KOHINA KULMAMODULAATIOISSA
|
|
- Sanna Turunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7
2 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä. ullaa havaisaa, ä SR-suoiuskyvyssä o suui o liaais ja päliaais oulaaioi välillä. Eoa siiyy jopa M: ja FM: välillä FM: uksi. uvassa si-ilaisusuoai uoosuu käyäössä väliaajuussuoaisa kaisalvyksi olaa Casoi kaava ukaissi: B. alysoiaa aluksi M ja FM yhä kulaoulaaioa, ja sijoiaa yöhi oulaaio yyppi johuihi yhälöihi. ioliikkiikka I 559 ai äkkäi Osa 4 7
3 7 ioliikkiikka I 559 ai äkkäi Osa 4 ulaoulaaio ouloii kohia vallissa S { } si si os os si si os os os os os si os os os B k x s s FM p M α α L L L L
4 4 7 ioliikkiikka I 559 ai äkkäi Osa 4 apakaisais kohia vkoisiys o Rayligh-jakauuu kohia vhokäyä ja o s asa jakauuu vaih. Sovllaa sigaalivkoi piuu ja kula ylisä iippuvuua: o kohiasa johuva vaihviaaio osa. suauuu :h, joka siiää saoa. iskiiaaoi siis suaa vaih ψ uuosa. akasllaa vaihkula ψ uuosa ilaissa, joissa SR o suui s., C >> ja pii s., C <<. α R a b a, os si os a b b a R R x b a x α ϕ ϕ α ϕ ϕ os si a os os R R ψ ψ
5 5 7 ioliikkiikka I 559 ai äkkäi Osa 4 Vaihkula ψ ku ulo SR o suui C >> C >> suuia osa ajasa. ähää, ä kohia vaikuus pi ku kasvaa, li iskiiaaoi lähö vihs voiaa vaikuaa C :lla jopa kyyks yläpuollla oiiassa. ohia ja sigaali ova aiiivisia. Ioaaio siis säilyy. si si ψ
6 6 7 ioliikkiikka I 559 ai äkkäi Osa 4 Vaihkula ψ ku ulo SR o pii C << uvassa C << suuia osa ajasa. ohiavkoi oioi. Sigaali ja kohia uliplikaiivisia. Ei ol havaiavissa aiiivisa -kopoia yksiää. ysssä o kyysiliö. si si ψ ψ
7 7 7 ioliikkiikka I 559 ai äkkäi Osa 4 Ilaisi lähö sigaali S Olaa ä iskiiaaoissa o apliui ajoii vakio. Suu SR : apauksssa saaaa sovla llä johuja kulia: si si F p F F p F F F FM M S k S y k y y y y y ψ ψ
8 8 7 ioliikkiikka I 559 ai äkkäi Osa 4 Ilaisi lähö kohia spki ja ho S ohia ho laskisksi o si ääiävä s hoihysukio. Olaa, ä SR o suui. ohia-aalyysi yksikaisaisksi olaa, ä. aihuaisi vai kopoja aajuuksill >, joka ilaisi LF poisaisi. oska B >, SR paa -lvällä LF:lla i vaik. hyöysig. B S S B B s F s s s / /, si,
9 9 7 ioliikkiikka I 559 ai äkkäi Osa 4 Ilaisi lähö kohia spki ja ho S FM vaikapi ivoii vuoksi. Jos yx/, ii S y S x oska ½ C, voiaa lauskk kijoiaa i / avulla: S F F,, F
10 iskiiaaoi lähö SR M-apauksssa Lähö kohiaho o käää vaolli suus /. k p SR / Yiä uisaa SR k p M:lla vaihpoikkaa i saa yksikäsiisyy vuoksi yliää avoa, jo k p <, jolloi k p E[ ] <. Ilaisuvahvisus o siis M:llä aksiissaa oi B kaaaajuis jäjslää vaua. äyäössä s o yypillissi paljo pipi. FM: apauksssa ilaisuvahvisukslla i oiassa ol yläajaa, koska s o viaaiosuh ukio, joll i ol yläajaa. S avo ääää vai aksiiaajuusviaaio käyäössä siis suuilupaai. viaaiosuh ääillää: B huippuaajuusviaaio saoakaisalvys : aioa paai, joho voiaa vaikuaa. ioliikkiikka I 559 ai äkkäi Osa 4 7 [ ax ]
11 iskiiaaoi lähö SR FM-apauksssa Casoi kaavaa sovla B, ku >> saaaa SR iippuvaisksi kaisalvysä B olaa ax. SR F Yiä uisaa SR SR SR F F F FM:llä voiaa siis kaisalvyä kasvaaalla saavuaa papi suoiuskyky. ii o oiai päliaaisill oulaaioill. äyäössä i voi kasvaa hyvi suuksi, koska uu ulo kohiaho kasvaa s. SR << ja ilaisi siiyy kyyks alapuolll. Jo lähyshoaki äyyy kasvaaa suhllissi. ioliikkiikka I 559 ai äkkäi Osa 4 4 B 7
