Signaalit aika- ja taajuustasossa

Koko: px
Aloita esitys sivulta:

Download "Signaalit aika- ja taajuustasossa"

Transkriptio

1 Sili lomuoo Sili ik- uussoss Alomuoo kuv sili käyäyymisä fukio li iksoss. Ylsä lomuoo rksll simrkiksi oskilloskoopi äyöllä. Siimuooi sili Asiφ Asiπf φ i Acosφ Acosπf φ muodos prus kikki sili uussisällö käsilyll, kosk mikä hs milivli sili void siää siimuoois sili summ. Siivärähly ho kskiyy yhdll uudll f. Värähly prussuurid välillä o yhyd f / πf kso piuus [s], f uus [Hz] kulmuus [rd] π/ Void osoi, ä mikä hs milivli ksolli sili void siää sopivsi vliu kosiisili summ. Jyrki Lii L53 Siliori S4

2 Sili ik- uussoss Ai i cosπf Φ i i A cosπf Φ A cosπf Φ A cosπf Φ L Summss rmi lukumäärä riippuu siäväsä silis siysrkkuuds. Summlusk sisälää kolm prmri, ok ov A i i: rmi mpliudi f i i: rmi uus Φ i i: rmi vih Jyrki Lii L53 Siliori S4

3 Sili ik- uussoss Esimrkki. Kosiisili mpliudi.5, uus Hz, ku vih ylmpi kuv vih -5π/4 lmpi kuv. /f.5 s Ampliudi - A [s] Vih -5pi/4.35 s viiv Ampliudi [s] Jyrki Lii L53 Siliori S4 3

4 Sili ik- uussoss Esimrkki. Summsili yli, ok muodosuu, ku kolm li sili lsk yh [s] Jyrki Lii L53 Siliori S4 4

5 Sili ik- uussoss Ku kikki sili sisälämä kosiikompoi siää uud fukio, sd sili siys uussoss. Ylsä ällöi rksll sili yli kuv mpliudi vih uud fukio, olloi puhu vsvsi mpliudi- kskimmäi kuv vihspkrisä li kuv. Ampliudi [s] Ampliudi.5 Vih [rd] f [Hz] f [Hz] Jyrki Lii L53 Siliori S4 5

6 Spkri uusvs Sili ik- uussoss Usi lomuoo kiiosvmpi oki sili uussisälö li spkri, ok o lomuodo mmi irlimuuos. Spkri muoo riippuu sili luos: Jksollis sili spkri sd lomuodo Fourir-srs s o luol diskri li koosuu rillisisä kompois, oid uud ov sili prusuud / moikro. Jksoom sili spkri sd Fourir-muuoks s o luol kuv. Liris ärslmi uuskäyäyymi määriää ärslmä impulssivss, li lomuodos, ok ärslmä uo yksikköimpulssis li Dirci dlfukios. Järslmä uusvs o impulssivs Fourir-muuos. Sbiili ärslmä impulssivs o vimv li ksoo. Impulssivs i uusvs kuv äydllissi liris ärslmä vikuuks mihi hs lomuooo. rmi spkri o präisi li kilsä, oss s rkoi kuv. Jyrki Lii L53 Siliori S4 6

7 Fourir-sr Fourir-sr Fourir-sr Fourir muuos rmi uouv rskliss mmikos J Bpis Fourir:s , ok ukiss mlli lämmöohumis sii mlmä ksollis fukio siämisksi rioomris fukioid summ: Mikä hs ksolli fukio sili void siää hrmois sii- kosiilo summ. Summss kuki rmi uus o fukio prusuud kokoi moikr. [ cos b ] si Kvss,, 3, kokoisluku. Kroim, b ov Fourirsr kroimi lsk ksolliss silis. rmi π/ o fukio pruskulmuus. Pruskulmuud kokois moikrr, 3, 4, ov fukio hrmoisi kulmuuksi. Jyrki Lii L53 Siliori S4 7

8 Esimrkki. Jksolli pulssioo. Fourir-sr Ampliudi A Pruskulmuus o π/. Pulssioo Fourir-sr siimuoois rmi uud ov pruskulmuus skä pruskulmuud kokois moikrr hrmois kulmuud, 3, 4, Pulssioo spkri o siis diskri. Jyrki Lii L53 Siliori S4 8

9 Jyrki Lii L53 Siliori S4 9 Fourir-sr Fourir-sr kroim Fourir-sr kroim sd kvoill: si cos d b d d Kvoiss,, 3, ilmis sr k: kroim. Krroi o : yhd kso yli lsku kskirvo li s määriää sili kskirvo dc-so.

10 Jyrki Lii L53 Siliori S4 Fourir-sr Fourir-sr kroimi lsk yksikrisuu surviss puksiss: Prilli fukio - b d d, cos / / Ampliudi Prio fukio - - / si, d b Ampliudi

11 Fourir-sr Jksollis sili prillisuus i priomuus riippuu ollkohd vlis. Edllis sivu prio sili muuuu prillisksi, os ollkoh siirrää /4: vrr läskso vrr. Puolilosymmri -- / Sili o puolilosymmri, os uloksksi sd lkupräi sili, ku siä siirrää puol kso vrr kääää ik-ksli ympäri ivroid., prilli / cos d, prio b, prilli b / si d, prio Jyrki Lii L53 Siliori S4

12 Nläsos-losymmri Fourir-sr Sili o läsos-losymmri, os s o puolilosymmri s lisäksi symmri posiiivis iivis puolikso kskikohi suh. Nläsos-losymmri sili void hdä oko prillisksi i priomksi sopivll ollhk vlill. Jos vli ollhki si, ä sili o prilli, ov Fourir-sr kroim:, prilli b 4, / 4 cos d, prio /4 / Jyrki Lii L53 Siliori S4

13 b b, 4, / 4 si d, prilli Fourir-sr Jos vli ollhki si, ä sili o prio, ov Fourir-sr kroim: prio Jyrki Lii L53 Siliori S4 3

14 Jyrki Lii L53 Siliori S4 4 Fourir-sr Fourir-sr komplksisiys Fourir-sr siysmuoo sd yksikrismmksi, ku huom [ ] [ ] si cos Fourir-srksi sd äiä hyödyä [ ] [ ] [ ] b b b

15 Jyrki Lii L53 Siliori S4 5 Fourir-sr Kv void dll yksikris, ku huom, ä Määrillää lisäksi komplksi krroi c : [ ] [ ] b b < >,,, b b c Fourir-sr siys sd y muooo K,,,, / / ± ± d c c o o ämä o sili Fourirsr komplksisiys!

