude arkasellaa apausa v () = ivq(), Im v () = vq() Jos v Q () o parillie v Q (-)=v Q () ( π ) V( ) = i vq ( )cos d o imagiäärie. ällöi V( ) = V( ) eli V() o imagiäärie ja parillie. Jos v Q () o pario v Q (-)=-v Q () ( π ) V( ) = vq ( )si d o reaalie. ällöi V( ) = V( ) eli V() o reaalie ja pario { } ( x) cos = cos( x) ( x) si = si( x) Symmeria omiaisuude arkasellaa y apausa yleisä apausa v () Fourier-muuos o lieaarie operaaio, joe Re{v()} Parillie Pario Reaalie Parillie Parillie Pario { ()} = { Re { ()}} + { Im { ()}} F v F v i F v Im{v()} Parillie Pario Imagiaarie Parillie Pario Parillie Re{V()} Parillie Hermiiie Pario Ai-hermiiie Parillie Reaalie Im{V()} Pario Parillie Parillie Imagiaarie Pario Pario Pario Pario

5 Kausaalise sigaali Sigaali o kausaalie, jos v()=, <. Kausaalise sigaali Fourier-muuos Verraaa yksipuolisee Laplace-muuoksee Jos σ= ja ω=π, Laplace-muuoksesa ulee Fourier-muuos Laplace-muuos o olemassa laajemmalle joukolle sigaaleia kui Fourier muuos Esimerkki arkasellaa ekspoeiaalisa sigaalia v () = e a, Fourier muuos: Dirichle eho I:, a a a v () d= e d= e a =, a < a eli Fourier-muuos o olemassa ku -<a< (myöhemmi osoiauuu, eä myös apaus a= o muueavissa) a iπ F{ v() } = e e d =, a< π a+ i Laplace-muuos: a s a e e d = e d =, Re{} s < a a+ s Laplace-muuos löyyy myös apaukselle a>

6 Ampliudi spekriiheys Bode diagrammi Vaihespekriiheys Bode diagrammi: Ampliudi (db) ja vaihe aajuude ukioa 4..7 Esimerkki: Bode diagrammi Fourier-muuos Ampliudi ja vaihe: V( ) = V( ) e V( ) = iarg { V( )} ( π ) + π arg ( ) arca arca { V } = = ( π ) Im V( ) e { V )} i ( arg Re

7 Bode diagram Bode Diagram log ( V() ) Magiude (db) Phase (deg) Frequecy (rad/sec) 3 Rayleigh Eergia eoreema * * Ev = v() v () d = V( ) V ( ) d Spekriiheys * * Ev = v() v () d = v() V ( )exp( iπ ) d d = ( π ) = ( π ) * * v() V ( )exp i d d v()exp i dv ( ) d V( ) * ulkia: V( ) = V( ) V ( ) keroo mie sigaali eergia o jakauuu eri aajuuksille (J/Hz)

8 Pulssi spekriiheys I Pulssi, joka eergia o J s () = Π Fourier-muuos (suoraa määrielmäsä) S( ) = g( )exp( iπ ) d = exp( iπ ) d. Π () = > = exp iπ exp iπ i π ( exp( iπ ) exp( iπ ) ) = π i si ( π ) = = sic( ) π S( ) = sic ( ) sic ( x) si ( π x) = π x Pulssi ehospekri II Fourier-muuos käyäe hyväksi sigaali omiaisuuksia: Pulssi o reaalie ja parillie. Se Fouriermuuos o siis reaalie ja parillie. Fourier-muuos o siis (ks. kalvo 6) ( π ) V( ) = v( )cos d Muuokseksi saadaa ( ) ( π ) = si S( ) = Π ( )cos( π ) d = cos( π ) d = = π si π si ( π ) si ( π ) = = = sic( ) π π S( ) = sic si ( ax) dx = cos( ax) + C a

9 log S( ) 5 Pulssi ehospekri Pulse = = =3 Specral desiy (db/hz) Frequecy (Hz) Fourier muuokse omiaisuuksia Lieaarisuus (superposiio) { } F av () + a v () = av ( ) + av ( ) Aikasiiro i { ( τ )} = V( ) e F v Aikaskaalaus F{ v( α) } = V α α Kojugaai { } * * F v = V () ( ) Duaalisuus F V () = v( ) { } π τ Derivaaa d F v() ( ) ( ) = i π V d Iegraali τ τ F... v( τ) dτ... dτ = V( ) ( iπ ) Kovoluuio F h( τ) v( τ) dτ = H( ) V( ) Kerolasku { () ()} = ( ) ( ) F hv Hφ V φ dφ

10 Superposiio Fourier muuos o lieaarie operaaori, joe osisa koosuva sigaali voidaa Fourier muuaa osissa { () + ()} = { ()} + { ()} F v u F v F u Esimerkki, sigaali joka eergia o J s() + τ = + τ F s () = Π + Π τ τ Π = sic( ) S( ) = sic( ) + τ sic( τ ) Aikasiiro arkasellaa sigaalia s(), joka Fourier muuos o S() Sigaalia viiväseää τ: verra. s() s(-τ) τ Rakaisaa viiväsey sigaali Fourier-muuos iπ ehdää muuuja vaihdos F{ s( τ) } = s( τ) e d ' = τ = ' + τ, d ' = d i π ( ' + τ) iπ τ i π ' = s(') e d' = e s(') e d' S( ) Aikasiirrey sigaali Fourier-muuos: i { τ } = π τ F s( ) e S( ) 4..7