12 iskiiaaoi lähö SR FM-apauksssa uvasa havaiaa kyysiliö, joa aalysoiaa yöhi. yysiliö alkaa, ku SR, siis vasaaoi ulo SR, o välillä... B. ioliikkiikka I 559 ai äkkäi Osa 4 7
13 M vai FM papi? Riippuu saoasigaali spki luosa, li oko : spki paiouu suuill vai piill aajuuksill. Ylsä FM o papi. ioliikkiikka I 559 ai äkkäi Osa 4 7
14 Esikoosus jälkikoosuskiika käyö Häiiö os-aajuus y y FM M i i i os si i i kiikka siis vaiaa yksiaajuis kaoaalohäiiö lisäksi yös kohiaa. ioliikkiikka I 559 ai äkkäi Osa 4 4 7
15 5 7 ioliikkiikka I 559 ai äkkäi Osa 4 Esikoosus-jälkikoosuskiika käyö oska <<, u paaussa suoiuskyvyssä o huoaava. SR SR S H Hz RC H koosaao F koosu F F F F F E F E / a, a, / << H S x S y S H S x y
16 Esikoosus-jälkikoosuskiika käyö oosuskiika käyö saaaa lisää lähi viaaioa ja si aviavaa kaisalvyä, koska sikoosussuoai koosaa saoa suuiaajuisia kopoja. yypillissi kuiki suuiaajuis kopoi osuus o vähäi, jo kaisalvys i kasva suusi. Suaavassa sikissä o lasku kiika hyöyä. ioliikkiikka I 559 ai äkkäi Osa 4 6 7
17 Esikoosus-jälkikoosuskiika käyö ioliikkiikka I 559 ai äkkäi Osa 4 7 7
KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
KULMMODULOITUJEN SIGNLIEN SPEKTRIN LSKEMINEN 1 (3) (3) Spekri laskeie siisaoalle Kulaoduloidu sigaali spekri johaie o yöläsä epälieaarisuudesa johue (epälieaarise aalyysi ova yleesä hakalia). Se voidaa
KANTATAAJUINEN BINÄÄRINEN SIIRTOJÄRJESTELMÄ AWGN-KANAVASSA
KJUI BIÄÄRI SIIROJÄRJSLMÄ WG-KVSS Kaajaajui siiro iformaaio siiro johdossa sllaisaa ilma kaoaalo- ai pulssimodulaaioa 536 ioliikkiikka II Osa 3 Kari Kärkkäi Syksy 5 JÄRJSLMÄMLLI Bii kso. Symboli {} ja
KYNNYSILMIÖ JA SILTÄ VÄLTTYMINEN KYNNYKSEN SIIRTOA (LAAJENNUSTA) HYVÄKSI KÄYTTÄEN
YYSILMIÖ J SILÄ VÄLYMIE YYSE SIIRO LJEUS HYVÄSI ÄYÄE ieoliikenneekniikka I 559 ari ärkkäinen Osa 5 4 MILLOI? Milloin ja missä kynnysilmiö esiinyy? un vasaanoimen ulon SR siis esi-ilmaisusuodaimen lähdössä
VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA
VIHELUOTENII J TISINYTETYT DEMODULTTORIT ULMMODULTION ILMISUSS Vaihohoinn ilmaisumnlmä kulmamoulaaioill? 5357 Tioliiknnkniikka I Osa 9 ari ärkkäinn ä 05 VIHELUO PLL FM & PM -ILMISINPIIRINÄ Ellä on arkaslu
LUKU 7 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN A Tietoliikennetekniikka I Osa 24 Kari Kärkkäinen Kevät 2015
1 LUKU 7 KOHINAN VAIKUUS ANALOGISEN MODULAAIOIDEN SUORIUSKYKYYN 51357A ieoliikeeekiikka I Osa 4 Kari Kärkkäie Kevä 15 LUKU 7 KOHINA ANALOGISISSA MODULAAIOISSA Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie
KULMAMODULOITUJEN SIGNAALIEN SPEKTRIN LASKEMINEN
1 KULMMODULOITUEN SIGNLIEN SPEKTRIN LSKEMINEN Mie laskea eroaa lieaarise odulaaioide apauksesa? Milä spekri äyää epälieaarise prosessi jälkee? 51357 Tieoliikeeekiikka I Osa 15 Kari Kärkkäie Kevä 015 SPEKTRIN
LUKU 6 KOHINAN VAIKUTUS ANALOGISTEN MODULAATIOIDEN SUORITUSKYKYYN
LUKU 6 KOHINN VIKUUS NLOGISEN MOULIOIEN SUORIUSKYKYYN ieoliikeeekiikka I 5359 Kari Kärkkäie Osa 6 Luku 6 Kohia vaikuus aalogisii odulaaioihi Johdao aalyysieeelii Sigaali-kohiasuhee ääriäie Kaaaajuie järjeselä
INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA
INTERFERENSSIN VIUTUS LINERISESS MOULTIOSS Teolkenneeknkka I 521359 a äkkänen Osa 15 1 19 Inefeenssn vakuus lneaasessa odulaaossa Radoaausa nefeenssä RFI sn usa äeselsä, kun oa kanoaaloaauus on lähellä
1 a) Eristeiden, puolijohteiden ja metallien tyypilliset energiakaistarakenteet.