16 Fourir-sr Ampliudi- vihspkri Ylisssä puksss Fourir-sr komplksisiyks kroim c ov komplksiluku, ok void siää muodoss c c r { } c kiä c määriää ksollis sili : hrmois kompoi mpliudi. Esiämällä c uud fukio sd sili diskri mpliudispkri. Vsvsi kspoi r{c } ksollis sili : hrmois kompoi vih, o siämällä r{c } uud fukio sd sili diskri vihspkri. Esimrkki. Jksolli pulssioo. A Jyrki Lii L53 Siliori S4 6

17 Fourir-sr A, / /, muulloi Fourir-kroimiksi sd ällöi c / / A o d A sic f,, ±, ±, K Sili mpliudi- vihspkri: c r{c }/[ o ] 36 A/ 8-8 / -3/ -/ -/ / / 3/ -36 Jyrki Lii L53 Siliori S4 7

18 Jyrki Lii L53 Siliori S4 8 Fourir-sr Esimrkki. Kolmiollo Fourir-sr K si4 4 si3 3 si si si V V V V V V V v m m m m m m m π π π π π V m v

19 Fourir-sr Esimrkki. Kolmiollo Fourir-sr kuu rmi Fourir-sr muodosu kolmiolo Jyrki Lii L53 Siliori S4 9

20 Fourir-sr Esimrkki. Kolmiollo Fourir-sr kuu. 5 rmi Fourir-sr muodosu kolmiolo Jyrki Lii L53 Siliori S4

21 Fourir-sr Esimrkki. Kolmiollo Fourir-sr kuu. rmi Fourir-sr muodosu kolmiolo Jyrki Lii L53 Siliori S4

22 Fourir-muuos Johdo Fourir-muuoksll void määrillä uussisälö ksoomill silill. Fourir-muuos void piää skä Lplc-muuoks ä Fourir-sr rikoispuks. Silikäsily- ioliikkiik sovlluuksiss Fourir-muuos o kuiki ylismmi käyy kui Lplc-muuos, o rkslu pohuuu ylsä Fourir-sr ori. rksll Fourir-sr komplksisiysä: c o c / / o d,, ±, ±, K Sili ksopiuud ksvss, khd präkkäis hrmois uud väli pi. Jyrki Lii L53 Siliori S4

23 Fourir-muuos π Ku sili muuuu ksoomksi ksoik lähsyy ääröä präkkäisi uuksi rous muuuu diffrilisksi, li spkri muuuu kuvksi. d π Fourir-kroim häviävä sili ksollisuud hävissä, li c -> ku ->. Void osoi, ä ulo c r-rvo o c d, Jyrki Lii L53 Siliori S4 3

24 Fourir-muuos Edllä olv irli o fukio Fourir-muuos, ok määrillää muodoss I { } G Fourir-kääismuuos sd kvll I π { } G d G d Fourir-muuoks muodosv yhdssä Fourir-muuospri G Fourir-muuoksss lsk is siss muuv sili sili - korrlio kikill uud rvoill. Suuri korrlio ilmis sisälävä vsv uu. Pii korrlio puols osoi kysis uuskompoi puuuv silis. Jyrki Lii L53 Siliori S4 4

25 Fourir-muuos Esimrkki. Jksolli pulssioo ksoo pulssi. A A Jksolli sili Jksoo sili c G A/ A / -3/ -/ -/ / / 3/ -3/ -/ -/ / / 3/ Diskri spkri Jkuv spkri Jyrki Lii L53 Siliori S4 5

26 Fourir-irli suppmi Fourir-muuos Silill o i määrily Fourir-muuos, mikäli Fourir-muuosirli supp, li s äärllis rvo iroimisvälillä. Esimrkki älliss silis o dllis sivu suorkidpulssi, ok pi-l pulssi piuus x pulssi korkus o äärlli. Fourir-irli voi sup myös, vikk sili i kosk svu oll rksluvälillä, mikäli läh sympooissi oll, ->. Esimrkki älliss silis o vimv kspoili. K -σ G K σ K σ σ K K σ Jyrki Lii L53 Siliori S4 6

27 Fourir-muuos Joidki rikoisfukioid Fourir-muuoksi Suorkidpulssill vimvll kspoilill void lsk Fourirmuuos hlpohkosi, kosk äid fukioid Fourir-irli-supp s. Dirichli hdo mukissi. Mm. vkiofukio K vkio, siimuoois fukio ~ cos sklfukio u ov simrkkä silis, oill Fourir-irli suppmisho i ol voimss. Näid Fourir-muuoks lskss oudu urvuum oihiki rikoisfukioihi, ok määrillää survss lyhysi. Impulssi- sklfukio ol uuds uuiksi. Suorkidfukio rc, < < rc, Yksikköimpulssifukio void lusu suorkidfukio vull muodoss lim δ rc τ τ τ Jyrki Lii L53 Siliori S4 7

28 Jyrki Lii L53 Siliori S4 8 Fourir-muuos Suorkidpulssi, ok korkus o A piuus void siää rc-fukio käyä muodoss. / rc A Lsk suorkidpulssi Fourir-muuos: A mpliudispkri sic sic sic sic si si / / / / / / / / / / / / / A A G f A A A A A A A A d A d A d G o

29 Fourir-muuos Ylis suorkidpulssi Fourir-muuospri o siis Arc / A sic f A G -3/ -/ -/ / / 3/ Dirci kmpfukio li idli äyoofukio δ δ Kmpfukio Fourir-muuos o myös kmpfukio. δ δ f F / / Jyrki Lii L53 Siliori S4 9 f

30 Fourir-muuos Fourir-muuos lsk moill käyäö silill dllä kuvu rikoisfukioid vull. ällöi lähdää liikkll osi uus fukios, ok r-rvo lähsyä koh olv fukio. Esimrkiksi vkiofukio K Fourir-muuos void määriää kksisuuis kspoifukio vull, ku vimuskiä σ lähsyä oll. K -σ σ. σ. σ. Fukio siis lähsyy r-rvo vkiofukio K, s Fourir-muuos G lähsyy impulssifukio K πkδ ämä ulos void ulki si, ä sili DC-kompoi o ollui. Käää ulos kroo, ä impulssi Fourir-muuos o äärömä lvä li impulssi sisälää kikki uuksi vkiompliudill! Jyrki Lii L53 Siliori S4 3

31 Fourir-muuos sium-fukio s, s,, > < Sium-fukio i äyä suppmisho, mu s void siää yksikkösklfukio vull muodoss -σ u- σ u- s u u äsä sd dll kspoifukio vull siysmuoo, os sium-fukio Fourir-muuos void määriää. lim σ σ s { u u } σ Fourir-muuospriksi sd s Jyrki Lii L53 Siliori S4 3 σ σ. σ. σ ->

32 Fourir-muuos Yksikkösklfukio Fourir-muuos Yksikkösklfukio u void lusu sium-fukio s vull muodoss u s Yksikkösklfukio Fourir-muuoksksi sd ämä prusll I { u } I I s Yksikkösklfukio Fourir-muuos sd siis vkiofukio sium-fukio muuos summ. Nämä muuoks o siy dllä, o I{ u } π δ πδ u πδ ässä hyödyää Fourir-muuoks lirisuus-omiisuu. Jyrki Lii L53 Siliori S4 3

33 Fourir-muuos Kosii- siifukio Fourir-muuoks cos πδ πδ si { πδ πδ } cos si Jyrki Lii L53 Siliori S4 33

34 Jyrki Lii L53 Siliori S4 34 Fourir-muuos Fourir-muuoks omiisuuksi Homoisuus Fourir-muuos o homi oprio. Muuv sili sklmi ihu vsv skluks Fourir-muuoksss KG K G Fourir-muuoks ddiiivisuus Fourir-muuos o ddiiivi oprio. Khd sili summ Fourirmuuos o rmisili Fourir-muuos summ G G G G Fourir-muuoks lirisuus Fourir-muuos o liri oprio, kosk s o skä homoi ä ddiiivi oprio.

