ALGEBRA. Tauno Metsänkylä. K f. id K

Koko: px
Aloita esitys sivulta:

Download "ALGEBRA. Tauno Metsänkylä. K f. id K"

Transkriptio

1 ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K

2 SISÄLTÖ 1 Sisältö 1 MODULI Moduli; alimoduli Modulihomomorfia; tekijämoduli Modulien summa Vapaa moduli Vapaan modulin aste TEKIJÖIHINJAKO KOKONAISALUEESSA Jaottomat alkiot ja UFD Syt ja pyj Eukleideen alue POLYNOMIT Polynomin nollakohdat Polynomin tekijöihinjako; Eisensteinin jaottomuuskriteeri Polynomin derivaatta KUNTALAAJENNUKSET Kuntalaajennuksen aste Yksinkertainen laajennus Algebrallinen laajennus Algebrallinen sulkeuma Sovellus: geometriset konstruktiot Laajennusten isomorfia Polynomin hajoamiskunta Normaali laajennus Äärellisen laajennuksen yksinkertaisuus ÄÄRELLISET KUNNAT Äärellisen kunnan perusominaisuuksia Kaikki äärelliset kunnat GALOIS N TEORIAA Kuntalaajennuksen automorfismit Galois n laajennus; Galois n ryhmä Galois n vastaavuus Konjugaattilaajennukset Yhtälön algebrallinen ratkaiseminen

3 SISÄLTÖ 2 7 MODULI YLI EUKLEIDEEN ALUEEN Matriisin Smithin normaalimuoto Vapaan modulin alimoduli Modulin torsioalkiot Äärellisesti generoitu moduli Sovellus: äärellisesti generoitu Abelin ryhmä RYHMÄTEORIAA Ryhmien isomorfiasta Vastaavuuslause Yksinkertainen ryhmä Normaali- ja kompositiosarjat Ratkeava ryhmä Normalisaattori, sentralisaattori ja luokkayhtälö Sylowin ryhmät (2004)

4 JOHDANTO 3 JOHDANTO Kertauksena eräiden algebrallisten systeemien postulaatit: Monoidi (G, ) : 1. (ab)c = a(bc) a, b, c G, 2. 1 G : a 1 = 1 a = a a G. Jos lisäksi a G a 1 G : aa 1 = a 1 a = 1, niin G on ryhmä. Abelin ryhmä (A, +) : 1. (a + b) + c = a + (b + c) a, b, c A, 2. 0 A : a + 0 = 0 + a = a a A, 3. a A a A : a + ( a) = ( a) + a = 0, 4. a + b = b + a a, b A. Abelin ryhmän alkioiden a ja b erotus a b = a + ( b). Rengas (R, +, ) : 1. (R, +) on Abelin ryhmä, 2. (R, ) on monoidi, 3. a(b + c) = ab + ac, (a + b)c = ac + bc a, b, c R. Jos kertolasku lisäksi on kommutatiivinen, R on kommutatiivinen rengas. Kunta (K, +, ) : 1. (K, +, ) on kommutatiivinen rengas, 2. a K {0} a 1 K : aa 1 = a 1 a = 1. Kunnan alkioiden a ja b 0 osamäärä a b = ab 1. Esimerkki. Todetaan, että (Z +, ) on monoidi, (2Z, +) on Abelin ryhmä, Z on rengas (kommutatiivinen), Q on kunta.

5 1 MODULI 4 1 MODULI 1.1 Moduli; alimoduli Modulin käsite on vektoriavaruuden välitön yleistys. Määritelmä. Olkoon R rengas. Abelin ryhmää (M, +) sanotaan (vasemmaksi) R-moduliksi, jos siinä on määritelty modulikertolasku joka täyttää seuraavat ehdot: RM0. ax M a R, x M, (a, x) a x merk. = ax a R, x M, RM1. a(x + y) = ax + ay a R, x, y M, RM2. (a + b)x = ax + bx a, b R, x M, RM3. (ab)x = a(bx) a, b R, x M, RM4. 1x = x x M. Esimerkki Jos K on kunta, niin K-moduli = vektoriavaruus yli K:n. Esimerkki Jokainen Abelin ryhmä (M, +) on Z-moduli, jossa modulikertolaskun määrittelee alkion monikerta kx (k Z, x M). Postulaatti k(x + y) = kx + ky on laskulaki, joka ryhmän multiplikatiivisessa merkinnässä saa muodon (xy) k = x k y k ; tämä on tosiaan voimassa kommutatiivisuuden nojalla. Esimerkki Renkaan R ihanne I (tarkemmin (I, +)) on R-moduli, modulikertolaskuna ri (r R, i I) renkaan oma kertolasku. Postulaatti RM0 seuraa ihanteen määritelmästä, muut postulaatit suoraan rengaspostulaateista. Erityisesti siis R itse on R-moduli. Merkintä: R R. Modulien teoria rakentuu samaan tapaan kuin vektoriavaruuksien. Erityisesti kaikki vektoriavaruuksia koskevat tulokset, joiden todistuksessa ei tarvita skalaarikunnan jakolaskua (eikä kertolaskun kommutatiivisuutta), pätevät myös moduleihin. Tällaisia tuloksia ovat ensinnäkin seuraavat laskulait: 1 ax = 0, jos a = 0 tai x = 0, 2 a(nx) = (na)x = n(ax) n Z, 3 a(x y) = ax ay, (a b)x = ax bx.

6 1.1 Moduli; alimoduli 5 Huomautus 1.1. (i) Sekä R:n että M:n nolla-alkiosta käytetään yleensä merkintää 0 (ks. 1 ). (ii) Sääntö 1 ei päde kääntäen; esimerkiksi Z-modulissa Z 6 on 2 3 = 0. (Vrt. vektoriavaruuksiin.) Määritelmä. R-modulin M osajoukkoa N sanotaan M:n (R-)alimoduliksi, jos N on R- moduli (samojen operaatioiden suhteen kuin M). Alimodulikriteeri. R-modulin M osajoukko N on M:n alimoduli, jos se täyttää seuraavat ehdot: AM1. N, AM2. x, y N = x + y N, AM3. a R, x N = ax N. Todistus. Ryhmä (N, +) on (M, +):n aliryhmä, koska x, y N = x y N (AM2, AM3). Postulaatti RM0 seuraa AM3:sta. Muut postulaatit ovat voimassa N:ssä, koska ne ovat voimassa M:ssä. Esimerkki (i) K = kunta: K-modulin V eli vektoriavaruuden V alimodulit = V :n aliavaruudet. (ii) M = Abelin ryhmä: Z-modulin M alimodulit = M:n aliryhmät. (iii) Modulin R R alimodulit = renkaan R vasemmat ihanteet. Jos erityisesti R on kommutatiivinen, nämä ovat = R:n ihanteet. Alimodulikriteerin nojalla R-modulin M alimodulien N α leikkaus α N α on M:n alimoduli. Tämän perusteella määritellään tavalliseen tapaan joukon S M generoima M:n alimoduli S = N (N on M:n alimoduli, S N). Kuten vektoriavaruuksilla, tämä koostuu kaikista S:n alkioiden lineaarikombinaatioista: S = { a 1 s a k s k k 1; a i R, s i S i }. Perustelu: Oikea puoli on M:n alimoduli alimodulikriteerin nojalla; muu triviaalia. Jos S on äärellinen, S = {s 1,..., s n }, niin merkitään S = s 1,..., s n. Edellisen nojalla { n ( ) s 1,..., s n = a i s i a i R i=1 } i.

7 1.2 Modulihomomorfia; tekijämoduli 6 Erityisesti s = { as a R } merk. = Rs on ns. alkion s generoima syklinen moduli. Modulia s 1,..., s n sanotaan äärellisesti generoiduksi. Esimerkki Z-modulin M syklinen alimoduli Zs = s:n generoima M:n syklinen aliryhmä. Siis esimerkiksi M = Z 6 : Z2 = {0, 2, 4} (ord(2) = 3); M = Q : Z( 1) = Z (ord( 1) = ). Esimerkki K = kunta: K-moduli V on äärellisesti generoitu sjvsk dim V <. Esimerkiksi R-moduli R n = e 1,..., e n, missä e 1 = (1, 0,..., 0) T, e 2 = (0, 1, 0,..., 0) T jne. Esimerkki Abelin ryhmä R 2 on M 2 (R)-moduli, kun modulikertolasku ( ) ( ) a b x1 Ax, A = M c d 2 (R), x = R 2, määritellään tavallisena matriisikertolaskuna. Tämä on äärellisesti generoitu, vieläpä syklinen: esimerkiksi R 2 = e 1, sillä ( ) ( ) ( ) y1 0 1 y1 = y y , y 2 R. Esimerkki Moduli R R on syklinen: R R = R Modulihomomorfia; tekijämoduli Olkoot M ja M R-moduleja. Kuvausta y 2 f : M M sanotaan (R-)modulihomomorfismiksi tai R-homomorfismiksi, jos se täyttää ehdot MH1. f(x + y) = f(x) + f(y) x, y M, MH2. f(ax) = af(x) a R, x M. Ehto MH1 merkitsee, että f on ryhmähomomorfismi (M, +) (M, +). Esimerkki Vektoriavaruudet V ja V yli kunnan K: K-homomorfismit = lineaarikuvaukset V V. Esimerkki Z-modulit M ja M : Z-homomorfismit = ryhmähomomorfismit M M. x 2

8 1.2 Modulihomomorfia; tekijämoduli 7 Esimerkki Kuvaus f : R R R R, f(r) = 2r on R-homomorfismi (mutta ei rengashomomorfismi). Tavalliseen tapaan määritellään R-isomorfismi = bijektiivinen R-homomorfismi. R-homomorfismin f : M M ydin ja kuva: Ker(f) = { x M f(x) = 0 }, Im(f) = { f(x) x M } = f(m). Nämä ovat R-moduleja (sovella alimodulikriteeriä). Määritelmä. R-modulin M tekijämoduli alimodulin N suhteen on tekijäryhmä varustettuna modulikertolaskulla M/N = { x + N x M }, (x + N) + (y + N) = x + y + N a(x + N) = ax + N a R, x M. Tekijämodulin alkioita x + N sanotaan N:n sivu- tai jäännösluokiksi M:ssä. Tätä määritelmää varten on ensiksikin varmistuttava, että ko. modulikertolasku on hyvinmääritelty: x 1 + N = x 2 + N = x 1 x 2 N = a(x 1 x 2 ) N = ax 1 + N = ax 2 + N ( a R). Toiseksi se toteuttaa postulaatit RM0 RM4. Täten M/N on R-moduli. Esimerkki Z-modulit: tekijämodulit = tekijäryhmät. Esimerkki Vektoriavaruuden tapauksessa tekijämodulia sanotaan tekijäavaruudeksi. Jos esimerkiksi V = R 2 ja aliavaruudeksi valitaan x x+x_ 2x_ U = { (u, 2u) u R }, x_ niin tekijäavaruus on R 2 /U = { x + U x R 2 }, (x + U) + (x + U) = x + x + U, a(x + U) = ax + U. x+u U x+x_+u x_+u 2x_+U