a) ristid, puolijohtid ja talli tyypillist rgiakaistaraktt. i) NRGIAKAISTAT: (lktroi sallitut rgiatilat) Kaksiatoi systi: pottiaalirgia atoi väliatka fuktioa pot rpulsiivi kopotti -lktroit hylkivät toisiaa
INTERFERENSSIN VAIKUTUS LINEAARISISSA MODULAATIOISSA
1 INTERFERENSSIN VIKUTUS LINERISISS MOULTIOISS Men yksaajunen häökanoaalo haaa lasua? 521357 Teolkenneeknkka I Osa 18 Ka Käkkänen Kevä 2015 KERTUST 2 Kanoaaloodulaaolle: os[2πf φ] Lneaanen odulaao Vahee
KULMAMODULOITUJEN SIGNAALIEN ILMAISU DISKRIMINAATTORILLA
1 KULMMOULOITUJEN SIGNLIEN ILMISU ISKRIMINTTORILL Millaisia keinoja on PM & FM -ilmaisuun? 51357 Tieoliikenneekniikka I Osa 17 Kai Käkkäinen Kevä 015 ISKRIMINTTORIN TOIMINTKÄYRÄ J -YHTÄLÖ FM-signaalin
z = Amplitudi = itseisarvo ja vaihe = argumentti (arg). arg Piirretään vielä amplitudi- ja vaihespektri:
Määriä suraavi komplksiluku/siaali ampliudi- a vaiharvo. Piirrä b-kohdassa ampliudi a vaih aauud fukioa ampliudi- a vaihspkri. 6p 8 a z 7, z 8 a z. { } b z cos. Ampliudi isisarvo a vaih arumi ar. a z 7
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 2 (viikko 6) Tehävä 1 Sovelleaan luenokalvojen sivulla 46 anneua kaavaa: A A Y Y K α ( 1 α ) 0,025 0,5 0,03 0,5 0,01 0,005 K Siis kysyy Solowin
Sopimuksenteon dynamiikka: johdanto ja haitallinen valikoituminen
Soimukseneon dynamiikka: johdano ja haiallinen valikoiuminen Ma-2.442 Oimoinioin seminaari Elise Kolola 8.4.2008 S yseemianalyysin Laboraorio Esielmä 4 Elise Kolola Oimoinioin seminaari - Kevä 2008 Esiyksen
Kojemeteorologia. Sami Haapanala syksy Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeeorologia Sami Haapaala syksy 03 Fysiika laios, Ilmakehäieeide osaso Mialaieide dyaamise omiaisuude Dyaamise uusluvu määriävä mie mialaie käyäyyy syöeide muuuessa Apua käyeää differeiaaliyhälöiä,
VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte
4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.
VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali
7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin
Piennopeuslaite FMP. Lapinleimu
Piennopeuslaie FMP Floormaser FMP on lieä uloilmalaie, joka on arkoieu käyeäväksi syrjäyävään ilmanjakoon Floormaser-järjeselmässä. KANSIO 4 VÄLI 6 ESITE 6 Lapinleimu.1.00 Floormaser Yleisä Floormaser
ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.
Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak
TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta
KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän
Konvoluution laskeminen vaihe vaiheelta Sivu 1/5
S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,
3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA
S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas
Luento 7 Järjestelmien ylläpito
Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan
S FYSIIKKA IV (ES), Koulutuskeskus Dipoli, Kevät 2003, LH4. Bohrin vetyatomimallin mukaan elektronin kokonaisenergia tilalla n on. n n.