35 Jyrki Lii L53 Siliori S4 35 Fourir-muuos { } { } { } G K K G K K K K I I I Fourir-muuoks lirisuus Fourir-muuos o liri oprio, kosk s o skä homoi ä ddiiivi oprio. Esimrkiksi { } { } { } { } { } I I I si3.5 cos 3.5si3 3cos πδ πδ πδ πδ

36 Fourir-muuos A sklus Aikskl kuisuss uusskl vyy päivsoi G Ampliudi [s] Ampliudi f [Hz]. Suorkidpulssi lvyssä s spkri kp päivsoi. Ampliudi.3. Ampliudi [s] -5 5 f [Hz] Jyrki Lii L53 Siliori S4 36

37 Viiväsys iksoss Sili viiväsämisä iksoss vrr vs uussoss Fourirmuuoks kromi kiällä -. Viiväsys muu sili vih, mu i viku isisrvoo. G G Fourir-muuos Suorkidpulssi - [s] Viiväsy pulssi Ampliudispkri -5 5 f [Hz] Ampliudispkri V ih s p kri f [Hz] V ih s p kri Kulmkrroi [s] -5 5 f [Hz] f [Hz] Jyrki Lii L53 Siliori S4 37

38 Jyrki Lii L53 Siliori S4 38 Fourir-muuos [ ] cos M M G m m m m Esimrkki. Ampliudimodulio. Ampliudimodulioss iformio sisälävä hyöysili m moduloi siimuoois kollo c cos mpliudi. Moduloiiss hyöysili krro kolosilill, olloi sd moduloiu kolosili. Moduloidu kollo Fourir-muuos koosuu uuksi - ympärisöö siirysä hyöysili spkrisä. M G - Viiväsys uussoss Sili Fourir-muuoks viiväsämisä uussoss uud vrr vs iksoss sili kromi kiällä. G G

39 Jyrki Lii L53 Siliori S4 39 Fourir-muuos G d d G Drivoii iksoss Sili drivoii iksoss vhvis uuksi kiällä, missä drivoii krluku. Drivoii vhvis siis korki uuksi. Iroii iksoss Sili iroii iksoss vsvsi vim korki uuksi. F G F f d f

40 Jyrki Lii L53 Siliori S4 4 Fourir-muuos λ λ λ H F G h f d h f H h F f Kovoluuio iksoss kovoluuioorm Sili kovoluuio iksoss vs uussoss iid Fourirmuuos kromi kskää. K huom dlfukio käyäyymi kovoluuio lskss d δ λ λ δ λ J kovoluuioorm prusll sm uussoss δ G d G

41 Fourir-muuos Esimrkki. Fourir-muuoks kovoluuioorm. uusso: uusvs Suodv sili Suodu sili H[f] f / [Hz] f / [Hz] f / [Hz] Aikso: Impulssivs Suodv sili Suodu sili h[] / [s] / [s] Jyrki Lii L53 Siliori S4 4

42 Jyrki Lii L53 Siliori S4 4 Fourir-muuos λ λ λ π d F F G f f F f F f Kovoluuio uussoss uusso kovoluuio puols vs ikso krolsku.

43 Kislvys Sili sisälämä posiiivis uud määriävä sili kislvyd uussoss. Sili o iuksi kisroiu uussoss, os s sisälää vi iy uuskis sisällä olls rovi uuksi o oll ämä uuskis ulkopuolll. älli sili o i sympooissi kisroiu iksoss. Sili i voi oll yhä ik iuksi kisroiu skä ik- ä uussoss. Esimrkiksi sic-pulssi iksoss o sympooissi kisroiu. S rvo lähsyvä oll, ku ±. Sic-pulssi Fourir-muuos o suorkidpulssi, ok sisälää vi iyllä välillä olvi uuksi, o sic-pulssi o iuksi kisroiu uussoss Jyrki Lii L53 Siliori S4 43

44 Kislvys Aikso Äärömä pikä sili uusso Äärllis piui spkri KislvysB Ampliudi Ampliudi Aik -B B uus Äärllis piui sili Äärömä pikä spkri Ampliudi Ampliudi Aik uus Jyrki Lii L53 Siliori S4 44

45 Kislvys Äärömä pikä spkri omvll silillki määriää usi kislvys sillä äissä puksiss mpliudi yypillissi vim uud ksvss. ällöi kislvys void määriää usll ri vll: Jos simrkiksi sili spkrissä o slväsi rouv päämksimi, o ro sivumksimis ollkohd vikkp sic-sili, voi kislvys määräyyä päämksimi ollkohi prusll. oi yli p o määriää s. 3 db: kis lvys s pis vull, oss sili mpliudi o pudou huippurvos kiällä /.77. Sili ho o pudou ässä pisssä puol huippurvos / ^/. Kolms mhdollisuus ähä pl myöhmmi o määrillä kislvys sili ri i hoo prusu. ällöi ruudksi void sopi simrkiksi s uus, ok lpuolll olv silikompoi sisälävä 9% i 95% sili ris. Jyrki Lii L53 Siliori S4 45

46 Kislvys Kislvys määrillää ylsä rivll s. lipääsö kispääsösilill. Alipääsösili ri kskiyy olluud ympärisöö kispääsösili ri vsvsi oku olls poikkv uud ympärisöö. Ylisä sääöä void od, ä pulssisili piuud kislvyd ulo o vkio. Esimrkiksi : piuis suorkidsili kislvys o / [Hz], li ulo o vkio. F / Jyrki Lii L53 Siliori S4 46

47 Kislvys Esimrkki. : piuis suorkidsili kislvys uussoss. Kislvys/ suorki piuus iksoss Kislvys/ suorki piuus iksoss Ampliudi Ampliudi -/ / f c -/ f c fc / uus uus 3db kislvys 3db kislvys Ampliudi.77 Ampliudi.77 f c uus uus Jyrki Lii L53 Siliori S4 47

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

1.3 Toispuoleiset ja epäoleelliset raja-arvot

1.3 Toispuoleiset ja epäoleelliset raja-arvot . Toisuoleiset j eäoleelliset rj-rvot Rj-rvo lim f () A olemssolo edellyttää että muuttuj täytyy void lähestyä rvo kummst suust hyväsä. Jos > ii sot että lähestyy rvo oikelt ositiivisest suust. Jos ts

Lisätiedot

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään.

Vastaa tehtäviin 1-4 ja valitse toinen tehtävistä 5 ja 6. Vastaat siis enintään viiteen tehtävään. S-8. Sähkönsiirtoärstlmät Tntti 8..7 Vst thtäviin -4 vlits toinn thtävistä 5 6. Vstt siis nintään viitn thtävään.. Tutkitn ll piirrttyä PV-käyrää, ok kuv sllist vrkko, oss on tuotntolu kuormituslu niidn

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

MITEN PÄRJÄTÄ REKRYTOINTIKÄYTÄNTÖJEN MUUTTUVASSA MAAILMASSA

MITEN PÄRJÄTÄ REKRYTOINTIKÄYTÄNTÖJEN MUUTTUVASSA MAAILMASSA MITEN PÄRJÄTÄ REKRYTOINTIKÄYTÄNTÖJEN MUUTTUVASSA MAAILMASSA Wbiri 9.6.2015 Rii Oio H Hikkilä 1 JOHDANTO Riiääkö orgiioll, ä rkryoii hoi ih ok? Mrkiävä khiyrdi Employr brdig yöjkv mrkiy rkryoii oimi Soili