11 aajuussiro arkasellaa sigaalia s(), joka Fourier muuos o S() aajuussiiro S(- ) S() S(- ) Kääeismuuos iπ { ( ) } = ( ) F S S e d = iπ i π ' e S e d ( ') ' aajuussiirrey sigaali muuospari: iπ iπ { ( )} = { ( )} = ( ) F S F S e s e { } F s() e = S( ) ehdää muuuja vaihdos ' = = ' +, d ' = d iπ 4..7 Lieaarie modulaaio Moduloiu sigaali x() = s()cos ( π c) Voidaa kirjoiaa muooo x () = s () ( e + e ) = se () + se () iπ c iπ c iπ c iπ c Fourier muuos X( ) S( c) S( c) F s() e = S( ) iπ = + + { } Modulaaio siirää sigaali aajuuskaisa c ympärisöö: S() X() - c c 4..7

12 Kaisaleveys Kaisaleveys B määriää millä aajuusalueella merkiävä osa (esim. 95%) sigaali ehosa/eergiasa o. Kaisaleveyde määriämisessä huomioidaa vai posiiivise aajuude. S() X() 95% B s 95% B x Moduloidu sigaali kaisaleveys o kaksikeraie kaaaajuisee sigaalii ähde: B x =B s Kaisaleveys Yksikeraie määrielmä o puoleeho (eergia) kaisaleveys. S() max S( ) max S ( b ) b -3 db B s S( b) = b > max S( ) B B s x = b = b b Kaaaajuie sigaali Moduloiu sigaali

13 Kaisaleveys Pulssi puole-eho kaisaleveys S( b) = sic ( b ) =.9 max S( b) sic( b ) = b Bs = b.. Moduloidu pulssi Bx = b aajuuskaisa o käääe verraollie pulssi piuuee sic() Kaisaleveys Pulse db -6 S() /max( S() ) = -8 = = Frequecy (Hz)

14 Aika- ja aajuusskaalaus Aikaskaalaus aajuusskaalaus a F{ s( a) } = S F { S( a) } = s a a a a a odisus { } iπ F s( a) = s( a) e d ' d ' = a =, d = a a sg( a) i π ' F{ s( a) } = s( ') e d a sg( a) { ( )} F s a = S a a Muuuja vaiho Jos sg(a)=- iegroii raja vaihuva, ällöi arviaa kaavaa b a ( xdx ) = ( xdx ) a b Duaalisuus Jos muuospari Fs (()) = S( ) ueaa, päee sigaalille y = S() F S() = s( ) F s( ) = S( ) { } { } odisus ( ) ( ( )) ( ) i π ( ) i π = = FS Se d Se d = S e d = s = s i π' ( ') ' ( ') ( ) S(): kääeismuuokse määrielmä = =

15 Ideaalie alipääsösuodai Ideaalie kaisapääsösuodai joka aajuuskaisa o B S() S( ) =Π B B Π () = > Vasaava aikaaso sigaali (impulssivasee) Fourier-muuos o S( ) = F Π = sic ( ) Duaalisuudesa seuraa, eä F { S( ) } = F B Π = Bsic( B ) B B ja koska sic o parillie saadaa s() = Bsic( B) Derivoimiskeio Lausuaa sigaali kääeismuuokse avulla s() = F { s() } = S( ) e i π d Sigaali aikaderivaaa d d = d iπ s() = S( ) e d d d iπ S( ) e d d iπ ( π ) = S( ) i e d d F s() d Muuoskaavaksi saadaa Koska iegraali ei ole muuuja suhee, voidaa derivaaa operaaori viedä iegraali sisälle Derivoidu sigaali Fourier-muuos d F s() = ( i π ) S( ) d

16 arkasellaa sigaalia τ y ( )... s( τ) dτ... dτ = kpl Iegroimiskeio ällöi d s() = y() d Derivoimiskeiosa seuraa d S( ) = F s( ) = i π Y( ) = ( π ) { } ( ) Joe Y( ) = S( ) iπ ( ) Muuoskaavaksi saadaa: F s() i S( ) d τ F... s( τ) dτ... dτ = S( ) ( iπ ) kpl Kolmiopulssi (/) Kolmiopulssi A - ( ) A s () = > Kolmiopulssi aikaderivaaa A d + s () A A = Π Π d - -A Π () = >

17 Kolmiopulssi (/) Fourier-muueaa aikaderivaaa d + s () A A = Π Π d F AΠ = Asic( ) i { τ } = π τ F s ( ) e S( ) d F s( ) = Asic( ) e Asic( ) e d = iasic si ( ) ( ) i i s(): Fourier-muuos saadaa y iegroimiskeio avulla τ τ τ τ = kpl d iasic( ) si( ) S( ) = F s( ) = = Asic ( ) π π i d i F... s( ) d... d S( ) ( iπ ) Gaussi pulssi (/4) Gaussi pulssi: s () = Aexp π Pulssi o parillie: s( ) = s( ) Pulssi derivaaa: s() d s() = Aπ exp π = π s() d