S-1146 FYSIIKKA IV (S), Koulutuskskus Dipoli, Kvät 00, LH4 LH4-1* Vdy spkti s Pasch-saja viivat sijaitsvat ifapua-alulla N sytyvät tasitioissa, joissa lktoi siityy kokaalta viitystilalta i tilall f = i
Piennopeuslaite FMH. Lapinleimu
Piennopeuslaie FMH Floormaser FMH on puolipyöreä uloilmalaie, joka on arkoieu käyeäväksi syrjäyävään ilmanjakoon Floormaser- järjeselmässä. KANSIO VÄLI 6 ESITE Lapinleimu.1.0 Floormaser Yleisä Floormaser
BH60A0900 Ympäristömittaukset
BH60A0900 Yäitöittauket Lakuhajoitu Kuiva ja kotea kaau, tilavuuvita ehtävä Savukaau läötila o 00 ja aie 99 kpa. ekittäviät kaaukooetit ovat 0 %, H 0 %, 0 % ja lout tyeä. ikä o a) kotea ja kuiva kaau tilavuukie
S Signaalit ja järjestelmät Tentti
S-7. Signaali ja järjeselmä eni..6 Vasaa ehävään, ehävisä 7 oeaan huomioon neljä parhaien suorieua ehävää.. Vasaa lyhyesi seuraaviin osaehäviin, käyä arviaessa kuvaa. a) Mikä kaksi ehoa kanaunkioiden φ
K Ä Y T T Ö S U U N N I T E L M A Y H D Y S K U N T A L A U T A K U N T A
K Ä Y T T Ö S U U N N I T E L M A 2 0 1 7 Y H D Y S K U N T A L A U T A K U N T A Forssan kaupunki Talousarvio ja -suunnitelma 2017-2019 / T O I M I A L A P A L V E L U 50 YHDYSKUNTAPALVELUT 5 0 0 T E
Telecommunication engineering I A Exercise 3
Teleouao egeerg I 5359A xere 3 Proble elaodulaaor lohkokaavo o eey oppkrja kuvaa 3.63. Pulodulaaor ääuloa o aoagaal ja reeregaal erou d. Tää gaal kerroaa pulgeeraaor gaallla rajouke, el erouke erk elväe,
4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY
Väähelyekaiikka 4. 4 YHDEN VAPAUSASTEEN HARMONINEN PAKKOVÄ- RÄHTELY 4. Johdao Mekaaise syseei ulkoisisa kuoiuksisa aiheuuvaa väähelyä saoaa akkoväähelyksi. Jos syseeissä o vaieusa, o kyseessä vaieeva akkoväähely,
A1 q qk A1 q qk m² kn/m² kn m² kn/m² kn 4,3 2 8,6 2,9 2 5,8. A2 g gk A2 g gk m² kn/m² kn m² kn/m² kn 2,9 4 11,6 2,9 4 11,6
SEINÄN MITOITUS 1 SEINÄLLE TULEVAT KUORMAT YLÄPOHJA VÄLIPOHJA A1 q qk A1 q qk m² kn/m² kn m² kn/m² kn 4,3 8,6,9 5,8 A g gk A g gk m² kn/m² kn m² kn/m² kn,9 4 11,6,9 4 11,6 SEINÄ/krros V g h g.omap h =,5m
W dt dt t J.
DEE-11 Piirianalyysi Harjoius 1 / viikko 3.1 RC-auon akku (8.4 V, 17 mah) on ladau äyeen. Kuinka suuri osa akun energiasa kuluu ensimmäisen 5 min aikana, kun oleeaan mooorin kuluavan vakiovirran 5 A? Oleeaan
VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen
/ VÄRÄHTELYMEKANIIKKA SESSIO : Yhden vapausaseen vaieneaon pakkoväähely, haoninen kuoiusheäe JOHDANTO Ulkoisisa kuoiuksisa aiheuuvaa väähelyä sanoaan pakkoväähelyksi. Jos syseeissä on vaiennusa, on kyseessä
PARTIKKELIN KINEMATIIKKA
PRTIKKELIN KINEMTIIKK Pikklill li msspisllä koi kppl, jok mi o päolllis pi ksl hää kl. Kimiik häää o sliää, mi oid määiää pikkli sm, opus j kiihyyys s liikkuss käyääsä piki. z τ P y R z φ x y Rkäyä x Tkslu
x v1 y v2, missä x ja y ovat kokonaislukuja.