Lisätiedot

Pakkauksen sisältö: Sire e ni

Pakkauksen sisältö: Sire e ni S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

ARK 01-01. Asiakirjaluettelo. Jyrki Ala-Mäkelä, per. Koy:n lukuun Pinotie 33470 YLÖJÄRVI ENECON OY. Laksontie 11 60420 SEINÄJOKI

ARK 01-01. Asiakirjaluettelo. Jyrki Ala-Mäkelä, per. Koy:n lukuun Pinotie 33470 YLÖJÄRVI ENECON OY. Laksontie 11 60420 SEINÄJOKI ENECON OY Lksoti SEINÄJOKI 9 timo.mtil@co.fi Uudisrkus, Jyrki Al-Mäklä, pr. Koy lukuu, Pioti, Ylöjärvi Piirustusluttlo.. Vstuuhkilö Timo Mtil, RI Asikirj Sisältö Mittkv Luttlot - Asikirjluttlo.. Pääpiirustukst

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Kertaustehtävien ratkaisut

Kertaustehtävien ratkaisut Rtkisuist Nämä Trigoometriset fuktiot j lukujoot kurssi kertustehtävie j -srjoje rtkisut perustuvt oppikirj tietoihi j meetelmii. Kustki tehtävästä o yleesä vi yksi rtkisu, mikä ei kuitek trkoit sitä,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi 6/ VÄRÄHTEYMEKANKKA SESS 6: Evvle sysee JHDANT Use äyä pplee uodos sysee vod orv yhde vpussee evvlell llll os se pplede se/ul-se vod lusu s oord vull. Tällö sysee geoers vod uodos yheyde se e pplede leloe

Lisätiedot

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95

1.1. Laske taskulaskimella seuraavan lausekkeen arvo ja anna tulos kolmen numeron tarkkuudella: tan 60,0 = 2,950... 2,95 9..008 (9). Lskime käyttö.. Lske tskulskimell seurv lusekkee rvo j tulos kolme umero trkkuudell: 4 + 7 t 60,0 + Rtkisu: 4 + 7 =,950...,95 t 60,0 + Huom: Lskimiss o yleesä kolme eri kulmyksikköjärjestelmää:

Lisätiedot

Hyvinkään kaupunki. Hangonsillan kaava-alueen pohjavesiselvitys

Hyvinkään kaupunki. Hangonsillan kaava-alueen pohjavesiselvitys Hyviää pi Hagosilla ava-al pohjavsislvitys Pöyry Filad Oy PL 50 (Jaao 3) FI-01621 Vaa Filad Kotipai Vaa, Filad Y-s 0625905-6 Ph. +358 10 3311 Fasi +358 10 33 26600 www.poyry.fi Päiväys 13.11.2013 Siv 1

Lisätiedot

Voutila ASEMAKAAVAN SELOSTUS. 2519 Dnro 788/2015. Hongistonkuja Asemakaavan muutos 25. kaup. osa, Kortteli 74, tontti 3 ja katualue

Voutila ASEMAKAAVAN SELOSTUS. 2519 Dnro 788/2015. Hongistonkuja Asemakaavan muutos 25. kaup. osa, Kortteli 74, tontti 3 ja katualue SEMV SESS 59 Dnro 788/5 Vouil Hongisonuj semvn muuos 5 up os, oreli 74, oni 3 j ulue iljjohj äivi Slorn Vireille ulo 35 Yhdysunluun 5 Yhdysunluun 75 invoiminen SSYSEE ERS- J SEED 3 v-lueen sijini 3 vn

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ

LIITE 8A: RAKENNELUVUN 137 YHTÄLÖITÄ LIITE 8A: RAKENNELUVUN 37 YHTÄLÖITÄ Raknnluvusta 37 on tämän työn yhtydssä syntynyt yli 00 yhtälöä, joista 00 yhtälöä on analysoitu. Näistä on osoittautunut 70 yhtälöä milnkiintoisiksi ja saman vrran otaksutaan

Lisätiedot

ITK 236 Jups. Elektroninen liiketoiminta kahtena prosessina (Kambil & van Heck) Monikanavamalli

ITK 236 Jups. Elektroninen liiketoiminta kahtena prosessina (Kambil & van Heck) Monikanavamalli IK 236 Jp Elr l h pr (Kbl & v Hc) Mvll l p fgr vr h vl 1 ll ypyä j v rll (hp://www.-fcr./) hc prr chcl Idvdl Org Idry Scy Grc b dl frwr cg f Sp-prl prl d cp /cgr cr ll lvl (.., hc prr). ). h cp c f dld

Lisätiedot

ESIMERKKI 2 Harri Laine

ESIMERKKI 2 Harri Laine ESIMERKKI 2 H L Lähöoh v Kmpmo Käää o hlmää ll vplvl. A öyvä jäjlmää mmä v yhydä. Röyll ll. A ll jäjlmää poj, m, oo j phlmo. Lä ll l h lyvä oj h, p, vä, ym. Tjoll olv plvl o olm ho. Ho o plvl ol ph j po.

Lisätiedot

VAKIOVARUSTEET SUOMESSA NISSAN ALMERA

VAKIOVARUSTEET SUOMESSA NISSAN ALMERA VAKIOVARUSTEET SUOMESSA NISSAN ALMERA r Spor Luury Allsr Sens Tekn Acen Sens Luury käyninopeusmiri öljynpinemiri öljynlämpömiri öljymäärän miri ulkolämpömiri sisälämpömiri kksoisrippimiri loudellisuusmiri

Lisätiedot

Luento 4. Fourier-muunnos

Luento 4. Fourier-muunnos Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:

Lisätiedot

Rakennus- ja ympäristölautakunta 252 16.12.2015 655/11.01.00/2014. Rakennus- ja ympäristölautakunta 16.12.2015 252

Rakennus- ja ympäristölautakunta 252 16.12.2015 655/11.01.00/2014. Rakennus- ja ympäristölautakunta 16.12.2015 252 Rakennus- ja ympäristölautakunta 252 16.12.2015 Päätös / ympäristölupahakemus / Syväsatama, jätteiden loppusijoittaminen ja hyödyntäminen satamakentän rakenteissa, Kokkolan Satama / Länsi- ja Sisä-Suomen

Lisätiedot

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a)

Kertausosa. Kertausosa. 3. Merkitään. Vastaus: 2. a) b) 600 g. 4. a) Kertusos Kertusos ). ) : j 7 0 7 ) 0 :( ) c) :( ). Merkitää merirosvorht (kg) sukltrffelit (kg) ) 7, 0 hit: /kg hit: 7 /kg ) 00 g 0,kg 7 0,,0,,0, 0, (kg) :. ) Vstus: ) 7, 0 ( ) ) 00 g. ) 0 7 9 7 0 0 Kertusos

Lisätiedot

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto

i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Nosto- ja Kiinnitysosat

Nosto- ja Kiinnitysosat Ilman miä i BETONI NOUSE. Noso- ja Kiinniysosa Valikoimasa löyyy laaja valikoima rilaisia nosoon ja kiinniyksn sovluvia boniin valavia ankkuria arvikkinn. Ankkuri on jau käyöavan mukaan kirrankkurihin,

Lisätiedot

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.