9 1.3 Modulien summa 8 Homomorfialause. Jos f : M M on R-homomorfismi, niin Tarkemmin: f indusoi R-isomorfismin M/ Ker(f) Im(f). F : M/ Ker(f) Im(f), F (x + Ker(f)) = f(x). Todistus. Ryhmäteorian homomorfialauseen nojalla F on Abelin ryhmien M/ Ker(f) ja Im(f) välinen isomorfismi. Lisäksi (merkitään K = Ker(f)) F (a(x + K)) = F (ax + K) = f(ax) = af(x) = af (x + K), joten F on R-homomorfismi ja siis R-isomorfismi. Huomautus 1.2. Kuvaus f = F π, missä π on projektiokuvaus M M/ Ker(f), π(x) = x + Ker(f) (R-homomorfismi). f M Im(f) M π F M/ Ker(f) Esimerkki Lineaarikuvaus f : R 2 R, f(x 1, x 2 ) = x 2 2x 1 : Ker(f) = { (x, 2x) x R } = U, Im(f) = R Homomorfialause antaa isomorfismin (esim. f(0, x) = x). F : R 2 /U R, F ((x 1, x 2 ) + U) = x 2 2x 1. Katso kuvaa esimerkissä 1.2.5: jokainen suora kuvautuu siksi pisteeksi, jossa se leikkaa y-akselin. 1.3 Modulien summa Määritellään R-modulin M alimodulien N 1,..., N k summa N N k = { x x k x i N i i }. Tämä nähdään alimoduliksi alimodulikriteeristä. Huomaa myös, että oikea puoli on = N 1 N k generoinnin määrittelyn nojalla; siis Erityisesti (vrt. pykälän 1.1 kaavaan ( )) N N k = N 1 N k. s 1,..., s k = Rs Rs k (s i M i).

10 1.3 Modulien summa 9 Määritelmä. R-modulin M alimodulien summaa N = N N k sanotaan suoraksi summaksi, merkitään N = N 1 N k, jos jokaisen alkion x N esitys muodossa on yksikäsitteinen. x = x x k (x i N i i) Lause 1.1. R-modulin M alimodulien summa N = N N k on suora sjvsk N j i j N i = {0} (j = 1,..., k). Todistus. 1) Silloin. Jos x x k = x x k (x i, x i N i ), niin x j x j = i j (x i x i ) merk. = x (1 j k). Siis x N j i j N i = {0}, joten x = 0. Täten x j = x j. Summaesitys x x k on siis yksikäsitteinen. 2) Vain silloin. Oletetaan, että x N j i j N i (1 j k). Silloin x = x j, x = i j x i (x 1 N 1,..., x k N k ). Tästä saadaan x j i j x i = 0 = 0 + i j 0. Esityksen yksikäsitteisyyden nojalla x j = 0. Siis x = 0, joten ko. leikkaus = {0}. Esimerkki Vektoriavaruuksilla edellä mainitut käsitteet yhtyvät aliavaruuksien summan ja suoran summan käsitteisiin. Jos vektoriavaruuden V (yli kunnan K) virittää joukko {x 1,..., x n }, niin Jos ko. joukko on V :n kanta, niin V = Kx Kx n. V = Kx 1 Kx n. Esimerkki Z-modulissa eli Abelin ryhmässä puhutaan vastaavasti aliryhmien summasta ja suorasta summasta. Esimerkiksi ryhmässä (R, +) Z Z = 1 2 Z (ei suora, koska esim. 3 Z 3 2 Z), Z + 2Z = { a + b 2 a, b Z } = Z 2Z.

11 1.3 Modulien summa 10 Määritelmä. Olkoot M 1,..., M k R-moduleja. Karteesinen tulo on R-moduli, kun määritellään M 1 M k = { (x 1,..., x k ) x i M i i } (x 1,..., x k ) + (y 1,..., y k ) = (x 1 + y 1,..., x k + y k ), a(x 1,..., x k ) = (ax 1,..., ax k ) a R (todistus suoraan modulin määritelmästä). Tätä sanotaan modulien M 1,..., M k (ulkoiseksi) suoraksi summaksi; myös sitä merkitään M 1 M k. Tällä modulilla M = M 1 M k on alimodulit ja M on näiden suora summa, M i = { (0,..., 0, x i, 0,..., 0) x i M i } kuten todetaan ajattelemalla summaesitystä M = M 1 M k, (i = 1,..., k), (x 1,..., x k ) = (x 1, 0,..., 0) + + (0,..., 0, x k ). Esitykset M = M 1 M k ja M = M 1 M k voidaan samaistaa samaistamalla keskenään isomorfiset modulit M i ja M i (i = 1,..., k), siis samaistamalla alkiot x i ja (0,..., 0, x i, 0,..., 0). Esimerkki Vektoriavaruus R n = R R (n kertaa; ulkoinen suora summa). Esimerkki Z-modulina C R R, isomorfismina esimerkiksi a + bi (a, b). Kun C ajatellaan R-modulina, niin C = R 1 Ri (alimodulien suora summa). Lopuksi alimodulien summan sovelluksena eräs isomorfialaki: Suunnikassääntö. Jos N 1 ja N 2 ovat R-modulin M alimoduleja, niin Todistus. Kuvaus N 1 /(N 1 N 2 ) (N 1 + N 2 )/N 2. N 1 + N 2 N 1 N 2 N 1 N 2 f : N 1 (N 1 + N 2 )/N 2, f(x) = x + N 2 on R-homomorfismi. Sen ydin Ker(f) = N 1 N 2, sillä x Ker(f) x N 1 ja x + N 2 = N 2 x N 1 N 2. Edelleen Im(f) = (N 1 + N 2 )/N 2, sillä z + N 2 (N 1 + N 2 )/N 2 = z = x 1 + x 2 (x 1 N 1, x 2 N 2 ) = f(x 1 ) = x 1 + N 2 = x 1 + x 2 + N 2 = z + N 2. Väite seuraa homomorfialauseesta.

12 1.4 Vapaa moduli Vapaa moduli Määritelmä. R-modulin M alkiot x 1,..., x n ovat lineaarisesti riippumattomia, jos n a 1,..., a n R, a i x i = 0 = a 1 = = a n = 0. Vastakohta: lineaarisesti riippuvia. i=1 Jos alkiot ovat lineaarisesti riippuvia, ei välttämättä päde (kuten vektoriavaruudessa), että jokin niistä on muiden lineaarikombinaatio. Ajattele esimerkiksi Z-modulissa Z lineaarista relaatiota = 0. Määritelmä. R-modulin M osajoukko {x 1,..., x n } on M:n kanta, jos 1) M = x 1,..., x n, 2) x 1,..., x n ovat lineaarisesti riippumattomia. Modulia M sanotaan vapaaksi, jos sillä on kanta. Kannan {x 1,..., x n } määritelmästä seuraa välittömästi, että jokaisella modulin M alkiolla x on yksikäsitteinen kantaesitys x = a 1 x a n x n, missä a i R i. Huomautus 1.3. Sopimus: R-moduli {0} on vapaa, kanta =. Lineaarisen riippumattomuuden ja kannan määritelmät voidaan yleistää äärettömiin joukkoihin. Esimerkki Lineaarialgebrasta tiedetään, että jokaisella n-ulotteisella vektoriavaruudella V on kanta {z 1,..., z n }; V on siis vapaa. Huomaa myös, että Yleisemmin: R-moduli V K n = { (x 1,..., x n ) x i K i }. R n = { (x 1,..., x n ) x i R i } on vapaa, kantana esimerkiksi luonnollinen kanta {e 1,..., e n }, missä e i = (0,..., 0, 1 i:s, 0,..., 0) (i = 1,..., n). Erityisesti (n = 1) siis myös moduli R R on vapaa, kantana {1}. Esimerkki Äärellinen Abelin ryhmä M ei ole Z-modulina vapaa, sillä siinä ei ole lineaarisesti riippumattomia alkioita: kx = 0 esimerkiksi kun k on x:n kertaluku. Lause 1.2. Olkoot M 1 ja M 2 R-moduleja, M 1 vapaa, kantana {x 1,..., x n } ja olkoot y 1,..., y n modulin M 2 alkioita. On olemassa yksikäsitteinen R-homomorfismi f : M 1 M 2, joka täyttää ehdon f(x i ) = y i (i = 1,..., n).

13 1.5 Vapaan modulin aste 12 Todistus. Väitetty kuvaus on ( n ) f a i x i = i=1 n a i y i a i R (i = 1,..., n) i=1 (vrt. vektoriavaruuksien lineaarikuvausten teoriaan). Lause 1.3. Jokainen äärellisesti generoitu R-moduli on isomorfinen jonkin vapaan R- modulin tekijämodulin kanssa. Todistus. Olkoon M = s 1,..., s n R-moduli. Verrataan tätä esimerkissä mainittuun vapaaseen moduliin R n. Määritellään lauseen 1.2 mukainen R-homomorfismi f : R n M, f(e i ) = s i (i = 1,..., n), missä {e 1,..., e n } on R n :n luonnollinen kanta. Nyt Im(f) = M, sillä n ( n y M = y = b i s i (b i R) = y = f b i e i ). Homomorfialause antaa siis i=1 M R n / Ker(f). i=1 Modulien teorian päätuloksiin kuuluu kaikkien äärellisesti generoitujen R-modulien luokittelu, kun R on pääihannealue (PID). Tämä tulos, joka perustuu edelliseen lauseeseen, esitetään luvussa 7. Koska Z on PID, tuloksesta seuraa edelleen kaikkien äärellisesti generoitujen Abelin ryhmien luokittelu (myös luvussa 7). 1.5 Vapaan modulin aste Tässä pykälässä oletetaan, että rengas R on kommutatiivinen. Otetaan avuksi matriisit kuten lineaarialgebrassa. Matriiseilla a a 1n A = (a ij R i, j) a m1... a mn määritellään summa, tulo ja R:n alkioilla kertominen kuten tavallisessa matriisilaskennassa. Ne toteuttavat normaalit laskulait (tähän tarvitaan vain R:n rengasominaisuuksia). Itse asiassa kaikkien m n-matriisien joukko M m n (R) on R-moduli ja erityisesti joukko M n (R) = M n n (R) on rengas. Neliömatriisia A M n (R) sanotaan säännölliseksi, jos sillä on käänteismatriisi, ts. sellainen matriisi B = A 1 M n (R), että AB = BA = I n. Neliömatriisin A determinantti det(a) määritellään tavalliseen tapaan: se on siis renkaan R alkio ja täyttää lisäksi ehdon det(ab) = det(a) det(b).