Digiaalinen videonkäsiel Harjoius, vasaukse ehäviin 4-0 Tehävä 4. Emämariisi a: V A 0 V B 0 Hila saadaan kanavekorien (=emämariisin sarakkee) avulla. Kunkin piseen paikka hilassa on kokonaisluvulla kerroujen
X(t) = X 0 + tx 1 + t 2 X 2 + t 3 X ,
Ma-1.1332 Mariisiksponnifunkio, KP3-II, syksy 2007 Pkka Alsalo Johdano. Tämä monis sisälää kurssilla arviava ido mariisiksponnifunkiosa. Mariisiksponnifunkio. Suraavassa A on raalinn n n-mariisi, jonka
Pakkauksen sisältö: Sire e ni
S t e e l m a t e p u h u v a n v a r a s h ä l y t ti m e n a s e n n u s: Pakkauksen sisältö: K e s k u s y k sikk ö I s k u n t u n n i s ti n Sire e ni P i u h a s a rj a aj o n e st or el e Ste el
t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<
1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5
dx = d dψ dx ) + eikx (ik du u + 2ike e ikx u i ike ikx u + e udx
763333A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 5 Kevät 2014 1. Tehtävä: Johda luetomateriaali kaavat d 2 u i k du 2 m + Uxu = E k 2 u p = k + u x i d ux. Ratkaisu: Oletetaa, että ψx = e ikx ux, missä ux +
Usko, toivo ja rakkaus
Makku Lulli-Seppälä sko toivo a akkaus 1. Ko. 1 baitoille viululle alttoviululle a uuille op. kummityttöi Päivi vihkiäisii 9.8.1986 iulu a alttoviulu osuude voi soittaa sama soittaa. Tavittaessa alttoviulu
Mallivastaukset KA5-kurssin laskareihin, kevät 2009
Mallivasaukse KA5-kurssin laskareihin, kevä 2009 Harjoiukse 8 (viikko 14) Tehävä 1 LAD-käyrä siiryy ylöspäin. Ulkomaisen hinojen nousessa oman maan reaalinen vaihokurssi heikkenee 1 vaihoase vahvisuu IS-käyrä
XII RADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA
II ADIOAKTIIVISUUSMITTAUSTEN TILASTOMATEMATIIKKAA Laskenaaajuus akiivisuus Määrieäessä radioakiivisen näyeen akiivisuua (A) uloksena saadaan käyeyn miausyseemin anama laskenaaajuus (). = [II.I] jossa =
Puolijohdekomponenttien perusteet A Ratkaisut 2, Kevät 2017
OY/PJKOMP R 017 Puolijohdekomoeie erusee 571A Rakaisu, Kevä 017 1. Massavaikuuslai mukaisesi eemmisö- ja vähemmisövarauksekuljeajie ulo o vakio i, joka riiuu uolijohdemaeriaalisa ja lämöilasa. Kuvasa 1
Sisältö Sisältö Tietoliikennesignaalit ja niiden tutkiminen aika- ja taajuustasossa Tietoliikenne, informaatio, signaali...
Igraalimuuoks Mropolia/. Koivumäki ässä o ksiä, oka o alupri aikoiaa kiroiu Sadia ioliikoria-kurssi mariaaliksi, mua sovluu oivallissi Igraalimuuoks-kurssi Fourir-aalyysiä käsilväksi mariaaliksi. Mamaaissi
RATKAISUT: 15. Aaltojen interferenssi
Physica 9. paios (6) : 5. a) Ku kaksi tai useapia aaltoja eteee saassa äliaieessa, aaltoje yhteisaikutus issä tahasa pisteessä o yksittäiste aaltoje sua. b) Ku aallot kohtaaat, haaitaa iide yhteisaikutus.
2 u = 0. j=1. x 2 j=1. Siis funktio v saavuttaa suurimman arvonsa jossakin alueen Ω pisteessä x. Pisteessä x = x on 2 v. (x ) 0.
0. Maksimiperiaate Laplace-yhtälölle 0.. Maksimiperiaate. Alueessa Ω R määritelty kaksi kertaa erivoituva fuktio u o harmoie, jos u = j= = 0. 2 u x 2 j Lause 0.. Olkoot Ω R rajoitettu alue ja u C(Ω) C
BM20A Integraalimuunnokset Harjoitus 8
(b)...(d) eve + eve = eve eve eve = eve BM2A57 - Itegraalimuuokset Harjoitus 8. Vastaa jokaisessa kohdassa seuraavii kysymyksii: Oko fuktio parillie? Oko fuktio parito? Huomaatko polyomie kohdalla hyvi
Vallox TEKNINENOHJE. Vallox SILENT. Tyyppi 3510 Mallit: VALLOX 75 VALLOX 75 VKL VALLOX 95 VALLOX 95 VKL VALLOX 95 SILENT VALLOX 95 SILENT VKL
75 95.9.59F 9.. yyppi 5 VAOX yyppi 5 Mallit: VAOX 75 VAOX 75 VK VAOX 95 VAOX 95 VK Huoneitokohtaieen ilanvaihtoon pien-, rivi- ja kerrotaloihin ulo-/poitoilanvaihto läöntalteenotolla Hyvä uodatu Siäänrakennettu
matsku 2 YHTEEN- JA VÄHENNYSLASKU Tanja Manner-Raappana Nina Ågren OPETUSHALLITUS
matsku 2 HTEEN- JA VÄHENNSLASKU Tanja Manner-Raappana Nina Ågren OPETUSHALLITUS MATSKU 2 Tämän kirjan omistaa: Sisällysluettelo 0 h-tä suu-ri h-tä suu-ri htä suuri 4 1 h-teen-las-ku 0 5 Mi-tä puut-tuu?
Ohjeet opettajalle. Tervetuloa Apilatielle!