1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet. a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

AIKAKAUSLEHDET. tammik. Suomen Suurin SiSuStuSlehti. Kevään. värikkäät astiat. Talvi 1/0. arke. herkut. retkel MAK

AIKAKAUSLEHDET. tammik. Suomen Suurin SiSuStuSlehti. Kevään. värikkäät astiat. Talvi 1/0. arke. herkut. retkel MAK 1 UU mmk 2006 AIKAKAUSLHDT 75 : O R V A I L m U J Am I M Kää JAS ä M A KU r 0 1 ä y ö d K h h H r Sm Sr SSSSh ärkkää RUOKA, JUOM A, KITT IÖ, M AT K A ILU, HY VIVO ITI r y, y 3 ää & r h r d 2008 öö r g

Lisätiedot

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S

ja differenssi jokin d. Merkitään tämän jonon n:n ensimmäisen jäsenen summaa kirjaimella S 3.3. Aritmeettie summ 3.3. Aritmeettie summ Mikä olisi helpoi tp lske 0 esimmäistä luoollist luku yhtee? Olisiko r voim käyttö 0 + + + 3 + + 00 hyvä jtus? Tekiik vull se iki toimii. Fiksumpiki tp kuiteki

Lisätiedot

Rautatie on mahdollisuus

Rautatie on mahdollisuus Rautatie on mahdollisuus Pam flet ti Suo men rau ta teis tä ja liikennepolitiikasta Raideryhmä Suomes sa 22.5.2005 Olisi paljon helpompaa ministeriölle, jos RHK suostuisi ottamaan roiston roolin ja ehdottamaan,

Lisätiedot

HYVINKÄÄN KAUPUNKI KUNTATEKNIIKKA

HYVINKÄÄN KAUPUNKI KUNTATEKNIIKKA USUNTO X.. HYNÄÄN UUN UNTTEN o Hgo h y Coygh öyy Fd Oy X X SSÄYS YESTÄ... OHJ J OHJESOOSUHTEET... To j... To j... To, j... To j... To j... To j U... UEEN RENNETTUUS UONNOSEEN ERUSTUEN.... Yä.... R....

Lisätiedot

Evoluutiosta. Evoluutiokäsitteitä. Nykykäsitys evoluutiosta. Populaatiogenetiikka. Mikroevoluutio. Mikroevoluutio

Evoluutiosta. Evoluutiokäsitteitä. Nykykäsitys evoluutiosta. Populaatiogenetiikka. Mikroevoluutio. Mikroevoluutio Evoluuios Evoluuio-opi oppi-isää Chrles Drwi, jos usei käyey ermi drwiismi juur juures. Drwi kirj The Orii of Speies by Mes of Nurl Seleio (1859) esii kksi pääsi: 1. Todisei siiä eä kikki lji ov polveuuee

Lisätiedot

Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3

Kertausosa. Kertausosa. Verrattuna lähtöarvoon kurssi oli laskenut. Kalliimman tukkuhinta 1,2 480 = 576 Kalliimman myyntihinta 1,3 Kertusos. ) Edullisemm hit 480, = 64 Klliimm tukkuhit, 480 = 576 Klliimm myytihit, 576 = 748,80 b) 748,80 64 = 0,666... = 6,66% 7% 748,80. Liittymä puhelimell mks khde vuode ik 4 8,50 = 684. Liittymä ilm

Lisätiedot

Markovin ketju. Stokastinen prosessi. Markovin ketju. Markovin malli: DNA esimerkki. M-ketju:homogeeninen ja ei-homogeeninen

Markovin ketju. Stokastinen prosessi. Markovin ketju. Markovin malli: DNA esimerkki. M-ketju:homogeeninen ja ei-homogeeninen Soke roe Mkäl lmöö lyy uuu (okuu), uhu ok roee. Soke roe vod myö ähdä oukko umuuu X() oll o ey relo x(). Proe o oääre, o e lolle omuude evä muuu myöä (em. odourvo, vr). Ak vo oll kuv dkree, mo X() Mrkov

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

Lausunto vesiliikennelain mukaisesta hakemusasiasta / Nopeusrajoitus Airismaan länsikärjen ja Väliluodon väliseen kapeikkoon

Lausunto vesiliikennelain mukaisesta hakemusasiasta / Nopeusrajoitus Airismaan länsikärjen ja Väliluodon väliseen kapeikkoon Kaavoitus- ja ympäristölautakunta 29 12.03.2015 Lausunto vesiliikennelain mukaisesta hakemusasiasta / Nopeusrajoitus Airismaan länsikärjen ja Väliluodon väliseen kapeikkoon 114/10.05.01/2015 Kaavoitus-

Lisätiedot

3.7. Rekursiivisista lukujonoista

3.7. Rekursiivisista lukujonoista .7 Rekursiivisist lukujooist.7. Rekursiivisist lukujooist Kerrt vielä, että lukujoo void määritellä khdell eri tvll, joko käyttämällä lyyttistä säätöä ti rekursiivist säätöä. Joo määrittelemie rekursiivisesti

Lisätiedot

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin Ludtur MAA rtkisut kertushrjoituksiin Integrlifunktio. ) Jokin integrli funktio on esimerkiksi F( ) b) Kikki integrlifunktiot F( ) + C, missä C on vkio Vstus: ) F( ) b) F( ) + C, C on vkio. Kikki integrlifunktiot

Lisätiedot

Työsuojelu- ja. 5 12.02.2015 yhteistyötoimikunta Työsuojelu- ja. 4 16.03.2015 yhteistyötoimikunta Työsuojelu- ja

Työsuojelu- ja. 5 12.02.2015 yhteistyötoimikunta Työsuojelu- ja. 4 16.03.2015 yhteistyötoimikunta Työsuojelu- ja Työsuojelu- ja 5 12.02.2015 yhteistyötoimikunta Työsuojelu- ja 4 16.03.2015 yhteistyötoimikunta Työsuojelu- ja 3 28.05.2015 yhteistyötoimikunta Kaupunginhallitus 10 21.09.2015 Työsuojelu- ja 3 26.11.2015

Lisätiedot

Metsätieteen aikakauskirja

Metsätieteen aikakauskirja Msäin ikkuskirj Sisällys 2009 415 Msäin ikkuskirj 4/2009 1/2009 100-vuois Suon Msäillinn Sur 3 Tukiusrikkli Ln A. Lskinn, Hnn Nurinn, Mikko Kuril & Pkk Lskinn: Msin suojlun sosilissi ksävä ouinn Mrsä Msäksi

Lisätiedot

Nuotanvetäjäpatsaan sijainti

Nuotanvetäjäpatsaan sijainti Kaupunginvaltuusto 47 09.06.2014 Kaupunginhallitus 292 16.06.2014 Kaavoitus- ja 112 11.12.2014 ympäristölautakunta Kaavoitus- ja ympäristölautakunta 61 10.06.2015 Nuotanvetäjäpatsaan sijainti 479/00.07.01/2014

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Luento 9. Epälineaarisuus

Luento 9. Epälineaarisuus Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!

Lisätiedot

YMPJåoSTÖ 2?.5.14 J Ub,

YMPJåoSTÖ 2?.5.14 J Ub, YMPJåoSTÖ 2?.5.14 J Ub, ),II1 1 SATAMA ILMOITTAMIE YMPÄRISTÖ- SUOJELU TIETOJÄRJESTELMÄÄ JA SATAMA JÄTEHUOLTOSUUITELMA ranomaisen yheysiedo Merkiy ympärisönsuojelun ieojärjeselmään A. SATAMA TOIMITAA VALVOVA

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus.