14 1.5 Vapaan modulin aste 13 Lemma 1.1. Olkoon R kommutatiivinen rengas. Matriisi A M n (R) on säännöllinen sjvsk det(a) on renkaan R yksikkö (ts. det(a):lla on R:ssä käänteisalkio). Todistus. 1) AB = I = det(a) det(b) = 1 = (det(a)) 1 = det(b). 2) Jos det(a) on yksikkö, niin matriisi 1 ( ) T Cij (C ij on a ij :n komplementti i, j) det(a) kuuluu joukkoon M n (R). Tämä matriisi on A:n käänteismatriisi, sillä det(a) I = ( C ij ) T A = A ( C ij ) T kuten klassisessa matriisiteoriassa. Huomautus 1.4. Lemmasta seuraa: Jos A, B M n (R) ja AB = I, niin B = A 1. Olkoon M vapaa R-moduli ja olkoot E = {e 1,..., e m }, F = {f 1,..., f n } kaksi M:n kantaa (seuraavassa näytetään, että m = n). Kannanvaihdon E F matriisi A määritellään kuten lineaarialgebrassa: a a 1n f 1 = a 11 e 1 + a 21 e a m1 e m A = , kun a m1... a mn f n = a 1n e 1 + a 2n e a mn e m. Kannanvaihdon E F G matriisi saadaan kertomalla kannanvaihtojen E F ja F G matriisit (ks. lineaarialgebran kurssia; huomaa että tässä tarvitaan R:n kommutatiivisuus). Tarkastelemalla kannanvaihtoja E F E ja F E F saadaan AB = I m, BA = I n, missä B on kannanvaihdon F E matriisi (tyyppiä n m). Tapauksessa m = n tästä seuraa erityisesti, että kannanvaihdon matriisi A on säännöllinen. Lause 1.4. Olkoon M vapaa moduli yli kommutatiivisen renkaan R. Silloin jokaisessa M:n kannassa on yhtä monta alkiota. Todistus. Olkoot E ja F kuten edellä M:n kantoja sekä A ja B kannanvaihtomatriisit E F ja F E. Oletetaan, että m > n, ja johdetaan ristiriita. Kirjoitetaan A ja B lohkomatriiseina ( ) A1 A =, B = ( ) B 1 B 2, missä A 1 ja B 1 ovat n n-matriiseja. Koska AB = I m, saadaan ( ) ( ) A1 B (1) 1 A 1 B 2 In 0 =. A 2 B 1 A 2 B 2 0 I m n A 2

15 1.5 Vapaan modulin aste 14 Erityisesti siis (2) A 1 B 1 = I n. Tästä seuraa edellisen huomautuksen nojalla, että A 1 1 = B 1. Yhtälö (1) antaa A 2 B 2 = I, A 2 B 1 = 0. Kun kerrotaan jälkimmäinen yhtälö oikealta A 1 :llä, saadaan tulos A 2 = 0. Tämä on ristiriidassa edellisen yhtälön kanssa. Määritelmä. Vapaan R-modulin M (missä R kommutatiivinen) kanta-alkioiden lukumäärää sanotaan M:n asteeksi (rank). Jos M on vapaa n-asteinen R-moduli ja F sen kiinnitetty kanta, niin R-homomorfismit ϕ : M M vastaavat bijektiivisesti matriiseja A M n (R) kuten lineaarialgebrassa. Kannanvaihdossa F F, jonka matriisi on P, matriisi A muuttuu matriisiksi P 1 AP. Lause 1.5. Jos M on vapaa n-asteinen R-moduli, niin M R n. Todistus. Olkoon {x 1,..., x n } M:n kanta ja {e 1,..., e n } R n :n luonnollinen kanta. Ehdon f(x i ) = e i (i = 1,..., n) määrittelemä R-homomorfismi M R n (ks. lausetta 1.2) on bijektio, siis R-isomorfismi. Esimerkki Vapaata Z-modulia sanotaan vapaaksi Abelin ryhmäksi; nämä ovat siis muotoa Z n, n 0 (isomorfiaa vaille). Ryhmän (Q, ) aliryhmä kanta esimerkiksi {2, 3}. 2, 3 = { 2 h 3 k h, k Z } Z 2, Jos erityisesti R on PID, lause 1.5 on äärellisesti generoitujen R-modulien rakennelauseen (luku 7) pieni osatulos. Vertaa myös esimerkkiin pykälässä 1.4. Seuraava lause, jota myös tarvitaan luvussa 7, antaa keinon hallita vapaan modulin kaikki kannat. Lause 1.6. Olkoon M vapaa n-asteinen R-moduli ja E = {e 1,..., e n } jokin sen kanta. Merkitään f 1 = a 11 e 1 + a 21 e a n1 e n f n = a 1n e 1 + a 2n e a nn e n, missä a ij R säännöllinen. i, j. Joukko F = {f 1,..., f n } on M:n kanta sjvsk matriisi A = ( a ij ) on

16 1.5 Vapaan modulin aste 15 Todistus. Jos F on M:n kanta, niin A on kannanvaihdon E F matriisi ja siis säännöllinen. Oletetaan kääntäen, että A on säännöllinen. Kirjoitetaan lauseen yhtälöryhmä matriisimuodossa f 1. f n = A T missä pystyriveinä kirjoitetut matriisit voidaan ajatella lohkomuodossa esitetyiksi n n- matriiseiksi, lohkoina vaakarivit f i ja e j (kukin vaakarivi muodostuu kyseisen M:n alkion kantaesityksen kertoimista, kantana esimerkiksi luonnollinen kanta). Kun merkitään A 1 = B, edellisestä yhtälöstä seuraa e 1 e n e 1. e n f 1. = B T. Täten e j F j ja siis E F. Mutta E = M, ja näin ollen joukko F virittää M:n. Joukon F lineaarisen riippumattomuuden todistamiseksi olkoon n i=1 c if i = 0 eli matriisimuodossa ( ) ( ) T c 1... c n f1... f n = 0. Oletuksen mukaan tästä seuraa f n,. ( c1... c n ) A T ( e 1... e n ) T = 0. Kun merkitään ( c 1... c n ) A T = ( d 1... d n ), päätellään tästä edelleen joukon E lineaarisen riippumattomuuden nojalla, että d 1 = = d n = 0. Siis ( c1... c n ) A T = ( ). Kertomalla tämä yhtälö oikealta B T :llä saadaan tulos c 1 = = c n = 0.

17 2 TEKIJÖIHINJAKO KOKONAISALUEESSA 16 2 TEKIJÖIHINJAKO KOKONAISALUEESSA 2.1 Jaottomat alkiot ja UFD Määritelmä. Olkoon R kommutatiivinen rengas ja olkoot a, b R. Sanotaan, että b jakaa a:n tai a on jaollinen b:llä, merkitään b a, jos c R : a = bc. (Tällöin merkitään joskus myös c = a b.) Muista, että u R on R:n yksikkö, jos u:lla on R:ssä käänteisalkio, ts. v R : uv = 1 (v = u 1 ). Kaikki renkaan R yksiköt muodostavat ryhmän kertolaskun suhteen. Ellei erikseen toisin mainita, seuraavassa R = D = kokonaisalue, ts. kommutatiivinen rengas, jossa ei ole nollanjakajia. Tällöin erityisesti supistamissääntö pätee. (Eräät yksinkertaiset tulokset alla ovat voimassa myös yleisemmin kommutatiivisissa renkaissa.) Jaollisuusrelaation ominaisuuksia: 1) a a, 1 a, a 0 a D, 2) 0 a = a = 0, 3) c b, b a = c a, 4) c a, c b = c (a + b). Määritelmä. Alkioita a, b D sanotaan liitännäisiksi (associated), jos a b ja b a. Liitännäisyys on ekvivalenssirelaatio; seuraavassa siitä käytetään merkintää. Kokonaisalueelle D saadaan näin partitio liitännäisalkioiden luokkiin. Huomautus 2.1. (i) u on yksikkö u 1 u 1. (ii) a 0 = a = 0. Lause 2.1. a b a = bu, missä u on yksikkö. Todistus. ( = ) Jos a = bu, missä u on yksikkö, niin voidaan myös kirjoittaa b = au 1. Edellisestä yhtälöstä seuraa b a, jälkimmäisestä a b. ( = ) Jos a = 0, niin b = 0 ja voidaan siis valita u = 1. Olkoon a 0. Ehdoista a b, b a seuraa, että a = bu, b = av, missä u, v D. Näistä saadaan, että a = avu, siis (huomaa oletus) 1 = vu. Täten u on yksikkö. Esimerkki (i) D = Z: yksiköt ±1; siis a b a = ±b. (ii) D = kunta K: yksiköt = kaikki alkiot 0; siis a b a, b K {0}. (iii) D = K[x], polynomirengas yli kunnan K: yksiköt = vakiopolynomit 0; siis f(x) g(x) f(x) = a g(x), a K {0}.