Ohjeet opettajalle Vihjeitä opettajalle koulun tutustumispäivään Esiopetuksen oppilaille koulun tutustumispäivä on tärkeä, vaikka esiopetuspaikka sijaitsisi samassa pihapiirissä koulun kanssa. Lähes kaikkia
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 8..6 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
Luento 4. Fourier-muunnos
Lueno 4 Erikoissignaalien Fourier-muunnokse Näyeenoo 4..6 Fourier-muunnos Fourier-muunnos Kääneismuunnos Diricle n edo Fourier muunuvalle energiasignaalille I: Signaali on iseisesi inegroiuva v ( d< II:
7. VEDYNKALTAISEN ATOMIN KVANTTITEORIA
7. VDYNKALTAISN ATOMIN KVANTTITORIA 53 Vtyatoi käsitty kvattitoia avua o ataattissti hakaa, utta ataa kvatittuis uooisa tavaa. 7.1. SCHRÖDINGRIN YHTÄLÖ VDYN KALTAISLLA ATOMILLA Vtyatoissa ytiä o potoi,
( ) ( ) 2. Esitä oheisen RC-ylipäästösuotimesta, RC-alipäästösuotimesta ja erotuspiiristä koostuvan lineaarisen järjestelmän:
ELEC-A700 Signaali ja järjeselmä Laskuharjoiukse LASKUHARJOIUS 3 Sivu /8. arkasellaan oheisa järjeselmää bg x Yksikköviive + zbg z bg z d a) Määriä järjeselmän siirofunkio H Y = X b) Määriä järjeselmän
VÄRÄHTELYMEKANIIKKA SESSIO 13: Yhden vapausasteen vaimenematon pakkovärähtely, herätteenä roottorin epätasapaino tai alustan liike
/ VÄRÄHELYMEKANIIKKA SESSIO : Yhde vapausasee vaieeao paoväähely, heäeeä oooi epäasapaio ai alusa liie ROOORIN EPÄASAPAINO Haoisesi vaiheleva paovoia voi esiiyä pyöivie oeeosie yheydessä. aasellaa esieiä
Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma
KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja
Luvan antaminen rakennusvalvonnan tarkastusinsinöörin viran täyttämiseen
Kaupunginhallitus 431 07.12.2015 Kaupunginhallitus 455 21.12.2015 Luvan antaminen rakennusvalvonnan tarkastusinsinöörin viran täyttämiseen 723/01.02.00/2015 Kaupunginhallitus 07.12.2015 431 Rakennustarkastaja
Luento 9. Epälineaarisuus
Lueno 9 Epälineaarisuus 9..7 Epälineaarisuus Tarkasellaan passiivisa epälineaarisa komponenia u() y() f( ) Taylor-sarjakehielmä 3 y f( x) + f '( x) ( x x) + f ''( x) ( x x) + f ''( x) ( x x) +...! 3! 4!
KAIDE KAIDE LUMON HYÖKKÄYSTIE PALOKUNNAN PPP LUMON AUKKO SP KUNTOILUTILA LUMON KATON RAJASSA AUKKO MONITOIMITILA LUMON PPP KATON RAJASSA AUKKO
5 5 685 5 8 6 33 585 MUITI 95 OU RAUTO OY 585 77 4 3 4 98 85 345 5 6 4 4 6 4 6 6 6 4 IVL-/45 4 757 4 757 95 585 4 476 3 39 IVL-/45 IVL-/45 IVL-/45 IVL-/45 68 4 643 769 55 8 84 96 8 79 8 käyntiovi uunnittelutoimiston
Analyysi A. Harjoitustehtäviä lukuun 1 / kevät 2018
Aalyysi A Harjoitustehtäviä lukuu / kevät 208 Ellei toisi maiita, tehtävissä esiityvät muuttujat ja vakiot ovat mielivaltaisia reaalilukuja.. Aa joki ylä- ja alaraja joukoille { x R x 2 + x 6 ja B = {
2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:
84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon
Epävarmuus diskonttokoroissa ja mittakaavaetu vs. joustavuus
Epävarmuus diskonokoroissa ja miakaavaeu vs. jousavuus Opimoiniopin seminaari - Syksy 2000 / 1 Esielmän sisälö Kirjan Invesmen Under Uncerainy osan I luvu 4 ja 5. Mien epävarmuus diskonokorossa vaikuaa
FASTER -TYÖVENEET. MITTATILAUSTYÖNÄ.
TYÖVENEET 1 FASTER -TYÖVENEET. MITTATILAUSTYÖNÄ. Vmiamme umiinisia työveneitä kokoluokassa 4-17m pela-, partiointi-, tavarajet- heilöjethtäviin. Pyymme jotavai uttamaan veneet e käyttötarkoituksiin. Veneet
763101P FYSIIKAN MATEMATIIKKAA Kertaustehtäviä 1. välikokeeseen, sl 2008
76P FYSIIKAN MATEMATIIKKAA Krtausthtäviä. välikoks, sl 8 Näitä laskuja i laskta laskupäivissä ikä äistä saa laskuharjoituspistitä. Laskut o tarkoitttu laskttaviksi alkutuutoroitiryhmissä, itsks, kavriporukalla
4.7 Todennäköisyysjakaumia
MAB5: Todeäöisyyde lähtöohdat.7 Todeäöisyysjaaumia Luvussa 3 Tuusluvut perehdyimme jo jaauma äsitteesee yleesä ja ormaalijaaumaa vähä taremmi. Lähdetää yt tutustumaa biomijaaumaa ja otetaa se jälee ormaalijaauma
Toimilaitteet AJAC, pneumaattinen
Toiilaitteet AJAC, peuaattie Käyttökohteet euaattie syliteritoiilaite autoaattisee kiii/auki- tai säätökäyttöö. Kaikille 90 käätyville sulkuvettiileille, esi. pallo-, läppä- ja tulppa. Laaduvaristus Toiilaittee
YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA
YHDYSKUNTALAUTAKUNTA TALOUSARVIOEHDOTUS 2018 TALOUSSUUNNITELMA 2018-2020 TOIMIALA 50 YHDYSKUNTAPALVELUT P A L V E L U 5 0 0 T E K N I S E N J A Y M P Ä R I S T Ö T O I M E N H A L L I N T O J A M A A S
a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?