Tasogeometriassa käsiteltiin kuvioita vain yhdessä tasossa. Avaruusgeometriassa tasoon tulee kolmas ulottuvuus, jolloin saadaan kappaleen tilavuus. KOLMIULOTTEISI KPPLEIT Tsogeometriss käsiteltiin kuvioit vin ydessä tsoss. vruusgeometriss tsoon tulee kolms ulottuvuus, jolloin sdn kppleen tilvuus. SUORKULMINEN SÄRMIÖ Suorkulmisess särmiössä kikki kulmt

Lisätiedot

Koulutus- ja kehittämispalvelu Aducate 1 (6) KOPSU -hanke 10.10.2011

Koulutus- ja kehittämispalvelu Aducate 1 (6) KOPSU -hanke 10.10.2011 Kouluu- ja khämpalvlu Aduca 1 (6) Pykooaal ohjauk ja uvoa rkoumopo (35 op), - kogv ja rakaukk yöklyapa - pykorapu valmuk opo TOTEUTUSPAIKKA Jouu TAVOITE JA KOHDERYHMÄ Kouluu aaa oallujll valmud ouaa ohjau-

Lisätiedot

Yleiskaavoittaja 14.12.2015 15. Hakija [--] Osoite Mahlavuorentie 45 15560 Nastola. Autotalli 21 1 Aitta 15 1

Yleiskaavoittaja 14.12.2015 15. Hakija [--] Osoite Mahlavuorentie 45 15560 Nastola. Autotalli 21 1 Aitta 15 1 Poikkeamislupapäätös, Mahlavuorentie 45 1291/10.102/2015 Päätöksen antopäivä: 22.12.2015 Hakija [--] Rakennuspaikka Kylä Tila RN:o Pinta-ala m² 403 Immilä Mäntyranta 5:40 1900 Osoite Mahlavuorentie 45

Lisätiedot

suomeksi eduskunta 2012

suomeksi eduskunta 2012 d 2012 Ed vd y 6. h 2012. Ph jh h, dj K T, d v hh j vh. Ed hh v d dj E H (d.) j vhh dj P Rv (.). T vhh j A Jh (.). Vv vj v 7. h, j v d Tj H v v vv. Tv d v S Nö yhy d 1. 2012 jh v. P E h d v. K d S E v

Lisätiedot

TJTC75 6. luento. Monikanavamalli. Teknisesti mahdollista Useita markkina-alueita eri vaiheissa Fragmentoituva asiakaskunta.

TJTC75 6. luento. Monikanavamalli. Teknisesti mahdollista Useita markkina-alueita eri vaiheissa Fragmentoituva asiakaskunta. TJTC75 6. e Mikvmi Tekiei mhdi Uei mrkki-ei eri vihei Frgmeiv ikk 1 TV e Mikvpve CATV DVB Rer Kiieä pääe PSTN, ISDN, xdsl Gewy? Rer Rer GSM, GPRS, UMTS Mbiiipääe M hei- iee (mk, ID, ime, WLAN, LON) Pri

Lisätiedot

PS. Jos vastaanotit Sinulle kuulumattoman viestin, pyydän ilmoittamaan siitä viipymättä allekirjoittaneelle ja tuhoamaan viestin, kiitos.

PS. Jos vastaanotit Sinulle kuulumattoman viestin, pyydän ilmoittamaan siitä viipymättä allekirjoittaneelle ja tuhoamaan viestin, kiitos. Teamware Office' Posti Saapunut posti : Olavi Heikkisen lausunto Lähettäjä : Karjalainen Mikko Vastaanottaja : Leinonen Raija Lähetetty: 18.1.2013 10:29 He i! Korjasin nyt tämän spostiliitteenä olevaan

Lisätiedot

OUTOKUMPU OY 040/2341 12/~~/83

OUTOKUMPU OY 040/2341 12/~~/83 Q OUTOKUMPU OY 040/234 2/~~/83 0 K MALMINETSINTX Eero Sandgren/PHM 25..984 GEOFYSIIKAN TUTKIMUKSET VUONNA 98 JA 983 Reisjarvi, Tiaskuru 234 2 Sijainti :400 000 Lähtökohta Kesän 983 aikana tutkimuskohteella

Lisätiedot

DVC. VARIZON Piennopeuslaite säädettävällä hajotuskuviolla. Pikavalintataulukko

DVC. VARIZON Piennopeuslaite säädettävällä hajotuskuviolla. Pikavalintataulukko VARIZON Piennoeuslaie säädeävällä hajouskuviolla Lyhyesi Säädeävä hajouskuvio ja lähivyöhyke Soii kaikenyyisiin iloihin Miausyhde Helosi uhdiseava Peiey ruuviliiännä Eri värivaihoehoja Pikavalinaaulukko

Lisätiedot

Oikaisu päätökseen kiinteistöjen Sirola RN:o 28:6 ja RN:o 28:24 myynnistä Vaarankylän kyläyhdistykselle

Oikaisu päätökseen kiinteistöjen Sirola RN:o 28:6 ja RN:o 28:24 myynnistä Vaarankylän kyläyhdistykselle Kunnanhallitus 46 25.02.2014 Kunnanhallitus 76 24.03.2014 Kunnanhallitus 126 13.05.2014 Oikaisu päätökseen kiinteistöjen Sirola RN:o 28:6 ja RN:o 28:24 myynnistä Vaarankylän kyläyhdistykselle 135/1/2013

Lisätiedot

Rakennustarkastaja Petri Mäki, sähköposti petri.maki@ylojarvi.fi, puh. 050 385 1815

Rakennustarkastaja Petri Mäki, sähköposti petri.maki@ylojarvi.fi, puh. 050 385 1815 Ympäristölautakunta 252 30.10.2012 Ympäristölautakunta 145 29.10.2013 Ympäristölautakunta 158 11.11.2014 Ympäristölautakunta 38 17.02.2015 Ympäristön epäsiisteys Ryömäntiellä 746/53.532/2012 YMPLTK 30.10.2012

Lisätiedot

2:154. lak.yht. lak.yht. lak.yht. 2:156 2:156 6-9901-0 2:156. lak.yht. 2:155. 35 dba. sr-1. No330. YY/s-1. Työväentalo 8-9903-0. No30. sr-2.

2:154. lak.yht. lak.yht. lak.yht. 2:156 2:156 6-9901-0 2:156. lak.yht. 2:155. 35 dba. sr-1. No330. YY/s-1. Työväentalo 8-9903-0. No30. sr-2. 00 lak.yh. lak.yh. lak.yh. lak.yh. lak.yh. ras.m ras.m lak.yh. lak.yh. lak.yh. lak.yh. lak.yh. 0 0 No No No0 No0 0:::M0 0:::M0 0:::M0 0:::M0 0:::M0 0::0:M0 0:::M0 0:::M0 0:::M 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

16-300mm 50 EURON CASHBACK! Ehdot PARAS KOLMESTA MAAILMASTA. www.tamron.fi. F/3.5-6.3 Di II VC PZD Macro

16-300mm 50 EURON CASHBACK! Ehdot PARAS KOLMESTA MAAILMASTA. www.tamron.fi. F/3.5-6.3 Di II VC PZD Macro Ehdot 3. Mksu suoritet se m vluutss, mistä objektiivi o ostettu. Mksu suoritet 4 viiko kuluess cshbck-dokumettie spumisest. 4. Objektiivi tulee oll Focus Nordici mhtuom j se tulee oll ostettu virllise

Lisätiedot

Korkein halinto -oikeus

Korkein halinto -oikeus .......................... 1. 1 1. 1. 1 1 1 1 1 1 Salon kaupunki Saapunut 18.5.2015 Konsernipalvelut salainen/4/00.04.02/2013 1 Korkein halinto -oikeus Saapunut o. zo Li(teitä...:2. h KORKEIMMALLE IIAI.LINT

Lisätiedot

FASTER -TYÖVENEET. MITTATILAUSTYÖNÄ.