18 2.1 Jaottomat alkiot ja UFD 17 Määritelmä. Alkiota a D sanotaan jaottomaksi (irreducible) D:ssä, jos 1) a 1 ja 2) a = bc (b, c D) = b 1 tai c 1. Esimerkki (i) Renkaan Z jaottomat alkiot = jaottomat luvut eli alkuluvut 2, 3, 5, 7, 11,... ja näiden vastaluvut. (ii) Kunnassa ei ole jaottomia alkioita. (iii) Polynomirenkaan K[x] (K kunta) jaottomat alkiot = jaottomat polynomit. Esimerkki Näytetään, että jaottoman alkion liitännäisalkiot ovat samoin jaottomia. Määritelmä. Kokonaisaluetta D sanotaan yksikäsitteisen tekijöihinjaon alueeksi (unique factorization domain, lyh. UFD), jos se täyttää seuraavat ehdot: 1) jokainen D:n alkio c 0, c 1, voidaan esittää jaottomien alkioiden tulona, 2) jos kaksi tällaista esitystä ovat c = a 1 a 2 a r = b 1 b 2 b s (a i, b j jaottomia), niin r = s ja, kun b j :t on numeroitu sopivasti, a i b i (i = 1,..., s). Esimerkki (i) Rengas Z on UFD (aritmetiikan peruslause). Huomaa, että esimerkiksi 6 = 2 3 = ( 2)( 3). (ii) Kunta K on triviaalisti UFD (ehdot 1) ja 2) tyhjiä). (iii) Myöhemmin todistetaan, että K[x] on UFD. Jos D on UFD, valitaan D:stä sellainen jaottomien alkioiden joukko P, että jokainen D:n jaoton alkio on liitännäinen tarkalleen yhden P:n alkion kanssa. Esimerkiksi Z:ssa voidaan valita P = P = {2, 3, 5,... }. Silloin jokainen c D {0} voidaan esittää yksikäsitteisesti (lukuunottamatta jaottomien alkioiden järjestystä) muodossa c = up α 1 1 p αr r (r 0, α i > 0 i), missä u 1 ja p i :t ovat P:n erisuuria alkioita. Joskus on mukava kirjoittaa tämä esitys muotoon c = u { p α αi 0 i, i i α i > 0 vain äärellisen monella i:llä, p i P missä p i käy läpi koko P:n.

19 2.1 Jaottomat alkiot ja UFD 18 Esimerkki Tutkitaan jaollisuutta joukossa Z[ n ] = { a + b n a, b Z } (n Z), joka on C:n alirengas ja siis kokonaisalue. Oletetaan, että n on neliövapaa, ts. n 0, 1 ja p P : p 2 n. Luvun α = a + b n Z[ n ] liittoluvuksi sanotaan lukua α = a b n Z[ n ] (= α:n liittokompleksiluku, jos n < 0). Suoralla laskulla todetaan, että Määritellään luvun α normi Huomaa, että N(α) Z ja α + β = α + β, αβ = α β. N(α) = αα = a 2 nb 2 (= α 2, jos n < 0). N(α) = 0 α = 0 tai α = 0 α = 0; Väite 2.1. N(α) = ±1 α 1. N(αβ) = αβ αβ = ααββ = N(α)N(β). Todistus. ( = ) N(α) = ±1 = αα = ±1 = α 1 = α 1. ( = ) αβ = 1 = N(α)N(β) = 1 = N(α) = ±1. Väite 2.2. N(α) = ±p, p P = α jaoton. (Ei päde kääntäen.) Todistus. Väitteen 2.1 nojalla α 1. Edelleen α = βγ = N(α) = N(β)N(γ) = esim. N(β) = ±1 = β 1 (väite 2.1). Kokonaisalue Z[ n ] ei ole välttämättä UFD. Osoitetaan tämä tapauksessa n = 5. Väite 2.3. Z[ 5] ei ole UFD. Todistus. Näytetään, että luvun 6 hajotelmat 6 = 2 3 = (1 + 5)(1 5) ovat kaksi olennaisesti erilaista hajotelmaa jaottomiin tekijöihin. Väitteestä 2.1 seuraa helposti, että renkaan Z[ 5] yksiköt ovat ±1. Täten mikään em. hajotelmissa esiintyvistä luvuista ei ole yksikkö.

20 2.2 Syt ja pyj 19 Oletetaan, että 2 = αβ, α 1, β 1. Silloin N(α)N(β) = 4, siis N(α) = ±2. Kun merkitään α = a + b 5, on siis a 2 + 5b 2 = ±2. Tällä yhtälöllä ei ole ratkaisua a, b Z. Siis 2 on jaoton. Samoin osoitetaan, että 3 on jaoton ja luvut 1 ± 5 ovat jaottomia. Lopuksi todetaan, että 2 1 ± 5, koska (1 ± 5)/2 ±1. (Vastaavanlainen renkaiden Z[ n ] käsittely positiivisilla n:n arvoilla on paljon vaikeampaa, koska näissä on enemmän itse asiassa äärettömän paljon yksiköitä.) 2.2 Syt ja pyj Määritelmä. Kokonaisalueen D alkioiden a ja b (ainakin toinen 0) suurin yhteinen tekijä, lyhyesti syt, on sellainen alkio d D, joka täyttää ehdot 1) d a, d b; 2) jos d a, d b, niin d d. Merkintä: d = syt(a, b) (tai lyhyemmin (a, b)). Lause 2.2. Jos syt(a, b) on olemassa, se on yksikäsitteinen liitännäisyyttä vaille. Tarkemmin: jos d = syt(a, b), niin e = syt(a, b) e d. Todistus. ( = ) Jos e = syt(a, b), niin e a, e b. Koska d = syt(a, b), saadaan siis e d. Symmetrian nojalla d e. Siis e d. ( = ) Jos e d, niin e voidaan kirjoittaa d:n tilalle ehdoissa 1) ja 2). Täten e = syt(a, b). Merkintää syt(a, b) käytettäessä on siis oltava varovainen. Seuraavat syt:n ominaisuudet ovat helppoja todistaa: (i) ((a, b), c) (a, (b, c)), (ii) syt(a, b) a a b, (iii) syt(a, 0) a. Kohtaa (i) ja induktiota käyttämällä saadaan määritellyksi n:n alkion a 1,..., a n syt, kun enintään yksi a i = 0. Tämän jälkeen määritellään syt(a 1,..., a n ) aina, kun (a 1,..., a n ) (0,..., 0), vain jättämällä mahdolliset 0:t pois. Siis esimerkiksi Z:ssa syt(6, 0, 30, 15, 0) = syt(6, 30, 15) = 3. Lause 2.2 pätee ilmeisesti myös useamman alkion syt:n tapauksessa; samoin seuraava lause 2.3 yleistyy suoraan tähän tapaukseen.

21 2.3 Eukleideen alue 20 Lause 2.3. Jos D on UFD, syt(a, b) on aina olemassa (kun esimerkiksi a 0). Tarkemmin: kun a 0 ja b 0, sanokaamme (1) a = u niin p i P (2) syt(a, b) p α i i, b = v p i P p i P p β i i (u, v 1), p γ i i, γ i = min(α i, β i ) i. Todistus. Tapauksessa b = 0 ensimmäinen väite seuraa edellisestä kohdasta (iii), tapauksessa b 0 se seuraa jälkimmäisestä väitteestä. Jälkimmäinen väite puolestaan seuraa siitä, että jos d = p i P pδ i i, niin d a sjvsk δ i α i i. Määritelmä. Kokonaisalueen D alkioiden a ja b pienin yhteinen monikerta (tai jaettava), lyhennettynä pyj, on sellainen alkio m D, joka täyttää ehdot 1) a m, b m; 2) jos a m, b m, niin m m. Merkintä: m = pyj(a, b) (tai lyhyemmin [a, b]). Kuten syt, myös pyj on yksikäsitteinen liitännäisyyttä vaille. Jos UFD:n alkioilla a ja b on hajotelmat (1), niin ilmeisesti (3) pyj(a, b) Koska p i P niin kaavoista (2) ja (3) seuraa, että p µ i i, µ i = max(α i, β i ) i. min(α i, β i ) + max(α i, β i ) = α i + β i, (a, b) [a, b] ab. Tämä kaava voitaisiin todistaa yleisemminkin (olettamatta, että D on UFD). 2.3 Eukleideen alue Miten voidaan todeta, onko annettu kokonaisalue UFD? Seuraavassa eräs menetelmä. Määritelmä. Olkoon D kokonaisalue. Funktiota ϕ : D {0} Z 0 (= {0, 1, 2,... }) sanotaan D:n Eukleideen normiksi, jos se täyttää ehdot

22 2.3 Eukleideen alue 21 E1. ϕ(ab) ϕ(a) a, b 0, E2. a, b D, b 0 q, r D : a = bq + r, ϕ(r) < ϕ(b) tai r = 0 (ks. myös huomautusta 2.4 pykälän lopussa). Jos D:llä on jokin Eukleideen normi, D:tä sanotaan Eukleideen alueeksi. Esimerkki Rengas Z on Eukleideen alue, normina ϕ(a) = a. Esimerkki Polynomirengas K[x] (K kunta) on Eukleideen alue, normina ϕ(p(x)) = deg p(x). Ehtoa E2 voidaan nimittää lyhyesti jakoalgoritmiksi. On kuitenkin huomattava, ettei välttämättä ole olemassa menetelmää, jolla alkiot q ja r löydetään. Lause 2.4. Eukleideen alueessa D on jokaisella alkioparilla a, b (ainakin toinen 0) syt, lisäksi u, v D : syt(a, b) au + bv. Todistus. Jos esimerkiksi b = 0, niin syt(a, b) a = a Olkoot a, b 0. Ehdon E2 nojalla D:ssä on sellaiset alkiot q 1, r 1, q 2, r 2,..., että a = bq 1 + r 1, ϕ(r 1 ) < ϕ(b), b = r 1 q 2 + r 2, ϕ(r 2 ) < ϕ(r 1 ), r n 2 = r n 1 q n + r n, ϕ(r n ) < ϕ(r n 1 ), r n 1 = r n q n+1, r n+1 = 0. Yhtälöketju ( Eukleideen algoritmi ) päättyy, koska ϕ(b) > ϕ(r 1 ) > ϕ(r 2 ) >... on aidosti vähenevä jono kokonaislukuja 0; lopuksi saadaan siis r n+1 = 0. Ensimmäisen yhtälön nojalla r 1 = au + bv (u = 1, v = q 1 ); tästä ja toisesta yhtälöstä seuraa, että r 2 on samaa muotoa. Jatkamalla samoin saadaan (1) r n = au + bv (u, v D). Yhtälöketjun viimeisen yhtälön nojalla r n r n 1, siis viimeistä edellisen yhtälön nojalla r n r n 2. Jatkamalla näin saadaan r n a, r n b. Jos d a, d b, niin (1):n mukaan d r n. Täten r n syt(a, b) ja lause on todistettu. Lemma 2.1. Olkoon D kokonaisalue ja p D {0}, p 1. Jos p täyttää ehdon (2) p ab (a, b D) = p a tai p b, niin p on D:n jaoton alkio.