18 . Gaussi-pulssi derivaaa: d π s() = s() d. Derivaaa F-muuos Gaussi pulssi (/4) d F s () = i π S( ) d 3. Sovelleaa duaalisuua derivaaa F-muuoksee: F v( ) = V( ) { } d F v() = i π V( ) d d F v( ) = i πv( ) d 4. Huomaaa yheys kohie. ja 3. välillä: s( ) = s( ) d π s() = s() = ( i π) s( ) d i V( ) joe d d F s () = S( ) d i d d v ( ) d d F v( ) d Gaussi pulssi (3/4) 5. Kooaa ulokse yhee Kohda. peruseella d F s () = i π S( ) d ja kohda 4. peruseella d d F s () = S( ) d i d Eli, i d S ( ) = i π S ( ) d 6. Rakaisaa diereiaali yhälö d S ( ) = π S ( ) d ds( ) = π d S( ) l S( ) = π + C S( ) = exp( π )exp( C) k = exp( C) C = l( k) k

19 Gaussi pulssi (4/4) 7. Vakio k määräyyy Rayleigh eergia eoreemasa S( ) d = s( ) d k exp( ) d A exp d ' π = π = ' =, d = d' ' d' k exp π = A exp π d k = A Muuuja vaiho 8. ulokseksi saaii S A ( ) = exp( π ) Gaussi pulssi -II (/) oie apa: Käyeää hyväksi iegroiikaavaa πσ Sigaali s () = Aexp π Fourier-muuos: ( μ ) exp d = σ π ( π ) π π S( ) = Aexp exp i d = Aexp + i d

20 Gaussi pulssi -II (/) äydeeää eliöksi π 4 4 S( ) = Aexp + i + d ( ( i )) ( ( )) i = Aexp( π ) π exp d π π π π = A exp ( π ) = ( μ ) 4..7 πσ 39 exp d = σ Gaussi pulssi Gaussi pulssi Fourier-muuos s () = Aexp π S( ) = Aexp( π ( ) ) =. Pulssi muoo säilyy Fourier-muuoksessa s().5 S()

21 Yksikköpulssi vs Gaussi pulssi s().5 S() Kovoluuio iegraali Kovoluuio y () x () = y( τ ) x ( τ) dτ ulkia x() y () x() peilaaa y-akseli suhee ja liueaa y(): yli τ

22 Kovoluuio iegraali hp:// Kovoluuio iegraali Esimerkki: x() y () x () = muuoi e y () = <

23 Kovoluuio iegraali y () = - < > τ τ τ τ τ y() = e d τ = ( + e ) y() e d τ τ = τ ( ) ( e ) e = + y () x () = y( τ ) x ( τ) dτ.4 Kovoluuio iegraali y()

24 Kovoluuio iegraali arkasellaa kaha eergia sigaalia u() ja h(), joide Fourier-muuokse ova U() ja H(). Sigaalie välie kovoluuio o y(): Sigaali y() Fourier muuos -i Kerolasku arkasellaa kaha eergia sigaalia u() ja h(), joide Fourier-muuokse ova U() ja H(). Sigaalie ulo y () = uh () () Sigaalie ulo Fourier-muuos: iπ iπφ iπ F { uh () ()} = uhe () () d= U( φ) e dφ he () d H( φ ) Muuos o kovoluuio iegraali u () iπ( φ) = U( φ) h( ) e d dφ = U( φ) H( φ) dφ { } F u() h() = U( φ) H( φ) dφ 4

25 Kakaisu sigaali arkasellaa sigaalia s(), joka Fourier-muuos o S(). Kakaisaa sigaalisa jakso (-/,/). Kakaisu sigaali y () =Π s () Kakaisu sigaali Fourier-muuos ( ) Y( ) = S( φ) sic ( φ) dφ o sigaali Fourier-muuokse ja sic-ukio kovoluuio Kakaisu siisigaali Siimuooie sigaali s () = cos π [, ] ( ) c S( ) Kakaisu sigaali Y( ) cos( π c ) y () = > Joa spekri ei kakaisessa leviäisi, käyeää kakaisuu ikkuaukioia

Luento 3. Fourier-sarja

Luento 3. Fourier-sarja Fourier muuos Rayleigh eoreema Spekriiheys Lueo 3 4..6 Fourier-sarja Fourier-sarja avulla pysyii esiämää jaksollie sigaali, joka jaksoaika o. Fourier-sarja Fourier-kompoei Eäpä aperiodise sigaali, joilla

Lisätiedot

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri.

( ) ( ) x t. 2. Esitä kuvassa annetun signaalin x(t) yhtälö aikaalueessa. Laske signaalin Fourier-muunnos ja hahmottele amplitudispektri. ELEC-A7 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS Sivu 1/11 1. Johda anneun pulssin Fourier-muunnos ja hahmoele ampliudispekri. Käyä esim. derivoinieoreemaa, ja älä unohda 1. derivaaan epäjakuvuuskohia!

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:

( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän: ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän

Lisätiedot

S Signaalit ja järjestelmät Tentti

S Signaalit ja järjestelmät Tentti S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa

Lisätiedot

Luento 4 Fourier muunnos

Luento 4 Fourier muunnos Luento 4 Luento 4 Fourier muunnos 4. F muunnos F muunnos Oppenheim 4. 4. Energiaspektri (spektritiheys) Rayleigh'n energia teoreema, energiaspektri Kaistanleveys Boden diagrammi 4.3 F muunnoksen ominaisuudet,

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV.