L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä
Luento 11. Stationaariset prosessit
Lueno Soasisen prosessin ehosperi Signaalin suodaus Kaisarajoieu anava 5..6 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan
Mittaus- ja säätölaitteet IRIS, IRIS-S ja IRIS-M
Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M KANSIO 4 VÄLI ESITE Lapinleimu Miaus- ja sääölaiee IRIS, IRIS-S ja IRIS-M IRIS, IRIS-S Rakenne IRIS muodosuu runko-osasa, sääösäleisä, sääömuerisa ai sääökahvasa
2. Taloudessa käytettyjä yksinkertaisia ennustemalleja. ja tarkasteltavaa muuttujan arvoa hetkellä t kirjaimella y t
Tilasollinen ennusaminen Seppo Pynnönen Tilasoieeen professori, Meneelmäieeiden laios, Vaasan yliopiso. Tausaa Tulevaisuuden ennusaminen on ehkä yksi luoneenomaisimpia piireiä ihmiselle. On ilmeisesi aina
Yhden vapausasteen värähtely - harjoitustehtäviä
Dynaiia 1 Liie luuun 8. g 8.1 Kuvan jousi-assa syseeissä on = 10 g ja = 2,5 N/. Siiryä iaaan saaisesa asapainoaseasa lähien. luheellä = 0 s assa on saaisessa asapainoaseassaan ja sillä on nopeus 0,5 /
Rekursioyhtälön ratkaisu ja anisogamia
Rekursioyhtälö ratkaisu ja aisogamia Eeva Vilkkumaa.0.2008 Rekursioyhtälö ratkaisu (Liite I) Edellie esitelmä: +/m -koiraide (p) ja -aaraide (P) osuus populaatiossa kehittyy rekursiivisesti: p P + + a
4.3 Signaalin autokorrelaatio
5 4.3 Sigaali autokorrelaatio Sigaali autokorrelaatio kertoo kuika paljo sigaali eri illä korreloi itsesä kassa (josta imiki). Se o Fourier-muuokse ohella yksi käyttökelpoisimmista sigaalie aalysoitimeetelmistä.
VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus
6/ VÄRÄHTELYMEKANIIKKA SESSIO 6: Yhde vpussee vimeev poväähely, yleie jsollie uomius YLEINEN JAKSOLLINEN KUORMITUS Hmois heäeä vsv pysyvä poväähely lusee löyyy helposi oeilemll. Hmoise heäee eoi void hyödyää
LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20
LVM/LMA/jp 2013-03-27 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi uueaan ajoneuvojen käyösä iellä anneun aseuksen
NEN PAINOVOIMAMITTAUS N:o OU 10/7b
I RAUTARUUKKI Oy I RAUTUVAARAN YlVlPÄ.RISTi-)N ALUEELLI- MALMINETSINTÄ NEN PAINOVOIMAMITTAUS N:o OU 0/7b I 3.2. - 30.4.976 osa II -- TUTKIMUSALUE LAATIJA I JAKELU KUNTA LAAT.PVM HYV. SlVlOY OU ma KARTTALEHTI
Ko onnut. pianon my ö tstilyks eli e A - A - B O K J E N X T J S. S S A v II. E. /Johnin kus/mumksella. s o li / 11 a n // / o M M S I!
\ o - i ^ / S s s / S i s i Ko onnut A - A - B O K J E N X T J S pianon my ö tstilyks eli e s o li / 11 a n // / o M M S I! M i v i h k o S S A v. 1880. II. E. /Johnin kus/mumksella. m i 11 Lev. 2 81 Lji.