FASTER -TYÖVENEET. MITTATILAUSTYÖNÄ. TYÖVENEET 1 FASTER -TYÖVENEET. MITTATILAUSTYÖNÄ. Vmiamme umiinisia työveneitä kokoluokassa 4-17m pela-, partiointi-, tavarajet- heilöjethtäviin. Pyymme jotavai uttamaan veneet e käyttötarkoituksiin. Veneet

Lisätiedot

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa.

Näytä tai jätä tarkistettavaksi tämän jakson tehtävät viimeistään tiistaina 18.6. ylimääräisessä tapaamisessa. Jkso 12. Sähkömgneettinen induktio Tässä jksoss käsitellään sähkömgneettist induktiot, jok on tärkeimpiä sioit sähkömgnetismiss. Tätä tphtuu koko jn rkisess ympäristössämme, vikk emme sitä välttämättä

Lisätiedot

Oikaisuvaatimus jätehuoltopäällikön varastosiirtopäätökseen 1553 (Baidel Oy / Havila Harri)

Oikaisuvaatimus jätehuoltopäällikön varastosiirtopäätökseen 1553 (Baidel Oy / Havila Harri) Tekninen lautakunta 166 26.08.2014 Oikaisuvaatimus jätehuoltopäällikön varastosiirtopäätökseen 1553 (Baidel Oy / Havila Harri) 5583/14.06/2014 Tela 166 Baidel Oy /Harri Havila on tehnyt oikaisuvaatimuksen

Lisätiedot

OLMALAN KAAVA-ALUE, YLIVIESKA

OLMALAN KAAVA-ALUE, YLIVIESKA L Vj Ylv p Pävämäää.. OLMALAN KAAVA-ALUE, YLIVIESKA LISÄSELVITYS RAKENNETTAVUUDESTA RAMB LL Pävämäää.. Lj M Sv Tj Vp K, P S-Pälä, K N Hyväyjä K Kl, Ylv p V LIITTEET L L Slm L . JOHDANTO Tämä lvy äydää

Lisätiedot

137 10.12.2013 98 06.08.2014

137 10.12.2013 98 06.08.2014 Rakennus- ja ympäristölautakunta Rakennus- ja ympäristölautakunta 137 10.12.2013 98 06.08.2014 Oikaisuvaatimus toimenpidelupapäätöksestä 286-2013-781, kiinteistölle 286-21-6-6, Kaaritie 18, Kuusankoski,

Lisätiedot

Esiopetuksen järjestämistavoista ja -paikoista päättää si vis tys lau takun ta (hallintosääntö 8 2.1.8).

Esiopetuksen järjestämistavoista ja -paikoista päättää si vis tys lau takun ta (hallintosääntö 8 2.1.8). Sivistyslautakunta 155 22.09.2015 Kunnanhallitus 274 05.10.2015 Esiopetuksen järjestämistavat ja -paikat 1.8.2016 alkaen 911/12.00.01/2015 SIVLTK 22.09.2015 155 Asian valmistelija: sivistysjohtaja Jyrki

Lisätiedot

M A A N V U O K R A S O P I M U S YRI"Il 'ti IYII MI Vl)1

M A A N V U O K R A S O P I M U S YRIIl 'ti IYII MI Vl)1 M A A N V U O K R A S O P I M U S YRI"Il 'ti IYII MI Vl)1 ] JORD A;ATO Vuokramuut0a; Y-tunnus: 01 Kakkiløn kunta Vuokralainen : Jari-Malli Lanksila Anolamic. 310 1.2 Vrarkrn-alxe 199iiriala on c.cilctlv

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

Kunnanhallitus 56 30.03.2015 Kunnanhallitus 143 07.09.2015. Valtuustoaloite, ilmainen matkustuskortti koululaisille 1029/01.

Kunnanhallitus 56 30.03.2015 Kunnanhallitus 143 07.09.2015. Valtuustoaloite, ilmainen matkustuskortti koululaisille 1029/01. Kunnanhallitus 56 30.03.2015 Kunnanhallitus 143 07.09.2015 Valtuustoaloite, ilmainen matkustuskortti koululaisille 1029/01.016/2015 Kunnanhallitus 30.03.2015 56 Valtuuston kokouksessa 9.2.2015 jätettiin

Lisätiedot

RATKAISUT: 6. Pyörimisliike ja ympyräliike

RATKAISUT: 6. Pyörimisliike ja ympyräliike Phyic 9 pio () 6 Pyöiiliike j ypyäliike : 6 Pyöiiliike j ypyäliike 6 ) Pyöiiliikkeeä kpple pyöii joki keli ypäi Kpplee eto uuttuu b) Ypyäliikkeeä kpple liikkuu pitki ypyät dϕ c) Hetkellie kulopeu ω o kietokul

Lisätiedot

2. Kuntien määräämät jäsenet kutsuntalautakunnissa

2. Kuntien määräämät jäsenet kutsuntalautakunnissa Kunnanhallitus 165 27.04.2015 Kunnan edustajat v. 2015 kutsunnoissa Khall 27.04.2015 165 Kainuun prikaati / Pohjois-Pohjanmaan ja Kainuun aluetoimisto on lähettänyt Pohjois-Pohjanmaan kunnille 16.4.2015

Lisätiedot

ORIVEDEN KAUPUNGIN ATERIA-, TAVARANKULJETUS- JA HENKILÖKULJETUSTEN KILPAILUTUS 2016-2018

ORIVEDEN KAUPUNGIN ATERIA-, TAVARANKULJETUS- JA HENKILÖKULJETUSTEN KILPAILUTUS 2016-2018 Kaupunginhallitus 302 16.11.2015 ORIVEDEN KAUPUNGIN ATERIA-, TAVARANKULJETUS- JA HENKILÖKULJETUSTEN KILPAILUTUS 2016-2018 150/07.071/2015 Kaupunginhallitus 16.11.2015 302 Oriveden kaupunki on pyytänyt

Lisätiedot

Tuen rakenteiden toteuttaminen Pispalan koulussa. Rehtorin näkökulma arjen työhön Rehtori Satu Sepänniitty- Valkama

Tuen rakenteiden toteuttaminen Pispalan koulussa. Rehtorin näkökulma arjen työhön Rehtori Satu Sepänniitty- Valkama Tuen rkenteiden toteuttminen Pispln kouluss Rehtorin näkökulm ren työhön Rehtori Stu Sepänniitty- Vlkm Pispln koulu Khdess toimipisteessä Pispl vl 1.-6. oppilit 232 Hyhky vl 1.-6. oppilit 164 yht. 396