Juuri 13 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. K1. A: III, B: I, C: II ja IV. Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 Keraus K. A: III, B: I, C: II ja IV Kuvaaja: I II III IV Juuri Tehävie rakaisu Kusausosakeyhiö Oava päiviey 9.8.8 K. a) lim ( ) Nimiäjä ( ) o aia

Lisätiedot

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN

KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN 1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto

Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) (

Silloin voidaan suoraan kirjoittaa spektrin yhtälö käyttämällä hyväksi suorakulmaisen pulssin Fouriermuunnosta sekä viiveen vaikutusta: ( ) ( TT/TV Inegraalimuunnokse Fourier-muunnos, ehäviä : Vasauksia Meropolia/. Koivumäki v(. Määriä oheisen signaalin Fourier-muunnos. Vinkki: Superposiio, viive. Voidaan sovelaa superposiioperiaaea, koska signaalin

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

Luento 2. Jaksolliset signaalit

Luento 2. Jaksolliset signaalit Luento Jaksollisten signaalien Fourier-sarjat Viivaspektri S-.7. Signaalit ja järjestelmät 5 op KK ietoliikennelaboratorio Jaksollinen (periodinen) Jaksolliset signaalit Jaksonaika - / / Perusjakso Amplitudi

Lisätiedot

Luento 11. tietoverkkotekniikan laitos

Luento 11. tietoverkkotekniikan laitos Lueno Lueno Sokasise signaali ja prosessi II. Sokasise prosessi Pruju Saionaarisuus, ergodisuus Auo ja risikorrelaaio ehospekri.3 Kohinan suodaaminen Sokasinen raja arvo ja derivaaa Winer Khinchin eoreema.3

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

5. Vakiokertoiminen lineaarinen normaaliryhmä

5. Vakiokertoiminen lineaarinen normaaliryhmä 1 MAT-145 LAAJA MATEMATIIKKA 5 Tampereen eknillinen yliopiso Riso Silvennoinen Kevä 21 5. Vakiokeroiminen lineaarinen normaaliryhmä Todeaan ensin ilman odisuksia (ulos on syvällinen) rakaisujen olemassaoloa

Lisätiedot

SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3

SIGNAALITEORIAN KERTAUSTA 2. Tietoliikennetekniikka I A Kari Kärkkäinen Osa 3 SIGNAALITEORIAN KERTAUSTA 2 Tieoliikenneekniikka I 521359A Kari Kärkkäinen Osa 3 Konvoluuio ja kerolasku ajassa ja aajuudessa Kanaaajuussignaali baseband sanomasignaali sellaisenaan ilman modulaaioa Kaisanpääsösignaali

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. / Raaisu Aihee: Avaisaa: Momeiemäfuio Sauaismuuujie muuose ja iide jaauma Kovergessiäsiee ja raja-arvolausee Biomijaauma, Espoeijaauma, Geomerie jaauma, Jaaumaovergessi, Jauva asaie jaauma, Kolmiojaauma,

Lisätiedot

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA

KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA KJUI BIÄÄRI SIIROJÄRJSLMÄ WG-KVSS Kaajaajui siiro iformaaio siiro johdossa sllaisaa ilma kaoaalo- ai pulssimodulaaioa 536 ioliikkiikka II Osa 3 Kari Kärkkäi Syksy 5 JÄRJSLMÄMLLI Bii kso. Symboli {} ja

Lisätiedot

Aluksi.1. Integrointia

Aluksi.1. Integrointia TT/TV Iegraalimuuokse Meropolia/. Koivumäki Tässä iedosossa ova kaikki uilla esille ullee ehävä. (Tosi iha kaikkia ehäviä ei välämää ole uilla mey läpi kovi arkasi, jos ollekaa.) Esimmäisellä uilla ollee

Lisätiedot

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015

LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015 1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie

Lisätiedot

Luento 7. LTI-järjestelmät

Luento 7. LTI-järjestelmät Luento 7 Lineaaristen järjestelmien analyysi taajuustasossa Taajuusvaste Stabiilisuus..7 LTI-järjestelmät u(t) h(t) y(t) Tarkastellaan lineaarista aikainvarianttia järjestelmää n n m m d d d d yt () =

Lisätiedot

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä

Dynaaminen optimointi ja ehdollisten vaateiden menetelmä Dynaaminen opimoini ja ehdollisen vaaeiden meneelmä Meneelmien keskinäinen yheys S yseemianalyysin Laboraorio Esielmä 10 - Peni Säynäjoki Opimoiniopin seminaari - Syksy 2000 / 1 Meneelmien yhäläisyyksiä

Lisätiedot

2. Suoraviivainen liike

2. Suoraviivainen liike . Suoraviivainen liike . Siirymä, keskinopeus ja keskivauhi Aika: unnus, yksikkö: sekuni s Suoraviivaisessa liikkeessä kappaleen asema (paikka) ilmoieaan suoralla olevan piseen paikkakoordinaain (unnus

Lisätiedot

4.3 Signaalin autokorrelaatio

4.3 Signaalin autokorrelaatio 5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -kuvaus ja ilayhälömalli, ila Linearisoini Jakuva-aikaisen lineaarisen järjeselmän siirofunkio, sabiilisuus Laplace-muunnos Diskreeiaikaisen lineaarisen

Lisätiedot

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1

1. Todista/Prove (b) Lause 2.4. käyttäen Lausetta 2.3./by using Theorem b 1 ; 1 b + 1 ; 1 b 1 1 KETJUMURTOLUVUT Harjoiuksia 209. Todisa/Prove Lause 2.2. käyäen Lausea 2.3./by using Theorem 2.3. Lause 2.4. käyäen Lausea 2.3./by using Theorem 2.3. 2. Määrää Canorin kehielmä luvuille 0,, 2, 3, 4, 5,

Lisätiedot

Älä tee mitään merkintöjä kaavakokoelmaan!

Älä tee mitään merkintöjä kaavakokoelmaan! AS-74. Alogie ääö vkokoelm v. Plu ei jälkee! Trk kokoelm ivumäärä! Älä ee miää merkiöjä kvkokoelm! Dymie mllie perukompoei. Sähköie kompoei Vu (reii) u() Ri() el (iduki) u() L di() d odeori i() C du()

Lisätiedot

a) Ortogonaalinen, koska kantafunktioiden energia 1

a) Ortogonaalinen, koska kantafunktioiden energia 1 S-7.060 Signaali ja järjeselmä Teni 14.5.001 1. Vasaa lyhyesi seuraaviin saehäviin, käyä arviaessa kuvaa. a) Mikä minaisuuksisa rgnaalinen ja rnrmaalinen kuvaa paremmin Furier-sarjaa ja miksi? b) Esiä

Lisätiedot

z = Amplitudi = itseisarvo ja vaihe = argumentti (arg). arg Piirretään vielä amplitudi- ja vaihespektri:

z = Amplitudi = itseisarvo ja vaihe = argumentti (arg). arg Piirretään vielä amplitudi- ja vaihespektri: Määriä suraavi komplksiluku/siaali ampliudi- a vaiharvo. Piirrä b-kohdassa ampliudi a vaih aauud fukioa ampliudi- a vaihspkri. 6p 8 a z 7, z 8 a z. { } b z cos. Ampliudi isisarvo a vaih arumi ar. a z 7

Lisätiedot

W dt dt t J.

W dt dt t J. DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan

Lisätiedot

Diskreetillä puolella impulssi oli yksinkertainen lukujono:

Diskreetillä puolella impulssi oli yksinkertainen lukujono: DEE-00 ineaarise järjeselmä Harjoius 5, rakaisuehdoukse [johdano impulssivaseeseen] Jakuva-aikaisen järjeselmän impulssivase on vasaavanlainen järjeselmäyökalu kuin diskreeillä puolellakin: impulssivase

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat. Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Melli (4) Satuaismuuttujie muuokset ja iide jakaumat Satuaismuuttujie muuoste jakaumat Kaksiulotteiste satuaismuuttujie muuoste jakaumat Riippumattomie satuaismuuttujie summa jakauma Riippumattomie

Lisätiedot

Kompleksilukujen alkeet

Kompleksilukujen alkeet Kompleksilukuje alkeet Samuli Reuae Soja Kouva Kuva 1: Abraham De Moivre (1667-175) Sisältö 1 Kompleksiluvut ja kompleksitaso 1.1 Yhtee- ja väheyslasku...................... 1. Kertolasku ja z = x + yi

Lisätiedot

2. Systeemi- ja signaalimallit

2. Systeemi- ja signaalimallit 2. Syseemi- ja signaalimalli Malliyyppejä: maemaainen malli: muuujien välise suhee kuvau maemaaisesi yhälöin lohkokaaviomalli: syseemin oiminojen looginen jako lohkoihin, joiden välisiä vuorovaikuuksia

Lisätiedot

Tasaantumisilmiöt eli transientit

Tasaantumisilmiöt eli transientit uku 12 Tasaanumisilmiö eli ransieni 12.1 Kelan kykeminen asajännieeseen Kappaleessa 11.2 kykeiin reaalinen kela asajännieeseen ja ukiiin energian varasoiumisa kelan magneeikenään. Tilanne on esiey uudelleen

Lisätiedot

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s).

Huomaa, että aika tulee ilmoittaa SI-yksikössä, eli sekunteina (1 h = 3600 s). DEE- Piirianalyysi Ykkösharkan ehävien rakaisuehdoukse. askeaan ensin, kuinka paljon äyeen ladaussa akussa on energiaa. Tämä saadaan laskeua ehäväpaperissa anneujen akun ieojen 8.4 V ja 7 mah avulla. 8.4

Lisätiedot

x v1 y v2, missä x ja y ovat kokonaislukuja.

x v1 y v2, missä x ja y ovat kokonaislukuja. Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen

Lisätiedot

Luento 7. Järjestelmien kokoaminen osista

Luento 7. Järjestelmien kokoaminen osista Luento 7 Lineaaristen järjestelmien analyysi Järjestelmä yhdistelmät, takaisinkytkentä Taajuusvaste Stabiilisuus analyysi taajuustasossa 8..6 Järjestelmien kokoaminen osista Lineaaristen järjestelmien

Lisätiedot

Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017

Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017 OY/PJKOMP R 017 Puolijohdekomoeie erusee 571A Rakaisu, Kevä 017 1. Massavaikuuslai mukaisesi eemmisö- ja vähemmisövarauksekuljeajie ulo o vakio i, joka riiuu uolijohdemaeriaalisa ja lämöilasa. Kuvasa 1

Lisätiedot

LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN

LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN LUKU 6 KOHINN VIKUUS NLOGISEN MOULIOIEN SUORIUSKYKYYN ieoliikeeekiikka I 5359 Kari Kärkkäie Osa 6 Luku 6 Kohia vaikuus aalogisii odulaaioihi Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie Kaaaajuie järjeselä

Lisätiedot

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A.