Parikkalan kunta Pöytäkirja 1/ Asia Sivu
Parikkalan kunta Pöytäkirja 1/2019 1 Tarkastuslautakunta Kokousaika 10.01.2019 klo 07:30-10:45 Kokouspaikka Parikkalan kunnanvirasto, kunnanhallituksen kokoushuone, Harjukuja 6, Parikkala Käsitellyt asiat
Lineaaristen järjestelmien teoriaa II
Lieaarise järjeselmie eoriaa II Ohjaavuus Tarkkailavuus havaiavuus Lisää sabiilisuudesa Tilaesimoii, Kalma-suodi TKK/Syseemiaalyysi laboraorio Mielekiioisia kysymyksiä Oko syseemi rakeeelaa sellaie, eä
Luento 6 Luotettavuus ja vikaantumisprosessit
Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,
Päätös AIKO/ERM -hankkeen 88/ /2017: "ViSu Virtuaalisuuden soveltaminen sosiaalisiin haasteisiin" rahoittamisesta
Maakuntahallitus 139 31.08.2017 Päätös AIKO/ERM -hankkeen 88/00.01.05.21/2017: "ViSu Virtuaalisuuden soveltaminen sosiaalisiin haasteisiin" rahoittamisesta 88/00.01.05.21/2017 Maakuntahallitus 31.08.2017
Luku 2. Jatkuvuus ja kompaktisuus
1 MAT-13440 LAAJA MATEMATIIKKA 4 Taperee teillie yliopisto Risto Silveoie Kevät 2010 Luu 2. Jatuvuus ja opatisuus 1. Jatuvat futiot ja uvauset Tässä luvussa tarastellaa yleisiillää vetoriuuttuja vetoriarvoisia
Kirjoitetaan FIR-suotimen differenssiyhtälö (= suodatuksen määrittelevä kaava):
TL536, DSK-algoritmit (S4) Harjoitus. Olkoo x(t) = cos(πt)+cos(8πt). a) Poimi sigaalista x äytepisteitä taajuudella f s = 8 Hz. Suodata äi saamasi äytejoo x[] FIR-suotimella, joka suodikertoimet ovat a
Insinöörimatematiikka A
Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan
Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen
Kaupunginhallitus 139 31.03.2014 Kaupunginhallitus 271 16.06.2014 Kaupunginhallitus 511 15.12.2014 Hätäkeskuslaitoksen ja Lohjan kaupungin välisen määräaikaisen vuokrasopimuksen päättäminen 877/10.03.02/2013
PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd
PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa
VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike
15/1 VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhde vapausastee vaieeva pakkovärähtely, roottori epätasapaio ja alusta liike ROOTTORIN EPÄTASAPAINO Kute sessiossa VMS13 tuli esille, aiheuttaa pyörivie koeeosie epätasapaio
Yksinkertainen korkolasku
Sivu 1/7 Rahan lainaus voidaan innastaa tavaan vuokaukseen, jolloin lainatusta ahasta maksetaan kokoa sitä enemmän, mitä suuemmasta ahamääästä on kysymys ja mitä pidempään aha on lainattuna. äyttöön saatua
Puolijohdekomponenttien perusteet A Ratkaisut 6, Kevät 2017
OY/PJKOMP R6 017 Puolijohdoponnin pru 571A Riu 6, Kvä 017 1. MOSondnori (MlOxidSiconducor) oouu ninä uii lli hil, oidiriä j doupu puolijoh (Kuv 1). Idlii hilll u jänni G ippuu oidirro jännin vrrn j puolijohn
Oppijan verkkopalvelukokonaisuus. Mika Tammilehto 11.5.2010
Oijan verkkoaveukokonaisuus Mika Tammieho 11.5.2010 SADe-ohjema SADe-ohjeman (2009-2014) ehävä Sähköisen asioinnin vaakunnaisesi oeueavien aveukokonaisuuksien, niiden ieojärjesemäarkkiehuurien ja aveujärjesemien
i lc 12. Ö/ LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 4,0 3,8 4,0 1 ( 5 ) L i e d o n a mma t ti - ja aiku isopisto
i lc 12. Ö/ 1 ( 5 ) LS K KY: n opiskelijakysely 2014 (toukokuu) 1. O pintojen ohjaus 1=Täysi n en mi eltä. 2=Jokseenki n er i m ieltä, 3= En osaa sanoa 4= Jokseenki n sa m a a mieltä, 5= Täysin sa ma a
Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki > tai < tai =.
Piirrä kuvioita suureen laatikkoon. Valitse ruutuun oikea merkki tai < tai =. 1 Valitse ruutuun oikea merkki tai < tai =. ------------------------------------------------------------------------------
Finanssipolitiikan tehokkuudesta Yleisen tasapainon tarkasteluja Aino-mallilla
BoF Online 3 29 Finanssipoliiikan ehokkuudesa Yleisen asapainon arkaseluja Aino-mallilla Juha Kilponen Tässä julkaisussa esiey mielipiee ova kirjoiajan omia eiväkä välämää edusa Suomen Pankin kanaa. Suomen
8 YHDEN VAPAUSASTEEN VÄRÄHTELY
Dynaiikka 8. 8 YHDEN VAPAUSASTEEN VÄRÄHTELY 8. Yleisä Koneen- ja rakenneosa voiaan ioiaa avanoaisilla saiikan ja lujuusopin eneelillä kuoriusen ollessa ajasa riippuaoia eli saaisia. Käyännössä esiinyy