23 2.3 Eukleideen alue 22 Todistus. Nyt p = ab = p ab = p a tai p b, voidaan olettaa p a = a = pc = abc (c D) = bc = 1 = b 1. Siis p on jaoton. Määritelmä. Ehdon (2) täyttävää jaotonta alkiota sanotaan vahvaksi jaottomaksi alkioksi (kirjallisuudessa myös alkualkioksi, engl. prime element). Esimerkki Renkaan Z kaikki jaottomat alkiot (eli ±alkuluvut) ovat vahvoja. Esimerkki Renkaan Z[ 5] = { a + b 5 a, b Z } alkio 3 on jaoton ( 2.1, esimerkki 2.1.5), mutta ei vahva jaoton, sillä 3 (1 + 5)(1 5), 3 (1 ± 5). Lause 2.5. Kokonaisalue D on UFD D täyttää ehdot (i) jokainen alkio c D {0}, c 1, voidaan esittää jaottomien alkioiden tulona, (ii) jokainen D:n jaoton alkio on vahva jaoton. Todistus. ( = ) (i) on sama kuin UFD:n määritelmän ehto 1). Todistetaan (ii). Oletetaan, että p ab. Koska D on UFD, voidaan kirjoittaa a = u p i P p α i i, b = v p i P p β i i (u, v 1). Olkoon esimerkiksi p = p 1. Koska p 1 ab, niin α 1 + β 1 1. Silloin α 1 1 tai β 1 1, toisin sanoen p 1 a tai p 1 b. ( = ) On todistettava, etä (ii):stä seuraa alkutekijähajotelman yksikäsitteisyys. Todistus on aivan samanlainen kuin aritmetiikan peruslauseen todistus (jossa on kyse samasta väitteestä tapauksessa D = Z). Lemma 2.2. Oletetaan, että D on Eukleideen alue ja a, b D {0}. Jos a b mutta b a (eli a on b:n aito tekijä), niin ϕ(a) < ϕ(b). Todistus. Tehdään vastaoletus: ϕ(a) ϕ(b). Koska a b, niin b = ac, c D. Soveltamalla jakoalgoritmia (E2) saadaan a = bq + r = acq + r, ϕ(r) < ϕ(b) (huom. r 0, koska b a). Nyt r = a acq = a(1 cq), joten ristiriita! Lause 2.6. Eukleideen alue on UFD. ϕ(r) E1 ϕ(a) vo ϕ(b);

24 2.3 Eukleideen alue 23 Todistus. Todistetaan, että Eukleideen alue D täyttää lauseen 2.5 ehdot (ii) ja (i). Oletetaan, että p on jaoton, p ab, p a. Nyt syt(a, p) 1, siis 1 = au + pv, missä u, v D (ks. lausetta 2.4). Tämä antaa b = abu + pbv. Koska p ab, niin p (abu + pbv), siis p b. Täten p on vahva jaoton. Olkoon a D, a 0. Oletetaan, että (3) a = a 1 a 2 a k, a i 1 i. Lemman 2.2 nojalla ϕ(a) > ϕ(a 2 a 3 a k ) > ϕ(a 3 a k ) > > ϕ(a k ) > ϕ(1) ( 0), joten ϕ(a) k. Esityksessä (3) on siis tekijöiden määrä rajoitettu. Täten on olemassa sellainen esitys (3), jossa tekijöiden määrä on maksimaalinen, ja silloin a 1,..., a k ovat jaottomia. Seuraus Eukleideen alueessa D jokaisella alkioparilla on pyj. Todistus. UFD:ssä on pyj(a, b) = ab syt(a, b) (kun (a, b) (0, 0)). Seuraus Jos K on kunta, niin polynomirengas K[x] on UFD. Tämä tulos on tärkeä seuraavissa luvuissa, joissa polynomit yli kunnan muodostavat keskeisen apuneuvon. Huomautus 2.2. Eukleideen alue on myös PID (pääihannealue). Tämä todistetaan jakoalgoritmin (E2) avulla samoin kuin Z:lla ja K[x]:llä (ks. algebran peruskurssia). Huomautus 2.3. Voidaan todistaa lausetta 2.6 yleisempi tulos: jokainen PID on UFD. Huomautus 2.4. Edelliset huomautukset antavat toisen todistuksen sille, että Eukleideen alue on UFD. Tässä todistuksessa ei tarvita Eukleideen normin ehtoa E1. Koska ehtoa E1 ei tarvita myöskään lauseen 2.4 todistuksessa, Eukleideen normi voitaisiin määritellä yksinomaan ehdolla E2. Toisaalta ehto E1 on yleensä automaattisesti täytetty niissä tapauksissa, jotka ovat teorian kannalta kiinnostavia.

25 3 POLYNOMIT 24 3 POLYNOMIT 3.1 Polynomin nollakohdat Polynomirengas R[x] on määritelty, olipa R mikä hyvänsä rengas. Seuraavassa renkaasta R oletetaan kuitenkin vähintään, että se on kommutatiivinen. Jos f(x) = a 0 + a 1 x + + a n x n R[x] ja c R, merkitään tavalliseen tapaan f(c) = a 0 + a 1 c + + a n c n. Kuvaus R[x] R, f(x) f(c), missä siis c R on kiinteä, on rengashomomorfismi, ts. a(x) = f(x) + g(x) = a(c) = f(c) + g(c), b(x) = f(x)g(x) = b(c) = f(c)g(c) (ja f(x) = 1 = f(c) = 1). Tästä seuraa, että jokainen R[x]:n polynomien välinen yhtälö pysyy voimassa, kun x:n paikalle sijoitetaan mikä tahansa c R (sijoitusperiaate). Jos f(c) = 0, alkiota c sanotaan polynomin f(x) nollakohdaksi tai yhtälön f(x) = 0 juureksi. Muista, että nollapolynomin asteeksi on sovittu. Lause 3.1 (Yleinen jakoalgoritmi). Jos a(x), b(x) R[x] ja b(x) on pääpolynomi, niin on olemassa sellaiset yksikäsitteiset polynomit q(x), r(x) R[x], että a(x) = q(x)b(x) + r(x), deg r(x) < deg b(x). Todistus. Ks. algebran peruskurssia, jossa sama on todistettu tapauksessa R = K = kunta heikommalla oletuksella b(x) 0. Huomaa, että nytkin b(x):n johtavalla kertoimella (= 1) on käänteisalkio. Lisäksi yksikäsitteisyystodistuksessa tarvittava tulopolynomin astelukukaava (aste = tekijöiden asteiden summa) pätee, koska toinen tekijä on pääpolynomi b(x). Huomautus 3.1. Yleisemmin jos b(x):n johtava kerroin (= b m ) on R:n yksikkö, niin b(x) = b m b(x), missä b(x) on pääpolynomi R[x]. Jakoalgoritmi soveltuu myös tällöin: a(x) = q(x) b(x) + r(x) = ( b 1 m q(x) ) b(x) + r(x). Lause 3.2 (Jäännöslause). Jos c R ja f(x) R[x], niin g(x) R[x] : f(x) = (x c)g(x) + f(c). Lisäksi f(c) = 0 (x c) f(x).

26 3.2 Polynomin tekijöihinjako; Eisensteinin jaottomuuskriteeri 25 Todistus. Lause 3.1 antaa f(x) = (x c)g(x) + r(x), missä deg r(x) < 1, siis r(x) = r R. Sijoittamalla x = c saadaan f(c) = 0 + r, siis r = f(c). Nyt ( = ) seuraa edellisestä. ( = ) : (x c) f(x) = f(x) = (x c)f 1 (x) = f(c) = 0 (sij. x = c). Lause 3.3. Olkoon D kokonaisalue ja f(x) D[x]. Jos c 1,..., c k ovat f(x):n eri nollakohtia, niin (x c 1 )(x c 2 ) (x c k ) f(x). Todistus. Induktiolla k:n suhteen. 1) k = 1: lause ) Induktio-oletuksen nojalla f(x) = (x c 2 ) (x c k )g(x), g(x) D[x]. Sijoitetaan x = c 1 : 0 = (c 1 c 2 ) (c 1 c k )g(c 1 ) = g(c 1 ) = 0 (koska ei nollanjakajia) = g(x) = (x c 1 )h(x), h(x) D[x] = f(x) = (x c 1 )(x c 2 ) (x c k )h(x). Seuraus Jos f(x) D[x], f(x) 0, ja deg f(x) = n, niin f(x):llä on D:ssä enintään n eri nollakohtaa. Todistus. Lauseen 3.3 merkinnöin k = deg ( (x c 1 ) (x c k ) ) deg f(x) = n. Seuraus Jos f(x), g(x) D[x] ovat enintään astetta n ja f(c i ) = g(c i ) (i = 1,..., n + 1), missä c 1,..., c n+1 ovat D:n eri alkioita, niin f = g. Todistus. Polynomi f(x) g(x) on enintään astetta n ja sillä on n + 1 eri nollakohtaa c i. Seurauslauseen nojalla f(x) g(x) = 0. Huomautus 3.2. Tämän seurauslauseen mukaan siis n + 1 yhtälöä f(c i ) = t i, missä c 1,..., c n+1 ovat D:n eri alkioita, määrittävät n-asteisen polynomin f yksikäsitteisesti. Jos erityisesti D = K = kunta, voidaan helposti osoittaa, että tällainen polynomi f on aina olemassa (sen antaa klassinen Lagrangen interpolointikaava). 3.2 Polynomin tekijöihinjako; Eisensteinin jaottomuuskriteeri Olkoon K kunta. Luvussa 2 todistettiin, että K[x] on UFD. Jokainen K[x]:n polynomi vakio (muista, että vakiot 0 ovat K[x]:n yksiköt) voidaan siis esittää olennaisesti yksikäsitteisellä tavalla jaottomien polynomien tulona: (1) f(x) = p 1 (x) p r (x) (p i (x) jaoton K[x] i).