9. Epäoleelliset integraalit; integraalin derivointi parametrin suhteen. (x + y)e x y dxdy. e (ax+by)2 da. xy 2 r 4 da; r = x 2 + y 2. b) A. 9. Epäoleellise inegraali; inegraalin derivoini paramerin suheen 9.. Epäoleellise aso- ja avaruusinegraali 27. Olkoon = {(x, y) x, y }. Osoia hajaanuminen ai laske arvo epäoleelliselle asoinegraalille

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y)

b) Ei ole. Todistus samaan tyyliin kuin edellinen. Olkoon C > 0 ja valitaan x = 2C sekä y = 0. Tällöin pätee f(x) f(y) Maemaiikan ja ilasoieeen osaso/hy Differeniaaliyhälö II Laskuharjoius 1 malli Kevä 19 Tehävä 1. Ovako seuraava funkio Lipschiz-jakuvia reaaliakselilla: a) f(x) = x 1/3, b) f(x) = x, c) f(x) = x? a) Ei

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 4, ratkaisuehdotukset D-00 ineaarise järjeselmä Harjoius 4, rakaisuehdoukse nnen kuin mennään ämän harjoiuksen aihepiireihin, käydään läpi yksi huomionarvoinen juu. Piirianalyysin juuri suorianee opiskelija saaava ihmeellä,

Lisätiedot

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi.

Johda jakauman momenttiemäfunktio ja sen avulla jakauman odotusarvo ja varianssi. Mat-2.090 Sovellettu todeäköisyyslasku A Mat-2.090 Sovellettu todeäköisyyslasku A / Pistetehtävät 2, 4, 6, 8, 0 Aiheet: Avaisaat: Momettiemäfuktio Satuaismuuttujie muuokset ja iide jakaumat Kovergessikäsitteet

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

Mallivastaukset KA5-kurssin laskareihin, kevät 2009

Mallivastaukset KA5-kurssin laskareihin, kevät 2009 Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 3 / versio 23. syyskuuta 2015 Vektorianalyysi (Ulaby, luku 3) Koordinaatistot Viiva-, pinta- ja tilavuusalkiot Koordinaattimuunnokset Nablaoperaatiot

Lisätiedot

(x) (tasaisesti suppeneva sarja)

(x) (tasaisesti suppeneva sarja) 6.3 MATEMAATTISET OPERAATIOT SARJOIE Jos srjss o äärellie äärä erejä, void derivoii i iegroii suori huole ereiäi. Ääreöä srj puksess ereiäi operoii o slliu, jos srj suppeee sisesi. Esi. Trksell ääreöä

Lisätiedot

KOHINA KULMAMODULAATIOISSA

KOHINA KULMAMODULAATIOISSA OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.

Lisätiedot

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:

Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien

Lisätiedot

Kompleksianalyysi, viikko 6

Kompleksianalyysi, viikko 6 Kompleksianalyysi, viikko 6 Jukka Kemppainen Mathematics Division Funktion erikoispisteet Määr. 1 Jos f on analyyttinen pisteen z 0 aidossa ympäristössä 0 < z z 0 < r jollakin r > 0, niin sanotaan, että

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio Ilkka Mellin Todennäköisyyslaskenta Osa : Satunnaismuuttujat ja todennäköisyysjakaumat Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (7) 1 Momenttiemäfunktio ja karakteristinen funktio

Lisätiedot

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN

KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä

Lisätiedot

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017

763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017 763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,

Lisätiedot

S Ä H K Ö - J A T I E T O T E K N I I K A N O S A S T O

S Ä H K Ö - J A T I E T O T E K N I I K A N O S A S T O S Ä H K Ö J A T I E T O T E K N I I K A N O S A S T O 2.0.2007 Piirieria II (Graafise laskime salliuja). Laske kuvan piirille siirfunki U u (s)/u in (s) ja piirrä nllanapakara. Laske myös Laplacekääneismuunns

Lisätiedot

joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx =

joka on separoituva yhtälö, jolla ei ole reaalisia triviaaliratkaisuja. Ratkaistaan: z z(x) dx = HY / Maemaiikan ja ilasoieeen laios Differeniaalihälö I kevä 09 Harjois 4 Rakaisehdoksia. Rakaise differeniaalihälö = (x + + Rakais: Tehdään differeniaalihälöön lineaarinen mnnos z(x = x + (x + jolloin

Lisätiedot

Osittaisdifferentiaaliyhtälöt

Osittaisdifferentiaaliyhtälöt Osittaisdifferentiaaliyhtälöt Harjoituskokoelmat 4 ja 5, kevät 2011 Palautus Eemeli Blåstenille to 23.6. klo 16.00 mennessä 1. Ratkaise Dirichlet ongelma u(x, y) = 0, x 2 + y 2 < 1, u(x, y) = y + x 2,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 21. syyskuuta 2007 Antti Rasila () TodB 21. syyskuuta 2007 1 / 19 1 Satunnaismuuttujien riippumattomuus 2 Jakauman tunnusluvut Odotusarvo Odotusarvon ominaisuuksia

Lisätiedot

YKSISIVUKAISTAMODULAATIO (SSB)

YKSISIVUKAISTAMODULAATIO (SSB) YKSISIVUKAISTAODULAATIO SSB ien kaisaa voi sääsää verrauna DSB- a A-modulaaioihin? ikä on Hilber-munnin? 5357A Tieoliikenneekniikka I Osa 9 Kari Kärkkäinen Kevä 05 YKSISIVUKAISTAODULAATION IDEA DSB & A-inormaaio

Lisätiedot

5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE

5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE Värähelymeaiia 5. 5 YHDEN VAPAUSASTEEN YLEINEN PAKOTETTU LIIKE 5. Johao Luvussa 4 araselii yhe vapausasee syseemii harmoisesa heräeesä aiheuuvaa vasea ja havaiii se riippuva pääasiassa syseemi vaimeusesa

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1 Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2004) 1 Satunnaismuuttujien muunnokset ja niiden jakaumat Satunnaismuuttujien muunnosten jakaumat

Lisätiedot

Signaalit aika- ja taajuustasossa

Signaalit aika- ja taajuustasossa Sili lomuoo Sili ik- uussoss Alomuoo kuv sili käyäyymisä fukio li iksoss. Ylsä lomuoo rksll simrkiksi oskilloskoopi äyöllä. Siimuooi sili Asiφ Asiπf φ i Acosφ Acosπf φ muodos prus kikki sili uussisällö

Lisätiedot

Aineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat

Aineaaltodynamiikka. Aikariippuva Schrödingerin yhtälö. Stationääriset tilat. Ei-stationääriset tilat Aieaaltodyamiikka Aikariiuva Scrödigeri ytälö Aieaaltoketä aikariiuvuude määrää ytälö Aieaaltokettie riiuvuus ajasta aikariiuva Scrödigeri ytälö Statioääriset ja ei-statioääriset tilat Aaltoaketit Kvattimekaiika

Lisätiedot

Satunnaismuuttujien muunnokset ja niiden jakaumat

Satunnaismuuttujien muunnokset ja niiden jakaumat Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Satunnaismuuttujien muunnokset ja niiden jakaumat TKK (c) Ilkka Mellin (2007) 1 Satunnaismuuttujien muunnokset ja

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X ,

X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X , Ma-1.1332 Mariisiksponnifunkio, KP3-II, syksy 2007 Pkka Alsalo Johdano. Tämä monis sisälää kurssilla arviava ido mariisiksponnifunkiosa. Mariisiksponnifunkio. Suraavassa A on raalinn n n-mariisi, jonka

Lisätiedot

3. Teoriaharjoitukset

3. Teoriaharjoitukset 3. Teoriaharjoitukset Demotehtävät 3.1 a Olkoot u ja v satunnaumuuttujia, joilla on seuraavat ominaisuudet: E(u = E(v = 0 Var(u = Var(v = σ 2 Cov(u, v = E(uv = 0 Näytä että deterministinen prosessi. x

Lisätiedot

Digitaalinen signaalinkäsittely Signaalit, jonot

Digitaalinen signaalinkäsittely Signaalit, jonot Digitaalie sigaalikäsittely Sigaalit, joot Teemu Saarelaie, teemu.saarelaie@kyamk.fi Lähteet: Ifeachor, Jervis, Digital Sigal Processig: A Practical Approach H.Huttue, Sigaalikäsittely meetelmät, Opitomoiste,

Lisätiedot

ELEC-A7200 Signaalit ja järjestelmät 5 op

ELEC-A7200 Signaalit ja järjestelmät 5 op Luennoisija Prof. Riku Jäni Pääassiseni Seppo Saasamoinen S-posi: riku.jani@aalo.fi Puh. 5 597 8588 E9 Vasaanoo ma klo 9- S-posi: seppo.saasamoinen@aalo.fi Puh. 5 365 376 hps://noppa.aalo.fi/noppa/kurssi/elec-a7/eusivu

Lisätiedot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 7. Millä reaaliluvun arvoilla a) 9 =, b) + 5 + +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c) +

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2016)

ELEC C4140 Kenttäteoria (syksy 2016) ELEC C4140 Kenttäteoria (syksy 2016) Henrik Wallén / versio 15. syyskuuta 2016 Vektorianalyysi (Ulaby, luku 3) Viiva-, pinta- ja tilavuusalkiot Nablaoperaatiot Gaussin ja Stokesin lauseet Nabla on ystävä

Lisätiedot

l 1 2l + 1, c) 100 l=0

l 1 2l + 1, c) 100 l=0 MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 5. Millä reaaliluvun arvoilla a) 9 =, b) 5 + 5 +, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + + 5 + + 99, b) 5 + 4 65 + + n 5 n, c)

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 8: Divergenssi ja roottori. Gaussin divergenssilause. Antti Rasila Aalto-yliopisto Syksy 2015 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy 2015

Lisätiedot

Kompleksianalyysi, viikko 4

Kompleksianalyysi, viikko 4 Kompleksianalyysi, viikko 4 Jukka Kemppainen Mathematics Division Reaalimuuttujan kompleksiarvoisen funktion integraali Aloitetaan reaalimuuttujan kompleksiarvoisen funktion integraalin määrittelyllä,

Lisätiedot

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora

Lisätiedot

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA

BINÄÄRINEN SYNKRONINEN TIEDONSIIRTO KAISTARAJOITTAMATTOMILLA MIELIVALTAISILLA PULSSIMUODOILLA SOVITETTU SUODATIN JA SEN SUORITUSKYKY AWGN-KANAVASSA BINÄÄRINN SYNKRONINN IDONSIIRO KAISARAJOIAMAOMILLA MILIVALAISILLA PULSSIMUODOILLA SOVIU SUODAIN JA SN SUORIUSKYKY AWGN-KANAVASSA Millaiia aalomuooja perupuleja yypilliei käyeään? 536A ieoliikenneekniikka

Lisätiedot

Thermodynamics is Two Laws and a Li2le Calculus

Thermodynamics is Two Laws and a Li2le Calculus Thermodynamics is Two Laws and a Li2le Calculus Termodynamiikka on joukko työkaluja, joiden avulla voidaan tarkastella energiaan ja entropiaan lii2yviä ilmiötä kaikissa luonnonilmiöissä ja lai2eissa Voidaan

Lisätiedot

= vakio = λ. V (x) V (0) = V (l) = 0.

= vakio = λ. V (x) V (0) = V (l) = 0. 6. Aatoyhtäö I 6.1. Ratkaisu Fourier-sarjojen avua. Oetetaan, että värähteevän angan muodon hetkeä t = määrää funktio u ja nopeuden funktio u 1. Otetaan tehtäväksi määrätä seuraavan akuarvo- reuna-arvotehtävän

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän

Lisätiedot

6.2.3 Spektrikertymäfunktio

6.2.3 Spektrikertymäfunktio ja prosessin (I + θl + + θl q )ε t spektritiheysfunktio on Lemman 6. ja Esimerkin 6.4 nojalla σ π 1 + θ 1e iω + + θ q e iqω. Koska viivepolynomien avulla määritellyt prosessit yhtyvät, niin myös niiden

Lisätiedot

Lineaaristen järjestelmien teoriaa II

Lineaaristen järjestelmien teoriaa II Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä

Lisätiedot

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio TKK (c) Ilkka Mellin (5) 1 Momenttiemäfunktio ja karakteristinen funktio Momenttiemäfunktio Diskreettien jakaumien momenttiemäfunktioita

Lisätiedot

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto

LUKU 7. Perusmuodot Ensimmäinen perusmuoto. Funktiot E, F ja G ovat tilkun ϕ ensimmäisen perusmuodon kertoimet ja neliömuoto LUKU 7 Perusmuodot 7 Ensimmäinen perusmuoto Määritelmä 7 Olkoon ϕ: U R 3 tilkku Määritellään funktiot E, F, G: U R asettamalla (7) E := ϕ ϕ, F := ϕ, G := ϕ u u u u Funktiot E, F G ovat tilkun ϕ ensimmäisen

Lisätiedot

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246

Osa VI. Fourier analyysi. A.Rasila, J.v.Pfaler () Mat Matematiikan peruskurssi KP3-i 12. lokakuuta / 246 Osa VI Fourier analyysi A.Rasila, J.v.Pfaler () Mat-1.1331 Matematiikan peruskurssi KP3-i 12. lokakuuta 2007 127 / 246 1 Johdanto 2 Fourier-sarja 3 Diskreetti Fourier muunnos A.Rasila, J.v.Pfaler () Mat-1.1331

Lisätiedot

Mat Matematiikan peruskurssi L4, osa II, todistuksia ym

Mat Matematiikan peruskurssi L4, osa II, todistuksia ym Mat-.4 Matematiikan peruskurssi L4, osa II, todistuksia ym G. Gripenberg Aalto-yliopisto 4. maaliskuuta 2 G. Gripenberg Aalto-yliopisto L4, osa II, todistuksia ym. 4. maaliskuuta 2 / 68 Poissonin yhtälö...................

Lisätiedot

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA

6 JÄYKÄN KAPPALEEN TASOKINETIIKKA Dyamiia 6. 6 JÄYKÄN KAPPALEEN TASKINETIIKKA 6. Yleisä Jäyä appalee ieiiassa arasellaa appaleesee aiuaie uloise oimie ja seurausea olea liiee (raslaaio ja roaaio) älisiä yheysiä. Voimie äsielyssä ariaa

Lisätiedot

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2, MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy 6. Millä reaaliluvun arvoilla a) 9 =, b) + + + 4, e) 5?. Kirjoita Σ-merkkiä käyttäen summat 4, a) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + +

Lisätiedot

T Signaalinkäsittelyjärjestelmät Kevät 2004

T Signaalinkäsittelyjärjestelmät Kevät 2004 T-6. KJ Esimerkkitehtäviä ivu / 7 Tehtäviä alkae sivulta. Vastauksia alkae sivulta 9. Kaavakokoelma alkae sivulta 7. T-6. igaalikäsittelyjärjestelmät Kevät Esimerkkejä laskutehtävistä Virheistä ja parausehtotuksista

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

KANTOAALTOMODULOIDUN KAISTANPÄÄSTÖSIGNAALIN (BANDPASS) JA KANTATAAJUISEN (BASEBAND) SIGNAALIN AMPLITUDISPEKTRIT

KANTOAALTOMODULOIDUN KAISTANPÄÄSTÖSIGNAALIN (BANDPASS) JA KANTATAAJUISEN (BASEBAND) SIGNAALIN AMPLITUDISPEKTRIT KANOAALOMODULOIDUN KAISANPÄÄSÖSINAALIN BANDPASS JA KANAAAJUISEN BASEBAND SINAALIN AMPLIUDISPEKRI 536A ieoliienneeniia II Osa 5 Kari Käräinen Sysy 05 EHOIHEYSSPEKRI & KAISANLEVEYS Edellä arasellu modulaaio

Lisätiedot