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet Muuuvan kokonaissnsiiivisyyn mallinnus valvonaohjlman riskinarvioinnissa simrkkinä muninaarv Tausa: Aimma salmonllarojki FooBUG rojki ja uusi malli muninaarvill 8. EFSA WG: salmonlla muninaarvissa. Samaa

Lisätiedot

LIITE. 'r,ii. HS[r0cl ESE}O 1(2)

LIITE. 'r,ii. HS[r0cl ESE}O 1(2) HS[r0cl S}O KUULMNN 1() ä**qp ii,*w.ir.l,-;,r,tur.,t" 31.1.01 107t11 01.001011 Jaklun mukaan SPOON MOOTTORRADAT RY, YMPÄRSTÖLUPAHAKMUS MOOTTORURHLUKSKUKSN PRUSTAMSKS KULMAKORPN Arvoisa vastaanottaja, spoon

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot

Calculus. Lukion PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN. Trigonometriset funktiot ja lukujonot Calculus Lukio MAA9 Trigoometriset fuktiot ja lukujoot Paavo Jäppie Alpo Kupiaie Matti Räsäe Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Trigoometriset fuktiot ja lukujoot (MAA9) Pikatesti

Lisätiedot

Sisäpiirintiedon syntyminen

Sisäpiirintiedon syntyminen Kai Kotiranta Sisäpiirintiedon syntyminen Kontekstuaalinen tulkinta Y liopistollinen väitöskirja, jo k a Lapin yliopiston oikeustieteiden tiedekunnan suostum uksella esitetään julkisesti tarkastettavaksi

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Lujuusopin jatkokurssi III.1 III. LAATTARAKENTEET

Lujuusopin jatkokurssi III.1 III. LAATTARAKENTEET Lujuusopi jtkokussi III. III. LAATTARAKENTEET Lttketeet tti Lähteemäki Lujuusopi jtkokussi III. JOHDANTO Tsopitketee kuomitus void jk keskipi suutisee j sitä vst kohtisuo kuomituksee eli lev- j lttkuomituksee.

Lisätiedot

Jäykän kappaleen tasokinetiikka harjoitustehtäviä

Jäykän kappaleen tasokinetiikka harjoitustehtäviä ynmiikk 1 Liite lukuun 6. Jäykän kppleen tskinetiikk - hrjitustehtäviä 6.1 vlvpkettiutn mss n 1500 kg. ut lähtee levst liikkeelle 10 % ylämäkeen j svutt vkikiihtyvyydellä npeuden 50 km / h 1 10 60 m mtkll.

Lisätiedot

ITK 236 Jups. Elektroninen liiketoimi kahtena prosessina (Kambil & van Heck) Monikanavamalli

ITK 236 Jups. Elektroninen liiketoimi kahtena prosessina (Kambil & van Heck) Monikanavamalli IK 236 Jp Elr lm h pr (Kmbl & v Hc) Mvmll lm mp fgr vrm m Sm rj-l v. Amz h vlm HP: mr 1 V Mvplvl CAV DVB Kä pää PSN, ISDN, xdsl Gwy? Rr GSM, GPRS, UMS Mblpää M h- l (m,, ID, lm, WLAN, LON) Rr Rr Prl Rr

Lisätiedot

Laudatur. Lukion pitkän matematiikan kertausta ylioppilastehtävien avulla Otava

Laudatur. Lukion pitkän matematiikan kertausta ylioppilastehtävien avulla Otava Ludtur Lukio pitkä mtemtiik kertust ylioppilstehtävie vull Otv Ylioppilstehtävät vuositti Mtemtiik koe 6.. Pitkä oppimäärä Perustitoj. Sieveä lusekkeet ), b) y y + y y. Geometri. Tssivuise kolmio ympäri

Lisätiedot

FDPa. Rei itetty seinään asennettava poistoilmalaite

FDPa. Rei itetty seinään asennettava poistoilmalaite Rei iey seinään asenneava poisoilmalaie Lyhyesi Säädeävä Kiineä miausyhde Suuri poisoehokkuus Helposi puhdiseava Eri värivaihoehoja Pikavalinaaulukko I L M A V I R T A Ä Ä N I T A S O l/s Koko db(a) db(a)

Lisätiedot

HÄMEENLINNAN HALLINTO-OIKEUDEN LAUSUNTOPYYNTÖ, SAHRAMIES KALLE KP. MAISEMATYÖLUVASTA TEHTYYN VALITUKSEEN

HÄMEENLINNAN HALLINTO-OIKEUDEN LAUSUNTOPYYNTÖ, SAHRAMIES KALLE KP. MAISEMATYÖLUVASTA TEHTYYN VALITUKSEEN Ympäristölautakunta 35 17.03.2015 HÄMEENLINNAN HALLINTO-OIKEUDEN LAUSUNTOPYYNTÖ, SAHRAMIES KALLE KP. MAISEMATYÖLUVASTA TEHTYYN VALITUKSEEN 157/61.611/2014 Ympäristölautakunta 17.03.2015 35 Oriveden kaupungin

Lisätiedot

Alennusmyynnit VARAA ILMOITUSTILASI NYT! KauppaSuomen Alennusmyynnit -teema ilmestyy 29.12.2014 (viikko 1) Ota yhteyttä ilmoitusmyyntiimme:

Alennusmyynnit VARAA ILMOITUSTILASI NYT! KauppaSuomen Alennusmyynnit -teema ilmestyy 29.12.2014 (viikko 1) Ota yhteyttä ilmoitusmyyntiimme: Viikkotm 1 Alusmyyit KuppSuom Alusmyyit -tm ilmstyy 29.12.2014 (viikko 1) Myytitiimimm löytää juuri till sopiv ilmoituspkti, joll tvoitt hlumsi sikskotktit! Ot yhtyttä! Ilmoituksll KuppSuomss tvoitt kohdryhmäsi

Lisätiedot

Paras paikka kaupalle metroaseman viereen. Kauppapuisto Kiviruukki, Espoo

Paras paikka kaupalle metroaseman viereen. Kauppapuisto Kiviruukki, Espoo Pas paikka kaupalle metroasema viere uppapuisto Kiviruukki, Espoo Kiviruukki Laajuus uppapuisto Kiviruuki vuotav tilakoot vaihtelev 00 m2 aia. 00 m2 asti. Hakke kokoaislaajuus o oi.000 m2. Osoite: imesti

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

Big Sales OH2BP Toukokuu 2013

Big Sales OH2BP Toukokuu 2013 Big Sales OH2BP Toukokuu 2013 SO2R-aseman kalusto QTH-vaihdon takia myydään kaikki antennit, mastot, radiot, linukat ja muita laitteita. Myyntiehdot Laitteet ovat kunnossa ja toimivat normaalisti, ellei

Lisätiedot

Hannu Pohjannoro SATEEN AIKAAN. laulusarja sopraanolle ja pianolle Tuomas Anhavan tekstiin. toinen, korjattu versio. For promotion only 1986 87 / 1999

Hannu Pohjannoro SATEEN AIKAAN. laulusarja sopraanolle ja pianolle Tuomas Anhavan tekstiin. toinen, korjattu versio. For promotion only 1986 87 / 1999 Hannu ohannoro SATEEN AIKAAN laulusara soraanolle a ianolle Tuomas Anhavan tekstiin toinen, korattu versio 10 or romotion only 1 / 1 a or romotion only SATEEN AIKAAN Tuomas Anhava: Runoa (1), tava I III

Lisätiedot