27 3.2 Polynomin tekijöihinjako; Eisensteinin jaottomuuskriteeri 26 Probleema: Mitkä ovat K[x]:n jaottomat polynomit? Triviaalisti jaottomia polynomeja ovat ainakin kaikki 1. asteen (eli lineaariset) polynomit. Lauseesta 3.2 seuraa, että 2. tai 3. asteen polynomi on jaoton sjvsk sillä ei ole nollakohtia (vrt. algebran peruskurssiin). Jos kunta K on äärellinen, jaottomat polynomit löydetään periaatteessa kokeilemalla. Lause 3.4. Jos K on kunta, niin seuraavat ehdot ovat ekvivalentit: (i) Polynomirenkaassa K[x] jaottomat polynomit = lineaariset polynomit. (ii) Jokaisella K[x]:n polynomilla vakio on nollakohta K:ssa. Todistus. (i) = (ii) Oletuksen mukaan polynomilla f(x) vakio on hajotelma f(x) = (a 1 x + b 1 ) (a r x + b r ) (r 1; a i 0 i). Silloin f( b 1 /a 1 ) = 0. (ii) = (i) Olkoon p(x) K[x] jaoton. Oletuksen mukaan sillä on nollakohta c K, joten p(x) = (x c)q(x), q(x) K[x]. Tässä q(x) on vakio, q(x) = q, koska p(x) on jaoton. Siis p(x) on lineaarinen, p(x) = q (x c). Määritelmä. Kuntaa K sanotaan algebrallisesti suljetuksi, jos se täyttää lauseen 3.4 ehdot. Esimerkiksi C on algebrallisesti suljettu (algebran peruslause). Voidaan osoittaa, että jokaisella kunnalla K on laajennus L (K L), joka on algebrallisesti suljettu. Suppeinta tällaista L:ää sanotaan K:n algebralliseksi sulkeumaksi. Esimerkiksi C on R:n algebrallinen sulkeuma. (Tästä enemmän luvussa 4.) Polynomia f(x) K[x] tarkasteltaessa on usein hyödyllistä ajatella sitä ensin L[x]:ssä, missä L on algebrallisesti suljettu K:n laajennus. Esimerkki Tapauksessa K = R jaottomat polynomit ovat 1 lineaariset polynomit ja 2 polynomit ax 2 + bx + c, missä b 2 4ac < 0. Tämä nähdään hajottamalla polynomi f(x) R[x] ensin C[x]:ssä muotoon f(x) = a n (x c i ) (a R, c i C i). i=1 Jos c i / R, myös liittoluku c i esiintyy nollakohtana (koska f(c i ) = f(c i ) = 0 = 0); tällöin (x c i )(x c i ) = x 2 + tx + u R[x], diskr. < 0.

28 3.2 Polynomin tekijöihinjako; Eisensteinin jaottomuuskriteeri 27 Seuraavassa tutkitaan polynomin tekijöihinjakoa Q[x]:ssä. Jos f(x) Q[x], niin kertomalla sopivalla vakiolla (siis Q[x]:n yksiköllä) saadaan polynomi Z[x]. Tutkitaan ensin näitä. Oletetaan yleisemmin, että polynomit D[x], missä D on UFD. Polynomia f(x) D[x] \ D sanotaan seuraavassa jaottomaksi, jos f(x) = g(x)h(x) = g(x) tai h(x) on vakio. Tämä ei ole edellisessä luvussa esitetyn yleisen teorian mukainen D[x]:n jaottoman alkion määritelmä, koska kaikki vakiopolynomit eivät välttämättä ole D[x]:n yksiköitä. (Itse asiassa D[x] = D, joten siis D[x] = D \ {0} sjvsk D = K = kunta.) Määritelmä. Polynomia f(x) D[x], missä D on UFD, sanotaan primitiiviseksi, jos f(x):n kertoimien syt 1. Esimerkki Polynomi 2x 2 + 3x 4 Z[x] on primitiivinen, 2x 2 + 6x 4 ei ole. Lause 3.5 (Gaussin lemma). Kahden primitiivisen polynomin (yli UFD:n) tulo on primitiivinen. Todistus. Olkoot f(x) = a 0 + a 1 x + + a n x n ja g(x) = b 0 + b 1 x + + b m x m primitiivisiä. Vastaoletus: f(x)g(x) ei ole primitiivinen, siis (2) f(x)g(x) = πh(x), π D:n jaoton alkio. Oletetaan, että π a r, π b s, r ja s minimaalisia. Tällaiset a r ja b s ovat olemassa, koska f, g primitiivisiä. Nyt tulossa f(x)g(x) termin x r+s kerroin on a 0 b r+s + + a r 1 b s+1 + a r b s + a r+1 b s a r+s b 0, siis π:llä jaoton. Toisaalta se on (2):n nojalla π:llä jaollinen; ristiriita! Jokainen polynomi f(x) D[x] (missä D on UFD) voidaan kirjoittaa muotoon (3) f(x) = δf 1 (x) { δ = f(x):n kertoimien syt ( D), f 1 (x) primitiivinen. Alkio δ D (polynomin f(x) sisältö) on yksikäsitteinen liitännäisyyttä vaille. Lause 3.6. Jos f(x) Z[x] Z on jaoton, niin f(x) on jaoton myös Q[x]:ssä. Todistus. Vastaoletus: f(x) = g(x)h(x), g, h Q[x] Q. Poistetaan nimittäjät: af(x) = g 1 (x)h 1 (x), a Z, g 1, h 1 Z[x] Z.

29 3.2 Polynomin tekijöihinjako; Eisensteinin jaottomuuskriteeri 28 Kirjoitetaan polynomit muotoon (3): abf 1 (x) = c 1 d 1 g 2 (x)h 2 (x) { a, b, c1, d 1 Z, f 1, g 2, h 2 primit. Z[x] Z. Gaussin lemmasta seuraa, että ab = ±c 1 d 1 ja siis f 1 (x) = ±g 2 (x)h 2 (x). Tällöin f(x) = bf 1 (x) = ±bg 2 (x)h 2 (x). Tämä on ristiriita, koska f on jaoton Z[x]:ssä. Huomautus 3.3. Lausetta 3.6 käytetään usein seuraavassa muodossa: Jos polynomi f(x) Z[x] \ Z hajoaa tuloksi g(x)h(x) yli kunnan Q (tekijät astetta n, m > 0), niin f(x) hajoaa myös yli Z:n tekijöihin ja nämä ovat g(x) ja h(x) kerrottuna vakioilla. Huomautus 3.4. Polynomin f(x) = a 0 + a 1 x + + a n x n Z[x] lineaariset tekijät Q[x]:ssä löydetään tunnetulla tavalla: jos ( ( x s) r f(x) eli f r s) = 0 (r, s Z), niin s an ja r a 0 (tai r = 0). Polynomin f(x) Z[x] jaottomuus voidaan monissa tärkeissä tapauksissa todistaa seuraavalla kriteerillä. Lause 3.7 (Eisenstein). Polynomi f(x) = a 0 +a 1 x+ +a n x n Z[x] on jaoton Q[x]:ssä, jos on olemassa sellainen alkuluku p, että 1) p a n, 2) p a i (i = 0,..., n 1), 3) p 2 a 0. Todistus. Vastaoletus: f ei ole jaoton Q[x]:ssä. Silloin f ei ole jaoton myöskään Z[x]:ssä (lause 3.6), joten f = gh, { g(x) = b0 + b 1 x + + b r x r Z[x], deg g(x) = r > 0, h(x) = c 0 + c 1 x + + c s x s Z[x], deg h(x) = s > 0. Erityisesti b 0 c 0 = a 0, joka on oletuksen mukaan jaollinen p:llä mutta ei p 2 :lla. Voidaan olettaa, että esimerkiksi p b 0, p c 0 (tarvittaessa vaihdetaan g ja h). Samoin oletuksen mukaan b r c s = a n on jaoton p:llä. Siis p b r, p c s. Olkoon b i polynomin g(x) ensimmäinen p :llä jaoton kerroin, jolloin edellisen mukaan 1 i r < n. Nyt a i = b i c 0 + b i 1 c b 0 c i. Redusoidaan mod p : Toisaalta p b i, p c 0 ; ristiriita! 0 b i c (mod p).

30 3.3 Polynomin derivaatta 29 Esimerkki Polynomi f(x) = x n p on jaoton p P (n = 1, 2,... ). Täten Q[x] sisältää mielivaltaisen korkeaa positiivista astetta olevia jaottomia polynomeja. Esimerkki Olkoon f(x) = x 3 4. Kun merkitään y = x 1, saadaan f(x) = (y + 1) 3 4 = y 3 + 3y 2 + 3y 3 merk. = g(y). Tämä on jaoton Q[y]:ssä Eisensteinin kriteerin nojalla (p = 3). Siis myös f(x) on jaoton Q[x]:ssä, sillä f(x):n tekijöihinjaosta seuraisi tekijöihinjako myös g(y):lle. Huomautus 3.5. Lauseet 3.6 ja 3.7 yleistyvät suoraan tapaukseen, jossa Z:n tilalla on UFD D, p:n tilalla D:n jaoton alkio ja Q:n tilalla kokonaisalueen D osamääräkunta K. 3.3 Polynomin derivaatta Määritelmä. Polynomin f(x) = a 0 + a 1 x + + a n x n R[x] (muodollinen) derivaatta Käytetään myös merkintää f (x) = Df(x). Derivaatta noudattaa sääntöjä f (x) = a 1 + 2a 2 x + + na n x n 1 R[x]. (f + g) = f + g, (fg) = f g + fg, kuten nähdään määritelmästä suoralla laskulla (tai voidaan päätellä analyysin derivointikaavoista). Määritelmä. Jos f(x) K[x], α K ja (1) f(x) = (x α) m g(x), g(x) K[x], g(α) 0, niin α on polynomin f(x) kertalukua m oleva nollakohta. Tarkastellaan polynomia f(x) K[x], missä K on kunta. Oletetaan, että K F = algebrallisesti suljettu kunta. Silloin f(x) hajoaa F [x]:ssä lineaarisiin tekijöihin: f(x) = c(x α 1 ) m1 (x α r ) mr, missä α 1,..., α r ovat F :n eri alkioita. Kunkin nollakohdan α i kertaluku on m i (i = 1,..., r). Huomaa, että koska F [x] on UFD, nollakohdan kertaluku ei riipu siitä, missä kunnassa sitä tarkastellaan (kunhan nollakohta vain kuuluu kyseiseen kuntaan). Lause 3.8. Olkoon f(x) K[x] ja F kuten yllä. Silloin alkio α F on f(x):n useankertainen nollakohta sjvsk f(α) = f (α) = 0.

31 3.3 Polynomin derivaatta 30 Todistus. Jos α on useankertainen nollakohta, niin (x α) 2 f(x), siis f(x) = (x α) 2 g(x) (F [x]:ssä). Derivoidaan: f (x) = 2(x α)g(x) + (x α) 2 g (x). Sijoittamalla tähän x = α saadaan f (α) = 0. Kääntäen: Jakoalgoritmi antaa f(x) = (x α) 2 q(x) + r(x), r(x) lineaarinen tai vakio. Oletuksesta f(α) = f (α) = 0 seuraa r(α) = r (α) = 0. Kun merkitään r(x) = ax + b, on siis aα + b = 0 ja a = 0. Näistä seuraa a = b = 0, siis r(x) = 0. Täten (x α) 2 f(x). Seuraus Alkio α F on polynomin f(x) K[x] useankertainen nollakohta sjvsk syt ( f(x), f (x) ) on jaollinen (x α):lla (polynomirenkaassa F [x]). Siis f(x):n nollakohdat ovat yksinkertaiset sjvsk syt ( f(x), f (x) ) 1. On tärkeää, että syt ( f(x), f (x) ) voidaan määrittää Eukleideen algoritmilla polynomirenkaassa K[x]. Useankertaisten nollakohtien olemassaolo saadaan siis selvitetyksi siirtymättä K:n laajennuskuntiin. Huomaa, että jos syt(f(x), f (x)) 1, niin tämä syt hajoaa lineaarisiin tekijöihin F [x]:ssä. Esimerkki Tutkitaan, onko polynomilla f(x) = x 5 + 2x 4 + 2x 3 + 4x 2 + x + 2 useankertaisia nollakohtia kunnassa Q tai C. Hajotetaan f(x) jaottomiin tekijöihin Q[x]:ssä ja C[x]:ssä. Luetellaan nyt polynomin f(x) nollakohdat F jonona α 1,..., α n, jossa jokainen α i esiintyy niin monta kertaa kuin sen kertaluku osoittaa. Seurauslauseen nojalla syt ( f(x), f (x) ) 1 merk. = i<j (α i α j ) 2 = 0. Lukua sanotaan polynomin f(x) diskriminantiksi. Voidaan osoittaa, että K ja saadaan lasketuksi polynomin kertoimista. Esimerkki Tapauksessa f(x) = x 2 + ax + b = (x α 1 )(x α 2 ) on α 1 + α 2 = a ja α 1 α 2 = b, joten = (α 1 α 2 ) 2 = a 2 4b. Diskriminantti saadaan myös kaavasta = f (α 1 )f (α 2 ). Yleistys: Jos f(x) = (x α 1 ) (x α n ), niin = ±f (α 1 ) f (α n ) (harj.). Lause 3.9 (Taylorin kaava). Olkoon K kunta, jonka karakteristika = 0. Jos f(x) K[x], deg f(x) = n ja α K, niin f(x) = f(α) + f (α) 1! (x α) + f (α) 2! (x α) f (n) (α) (x α) n. n!

32 3.3 Polynomin derivaatta 31 Todistus. Merkitään y = x α, jolloin f(x) = f(y + α) = n a i (y + α) i = i=0 n b i y i = i=0 n b i (x α) i. i=0 Derivoimalla j kertaa saadaan f (j) (x) = n i(i 1) (i j + 1)b i (x α) i j i=j (j = 0,..., n). Sijoitetaan x = α: f (j) (α) = j!b j Koska char(k) = 0, yhtälö voidaan jakaa j!:lla. Tulokseksi saadaan b j = f (j) (α)/j!. Seuraus Jos char(k) = 0, niin alkio α K on polynomin f(x) K[x] m-kertainen nollakohta sjvsk f(α) = f (α) = = f (m 1) (α) = 0, f (m) (α) 0. Tästä seuraa erikoistapauksena uudestaan lause 3.8 (ehdolla, että char(k) = 0).

33 4 KUNTALAAJENNUKSET 32 4 KUNTALAAJENNUKSET 4.1 Kuntalaajennuksen aste Oletetaan, että K ja L ovat kuntia, K L, ts. L on kunnan K laajennus(kunta). Tällöin sanotaan, että L on (kunta)laajennus yli K:n, merkitään L/K. Koska K ja L ovat myös renkaita, niin tällöin L (tarkemmin (L, +)) on K-moduli ja siis vektoriavaruus yli kunnan K. Huomaa, että skalaarilla kertominen tarkoittaa tavallista kertolaskua kunnassa L: au = tulo kunnassa L a K, u L. Merkitään tämän vektoriavaruuden dimensiota dim K L:llä. Määritelmä. Kuntalaajennuksen L/K aste [L : K] = dim K L. Kuntalaajennusta sanotaan äärelliseksi tai äärettömäksi sen mukaan, onko sen aste < vai =. Vektoriavaruuksien teoriasta seuraa, että [L : K] = n < L:llä on kanta {u 1,..., u n } K:n yli jokaisella alkiolla u L on yksikäsitteinen esitys n u = a i u i (a i K i). Esimerkki Näytetään, että [L : K] = 1 L = K. i=1 Esimerkki (i) [C : R] = 2, kanta esim. {1, i}. (ii) [R : Q] = (muuten Q:n numeroituvuudesta seuraisi R:n numeroituvuus, siis ristiriita). (iii) [Q(i) : Q] = 2. Esimerkki Jokaisella kunnalla K on laajennuskuntana polynomirenkaan K[x] osamääräkunta { } f(x) K(x) = f(x), g(x) K[x], g(x) nollapolynomi. g(x) Tätä sanotaan rationaalifunktioiden kunnaksi yli K:n. (Tapauksessa K = R kyseessä ovat tavalliset rationaalifunktiot.) Kunta K itse muodostuu niistä rationaalifunktioista, jotka ovat vakioita. Aste [K(x) : K] =, sillä K(x):ssä on mielivaltaisen monen alkion muodostamia lineaarisesti riippumattomia joukkoja, nimittäin {1, x, x 2,..., x n }, n 0.

34 4.1 Kuntalaajennuksen aste 33 Lause 4.1 (Astelukulause). Olkoon L/K kuntalaajennus ja F K F L. Silloin [L : K] = [L : F ] [F : K] (jos aste =, se tulkitaan kaavassa luonnollisella tavalla). sen välikunta, ts. Todistus. 1) Olkoon [L : K] = n <, {u 1,..., u n } L:n kanta K:n yli. Koska F on vektoriavaruutena L:n aliavaruus, niin dim K F dim K L eli [F : K] n. Siis [F : K] <. Tarkastellaan L:n alkion u kantaesitystä u = n a i u i, a i K i. i=1 Koska K F, niin a i F i. Täten {u 1,..., u n } generoi vektoriavaruuden L myös F :n yli. Siis [L : F ] n, erityisesti [L : F ] <. L 2) Oletetaan, että [L : F ] = m < ja [F : K] = r <. Olkoon F m K ja näin ollen joukko r {v 1,..., v m } L:n kanta yli F :n, {w 1,..., w r } F :n kanta yli K:n. Jos u L, niin u = m i=1 b iv i, b i F i. Kirjoitetaan b i = r j=1 c ijw j, c ij K i, j. Tämä antaa u = m i=1 r c ij v i w j, j=1 (1) { v i w j 1 i m, 1 j r } generoi L:n yli K:n. 3) Osoitetaan, että (1) on lineaarisesti riippumaton yli K:n; silloin se on L:n kanta ja siis [L : K] = mr. Päättely on seuraava: d ij v i w j = 0 (d ij K) = ( d ij w j )v i = 0 i,j i j = j d ij w j = 0 i (koska v i :t lin. riippumattomia) = d ij = 0 i, j (koska w j :t lin. riippumattomia). Seuraus Jos [L : K] on alkuluku, niin laajennuksella L/K ei ole aitoja välikuntia, ts. K F L = F = K tai F = L.

35 4.2 Yksinkertainen laajennus Yksinkertainen laajennus Palauta mieleen laajennuskunnan generointi: jos L/K on kuntalaajennus ja S L, niin K(S) = joukon S generoima K:n laajennuskunta L:ssä. Sanotaan myös, että K(S) saadaan liittämällä (adjungoimalla) kuntaan K joukon S alkiot. Yksinkertaisia esimerkkejä tapauksessa L = R: L Q( 2) = { a + b 2 a, b Q }, Q( 3 2) = { a + b c 3 4 a, b, c Q } (jälkimmäinen perustellaan myöhemmin). K(S) Verrattaessa kunnan K laajennuksia käytetään usein seuraavaa triviaalia tosiasiaa: K(S 1 ) K(S 2 ) S 1 K(S 2 ). Täten esimerkiksi K(α, β) = K(γ), kunhan vain α, β K(γ) ja γ K(α, β). Määritelmä. Kunnan K laajennusta F L sanotaan yksinkertaiseksi, jos ρ L : F = K(ρ). Ilmeisesti K(ρ, τ) = (K(ρ))(τ), ja vastaava pätee yleisesti, kun joukko S vain on äärellinen. Äärellisesti generoitu kuntalaajennus voidaan siis muodostaa peräkkäisistä yksinkertaisista laajennuksista. Seuraavassa tutkitaan, mitkä alkiot (L:ssä) muodostavat yksinkertaisen laajennuksen K(ρ). Lemma 4.1. Olkoon L/K kuntalaajennus ja ρ L. Kunnan L osajoukko on L:n alirengas ja siis kokonaisalue. Todistus. Suoraan alirengaskriteeristä. K[ρ] = { f(ρ) f(x) K[x] } Huomautus 4.1. Lemma 4.1 pätee myös, jos K:n tilalla on mikä tahansa (kommutatiivinen) rengas R ( L). Esimerkki Näytetään, että Z[ n ] = { a + b n a, b Z } (n neliövapaa). Tätä joukkoahan on merkitty Z[ n ]:llä aikaisemminkin. Esimerkki Rengas Q[ n ] = { a + b n a, b Q } (n neliövapaa). Perustelu aivan samoin kuin esimerkissä Tässä siis Q( n) = Q[ n ]. Tämä on erikoistapaus tuloksesta, joka on alla lauseessa 4.2. S K

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Algebran ja lukuteorian harjoitustehtävien ratkaisut

Algebran ja lukuteorian harjoitustehtävien ratkaisut Algebran ja lukuteorian harjoitustehtävien ratkaisut Versio 1.0 (27.1.2006 Turun yliopisto Lukuteoria 1. a Tarkistetaan ekvivalenssirelaation ehdot. on refleksiivinen, sillä identiteettikuvaus, id : C

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään Monisteen Esimerkki 2.6.8 Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään I c = {px R pc = 0}. Osoitetaan, että I c on renkaan R ihanne. Ratkaisu: Vakiofunktio 0 R I c joten I c.

Lisätiedot

Matematiikka B2 - Avoin yliopisto

Matematiikka B2 - Avoin yliopisto 6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Cauchyn ja Sylowin lauseista

Cauchyn ja Sylowin lauseista Cauchyn ja Sylowin lauseista Pro gradu-tutkielma Jukka Kuru Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Peruskäsitteet 4 1.1 Funktion käsitteitä........................ 4

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28 14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu,

Lisätiedot

1 Avaruuksien ja lineaarikuvausten suora summa

1 Avaruuksien ja lineaarikuvausten suora summa MAT-33500 Differentiaaliyhtälöt, kevät 2006 Luennot 27.-28.2.2006 Samuli Siltanen 1 Avaruuksien ja lineaarikuvausten suora summa Tämä asialöytyy myös Hirschin ja Smalen kirjasta, luku 3, pykälä 1F. Olkoon

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

ALKULUKUJA JA MELKEIN ALKULUKUJA

ALKULUKUJA JA MELKEIN ALKULUKUJA ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat Kokonaisalue, Integral Domain...

1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat Kokonaisalue, Integral Domain... Sisältö 1 Johdanto 0-4 1.1 Algebralliset luvut............... 0-6 2 Perusteita 0-9 3 Renkaat ja kunnat 0-11 3.1 Kokonaisalue, Integral Domain......... 0-12 3.2 Kunta, Field.................. 0-13 4 Jaollisuus

Lisätiedot

1 Matriisit ja lineaariset yhtälöryhmät

1 Matriisit ja lineaariset yhtälöryhmät 1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä

Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Lukijalle. Modernin algebran alkeita on yleensä tapana opettaa tiukan aksiomaattis abstraktilla

Lukijalle. Modernin algebran alkeita on yleensä tapana opettaa tiukan aksiomaattis abstraktilla Lukijalle Matematiikan opetuksessa käsiteltävä aines voidaan järjestää ainakin seuraavien kolmen periaatteen mukaan: matematiikan historiallinen kehitysjärjestys, matematiikan looginen esitysjärjestys

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jarmo Niemelä Primitiivisistä juurista ja alkuluokkaryhmistä Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 2000 2 TAMPEREEN YLIOPISTO

Lisätiedot

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5

Tyyppi metalli puu lasi työ I 2 8 6 6 II 3 7 4 7 III 3 10 3 5 MATRIISIALGEBRA Harjoitustehtäviä syksy 2014 Tehtävissä 1-3 käytetään seuraavia matriiseja: ( ) 6 2 3, B = 7 1 2 2 3, C = 4 4 2 5 3, E = ( 1 2 4 3 ) 1 1 2 3 ja F = 1 2 3 0 3 0 1 1. 6 2 1 4 2 3 2 1. Määrää

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

1 Jakajat ja jäännökset. on hyvinjärjestetty, eli jokaisessa epätyhjässä joukossa J N on pienin alkio. Otetaan käyttöön merkintä

1 Jakajat ja jäännökset. on hyvinjärjestetty, eli jokaisessa epätyhjässä joukossa J N on pienin alkio. Otetaan käyttöön merkintä LUKUTEORIAA 1 Jakajat ja jäännökset Luonnollisten lukujen joukko N = { 0, 1, 2, 3,... } on hyvinjärjestetty, eli jokaisessa epätyhjässä joukossa J N on pienin alkio. Otetaan käyttöön merkintä Z + = {1,

Lisätiedot

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma Polynomimatriisit Antti Lindberg Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2014 Tiivistelmä: Antti Lindberg, Polynomimatriisit, Matematiikan pro

Lisätiedot

Ratkaisuehdotus 2. kurssikoe

Ratkaisuehdotus 2. kurssikoe Ratkaisuehdotus 2. kurssikoe 4.2.202 Huomioitavaa: - Tässä ratkaisuehdotuksessa olen pyrkinyt mainitsemaan lauseen, johon kulloinenkin päätelmä vetoaa. Näin opiskelijan on helpompi jäljittää teoreettinen

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Hieman joukko-oppia. A X(A a A b A a b).

Hieman joukko-oppia. A X(A a A b A a b). Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei

Lisätiedot

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat

Lisätiedot

Dierentiaaliyhtälöistä

Dierentiaaliyhtälöistä Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................

Lisätiedot

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Oulun yliopisto TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Maisterintutkinnon kypsyysnäyte Laitos: Matemaattisten tieteiden laitos Tekijä (Sukunimi ja etunimet) Isopahkala

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

Kompleksianalyysi, viikko 5

Kompleksianalyysi, viikko 5 Kompleksianalyysi, viikko 5 Jukka Kemppainen Mathematics Division Kompleksiset jonot Aloitetaan jonon suppenemisesta. Määr. 1 Kompleksiluvuista z 1,z 2,...,z n,... koostuva jono suppenee kohti raja-arvoa

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT

SARJAT JA DIFFERENTIAALIYHTÄLÖT SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 43 0.5 0.4 0.3 0.2 0.1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 Kuva 12. Esimerkin 4.26(c kuvauksen

Lisätiedot

2 ALGEBRA I. Sisällysluettelo

2 ALGEBRA I. Sisällysluettelo ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Injektio (1/3) Määritelmä Funktio f on injektio, joss f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f ) Seurauksia: Jatkuva injektio on siis aina joko aidosti kasvava tai aidosti vähenevä Injektiolla on enintään

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Proäärelliset ryhmät ja kuntalaajennukset

Proäärelliset ryhmät ja kuntalaajennukset Proäärelliset ryhmät ja kuntalaajennukset Matti Åstrand Helsinki 25.5.2009 Pro gradu -tutkielma HELSINGIN YLIOPISTO Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY

Lisätiedot

Lyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen

Lyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen yhyt johdatus alkeelliseen lukuteoriaan Esa V. Vesalainen Sisällysluettelo 1 Aritmetiikan peruslause 0 Jakoyhtälö.................................. 0 Jaollisuus.................................. 0 Alkuluvut..................................

Lisätiedot

3. Reaalifunktioiden määräämätön integraali

3. Reaalifunktioiden määräämätön integraali 50 3. Reaalifunktioiden määräämätön integraali Integraalifunktio Derivoinnin käänteistoimituksena on vastata kysymykseen "Mikä on se funktio, jonka derivaatta on f?" Koska vakion derivaatta 0, havaitaan

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Differentiaaliyhtälöt

Differentiaaliyhtälöt Differentiaaliyhtälöt Differentiaaliyhtälöksi (lyh. DY) sanotaan yhtälöä, jossa on tuntemattomana jokin funktio y(x) ja jossa esiintyy sen derivaattoja y, y, y, y (4),... Esimerkiksi y + y = x, y y + y

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

802645S LUKUTEORIA A (5op) Tapani Matala-aho

802645S LUKUTEORIA A (5op) Tapani Matala-aho 802645S LUKUTEORIA A (5op) Tapani Matala-aho 25. lokakuuta 2015 Sisältö 1 Johdanto 3 2 Valittuja kaavoja 4 3 Valittuja jaollisuuden tuloksia 4 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat

Lisätiedot

1. Lineaarinen yhtälöryhmä ja matriisi

1. Lineaarinen yhtälöryhmä ja matriisi I LINEAARISET YHTÄLÖRYHMÄT 1 Lineaarinen yhtälöryhmä ja matriisi Tällä kurssilla käytämme kirjainta K tarkoittamaan reaalilukuja R, kompleksilukuja C tai rationaalilukuja Q (aluksi K = R) Nämä lukujoukot

Lisätiedot

LUKUTEORIAN ALKEET HELI TUOMINEN

LUKUTEORIAN ALKEET HELI TUOMINEN LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

ALGEBRA Tauno Mets ankyl a Marjatta N a at anen 2010

ALGEBRA Tauno Mets ankyl a Marjatta N a at anen 2010 ALGEBRA Tauno Metsänkylä Marjatta Näätänen 2010 c Tauno Metsänkylä ja Marjatta Näätänen ALGEBRA Tauno Metsänkylä Marjatta Näätänen Esipuhe Tämä kirja on syntynyt toisen tekijän(t.m.) Turun yliopistossa

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5...

Calkinin-Wiln jono 1/2 2/2 3/2 4/2 5/2 6/2... 1/3 2/3 3/3 4/3 5/3 6/3... 1/4 2/4 3/4 4/4 5/4 6/4... 1/5 2/5 3/5 4/5 5/5 6/5... Calkinin-Wiln jono Funktio f : X Y on bijektio, jos sillä on käänteisfunktio f : Y X. Joukko X on äärellinen, jos se on thjä tai jos on olemassa bijektio f : X {,,,..., n}. Joukko X on numeroituva, jos

Lisätiedot

Matematiikka B3 - Avoin yliopisto

Matematiikka B3 - Avoin yliopisto 2. heinäkuuta 2009 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Lisäharjoitustehtävä Kurssin sisältö (1/2) 1. asteen Differentiaali yhtälöt (1.DY) Separoituva Ratkaisukaava Bernoyulli

Lisätiedot

Induktio, jonot ja summat

Induktio, jonot ja summat Induktio, jonot ja summat Matemaattinen induktio on erittäin hyödyllinen todistusmenetelmä, jota sovelletaan laajasti. Sitä verrataan usein dominoefektiin eli ketjureaktioon, jossa ensimmäisen dominopalikka

Lisätiedot

3.3 Funktion raja-arvo

3.3 Funktion raja-arvo 3.3 Funktion raja-arvo Olkoot A ja B kompleksitason joukkoja ja f : A B kuvaus. Kuvauksella f on pisteessä z 0 A raja-arvo c, jos jokaista ε > 0 vastaa δ > 0 siten, että 0 < z z 0 < δ ja z A f(z) c < ε.

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot 3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,

Lisätiedot

Analyysi I. Visa Latvala. 3. joulukuuta 2004

Analyysi I. Visa Latvala. 3. joulukuuta 2004 Analyysi I Visa Latvala 3. joulukuuta 004 95 Sisältö 6 Kompleksiluvut 96 6.1 Yhteen- ja kertolasku.............................. 96 6. Napakoordinaattiesitys............................. 10 96 6 Kompleksiluvut

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot