MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen"

Transkriptio

1 MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To pidetyt harjoitukset. Tehtävä 1. Onko joukon X potenssijoukon P (X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen suhteen? Tehtävä 2. Onko laskutoimituksilla ja neutraalialkiot? Tehtävä 3. Onko jokaisella A P (X) käänteisalkiot laskutoimitusten ja suhteen? Tehtävä 4. Onko joukon P (X) laskutoimitus \ assosiatiivinen? Tehtävä 5. Onko matriisien yhteenlasku assosiatiivinen joukossa M 2 R? Onko se kommutatiivinen? Tehtävä 6. Onko matriisien kertolasku assosiatiivinen joukossa M 2 R? Onko se kommutatiivinen? Tehtävä 7. Onko matriisien yhteenlaskulla neutraalialkio joukossa M 2 R? Onko matriisien kertolaskulla neutraalialkio joukossa M 2 R? Tehtävä 9. Olkoon X, ja olkoon joukon X laskutoimitus. Osoita: Jos on alkiot e X ja e X siten, että e g = g ja g e = g kaikilla g X, niin e = e. 1

2 To pidetyt harjoitukset. Tehtävä 8. Olkoon Γ = {A M 2 R : deta = 1}. Osoita, että matriisien kertolasku indusoi laskutoimituksen joukossa Γ. Miten yhteenlasku käyttäytyy? Tehtävä 10. Olkoon E relaatio joukossa R 2 siten, että Osoita, että E on ekvivalenssirelaatio. Tehtävä 11. (x, y)r(z, w) x 2 + y 2 = z 2 + w 2. Olkoon ekvivalenssirelaatio joukossa A. Olkoot x, y A. Osoita, että ekvivalenssiluokille pätee: Jos [x] [y], niin [x] = [y]. Tehtävä 12. Osoita, että tekijälaskutoimitus on assosiatiivinen, jos alkuperäinen laskutoimitus on assosiatiivinen. Peano 1. Hahmottele tapaa, miten voisit todistaa luonnollisten lukujen summan oleva vaihdannainen ja liitännäinen. Peano 2. Määrittele ensin parillinen luonnollinen luku ja osoita sitten induktiolla, että n 2 + n on parillinen, kun n on luonnollinen luku ja n 0. 2

3 To pidetyt harjoitukset. Tehtävä 13. Olkoon relaatio joukossa N N annettu ehdolla (m, n) (p, q) jos, ja vain jos m + q = n + p. Todista, että on ekvivalenssirelaatio. Tehtävä 14. Määritellään joukossa N N laskutoimitus ehdolla (m, n) (p, q) = (mp + nq, mq + np). Todista, että saatu laskutoimitus on yhteensopiva tehtävän 13 relaation kanssa. [Vihje: Kun m, n N ja n m, on yhtälöllä n + x = m yksikäsitteinen ratkaisu N : merkitään sitä m n, ja oletetaan tunnetuksi näin saadun rajoitetun erotuksen tutut ominaisuudet. Huomaa, että silloin (m, n) (m n, 0).] Tehtävä 15. Olkoon kuvaus i : N Z sellainen, että i(n) = [(n, 0)] aina, kun n on luonnollinen luku. Todista, että (a) i on injektio ja (b) aina, kun m, n N on Tehtävä 16. i(m + n) = i(m) + i(n) ja i(mn) = i(m)i(n). Olkoon kuvaus i : N Z kuten tehtävä 15. Todista, että jokainen kokonaisluku on muotoa i(n) tai i(n) jollakin n N. Tehtävä 17. Osoita, että joukon Z Z ekvivalenssirelaatio on yhteensopiva laskutoimitusten (a, b) (c, d) jos, ja vain jos ad = bc (a, b) (c, d) = (ad + bc, bd) ja (a, b)(c, d) = (ac, bd) kanssa, jolloin voidaan määritellä ekvivalenssiluokkien joukossa operaatiot ja kaavoilla Tehtävä 18. [(a, b)] [(c, d)] = [(ad + bc, bd)] ja [(a, b)] [(c, d)] = [(ac, bd)] Todista, että rationaalilukujen kertolasku on distributiivinen yhteenlaskun suhteen. 3

4 To pidetyt harjoitukset. Tehtävä 19. Todista, että SL 2 R varustettuna matriisien kertolaskulla on ryhmä. Tehtävä 20. Todista, että jos h : E E on surjektiivinen homomorfismi ja E:llä on neutraalialkio e, niin h(e) on E :n neutraalialkio. Tehtävä 21. Etsi vastaesimerkki tilanteesta, jossa edellinen tulos ei ole voimassa, kun oletuksesta h : E E on surjektiivinen luovutaan ja oletetaan vain h : E E on homomorfismi. Tehtävä 22. Olkoot G ja G ryhmiä ja h : G G homomorfirmi. Todista, että h(e) on G :n neutraalialkio, kun e on G:n neutraalialkio. Tehtävä 23. Onko edellinen väite voimassa, jos luovutaan oletuksesta G on ryhmä? Tehtävä 24. Olkoon G ryhmä. Todista, että aina, kun a, b, c G on voimassa Tehtävä 25. jos ab = ac, niin b = c, ja jos ba = ca, niin b = c. Olkoon A joukko, jossa on assosiatiivinen laskutoimitus sekä neutraalialkio e A tämän laskutoimituksen suhteen. Todista: Jokaisella yhtälöllä ax = b ja ya = b on ratkaisu joss A on ryhmä. Tehtävä 26. Todista Lemman 3.4 laskusäännöt. Tehtävä 27. Olkoon G ryhmä ja Aut(G) G:n automorfismien joukko varustettuna laskutoimituksella (kuvausten yhdistäminen). Osoita, että Aut(G) on ryhmä. 4

5 Tehtävä 28. Reaalifunktio f : R R on tunnetusti kasvava jos f(x) f(y) aina, kun x y. Muodostavatko kasvavat bijektiot ryhmän, kun laskutoimituksena on (kuvausten yhdistäminen)? Entä muodostavatko bijektiiviset, vähenevät funktiot ryhmän, laskutoimituksena? Monotonisten funktioiden joukko on kasvavien funktioiden joukon ja vähenevien funktioiden joukon unioni. Muodostavatko monotoniset bijektiot ryhmän, laskutoimituksena? Tehtävä 29. Oletetaan, että X, Y ja olkoon f : X Y bijektio. Todista, että permutaatioryhmät S(X) ja S(Y ) ovat isomorfiset. Tehtävä 30. Olkoot G ja G isomorfisia ryhmiä. Todista: jos G on kommutatiivinen, niin G on kommutatiivinen. Tehtävä 31. Muodostukoot joukon H 3 alkiot muotoa 1 x z 0 1 y olevista reaalimatriiseista. Todista, että saadaan ryhmä, kun laskutoimituksena on matriisien kertolasku. Tehtävä 32. Olkoon G reaalisten, kolmipaikkaisten vektorien ryhmä ja laskutoimituksena vektorien yhteenlasku. Onko kuvaus h : G H 3, 1 x z h(x, y, z) = 0 1 y ryhmäisomorfismi? Tehtävä 33. Olkoon G äärellinen ryhmä. Todista, että G:n laskutaulun jokainen alkio esiintyy jokaisella vaakarivillä täsmälleen yhden kerran. Miten on pystyriven laita? 5

6 Tehtävä 34. Olkoon G ryhmä. Määritellään relaatio R joukossa G siten, että Onko R ekvivalenssirelaatio?. Tehtävä 35. arb joss a = gbg 1 jollakin g G. Määritellään reaalilukujen R joukossa laskutoimitus kaavalla x y = 3 x 3 + y 3. Todista, että (a) (R, ) on ryhmä, (b) (R, ) ja (R, +) ovat ryhminä isomorfiset. 6

7 To pidetyt harjoitukset. Tehtävä 36. Määritä kaikki ryhmien Z 6 ja Z 7 aliryhmät. Tehtävä 37. Osoita, että ryhmät Z 4 ja Z 2 Z 2 eivät ole isomorfisia (vihje: osoita, että toinen niistä on syklinen, mutta toinen ei ole). Tehtävä 38. Osoita, että ryhmät Z 6 ja Z 2 Z 3 ovat isomorfisia (vihje: osoita, että molemmat ovat syklisiä, ja muodosta sitten isomorfinen kuvaus). Tehtävä 39. Osoita, että aliryhmien leikkaus on aliryhmä eli jos G on ryhmä ja ja H i G, i Γ, niin i Γ H i G. Tehtävä 40. Todista Proposition 4.8 jälkimmäinen osa. Tehtävä 41. Määritä matriisien A, B, C SL 2 Z kertaluvut, kun ( ) ( ) ( A =, B = ja C = Tehtävä 42. Olkoon G ryhmä ja H sen aito aliryhmä. Määrittellään kaksi relaatiota G:ssä s.e. x v y x 1 y H ja x y yx 1 H. Todista, että relaatiot ovat ekvivalenssirelaatioita. Tehtävä 43. Olkoon G ryhmä ja H sen aito aliryhmä. Osoita, etta tekijäjoukkojen välinen kuvaus b : G/H H\G siten, että b(ah) = Ha 1 on bijektio. Tehtävä 46. Ryhmän G keskus on G:n osajoukko Z = {z G; zg = gz aina, kun g G} varustettuna indusoidulla laskutoimituksella. Todista, että Z on kommutatiivinen normaali aliryhmä. ). 7

8 Tehtävä 47. Todista Proposition 4.17 osa (2). Tehtävä 48. Todista Propositio Tehtävä 49. Luennolla tutkimme yleistä lineaarista ryhmää GL n R s.o. reaalisia n n matriiseja, joiden determinatti ei ole = 0; se on ryhmä laskutoimituksena matriisien kertolasku. Asetataan O(n) = {A GL n R; AA T = I}. Saadaanko aito normaali aliryhmä? Tehtävä 50. Todista, että jokainen syklinen ryhmä on isomorfinen joko ryhmän Z tai jonkin jakojäännösryhmän Z n, n N kanssa. Tehtävä 51. Olkoon G äärellinen ryhmä. Olkoot K < H < G. Osoita, että indekseille pätee: [G : K] = [G : H][H : K]. Tehtävä 52. Olkoon G ryhmä. Olkoot K < H < G siten, että [G : H] <, [H : K] <. Osoita, että indekseille pätee: [G : K] = [G : H][H : K]. Tehtävä 54. Todista, että jokaisen syklisen ryhmän tekijäryhmä on syklinen. Tehtävä 55. Olkoon G ryhmä, ja olkoon ekvivalenssirelaatio, joka on yhteensopiva ryhmän G laskutoimituksen kanssa. Osoita, että neutraalialkion e G määräämä ekvivalenssiluokka [e] on ryhmän G normaali aliryhmä. Tehtävä 56. Muodostukoon joukko G = {e, a, b, c, d, f} seuraavista 2 2 matriiseista ( ) ( ) ( ) e =, a =, b =, ( 0 1 ) ( 1 0 ) 1 ( 1 ) c =, d =, f =

9 Muodosta laskutaulu ja (a) totea, ett saadaan ryhmä. (b) Luettele kaikki ne aliryhmät, jotka ovat isomorfisia ryhmän Z 2 kanssa. (c) Onko G kommutatiivinen? 9

10 Huom! Toisen välikokeen tenttialue alkaa tästä! To pidetyt harjoitukset. Tehtävä 58. Osoita, että kokonaislukujen kertolasku on yhteensopiva kongruenssin (mod p) kanssa. Osoita, että jakojäännösryhmä Z p varustettuna kokonaislukujen yhteen- ja kertolaskujen tekijälaskutoimituksilla on kommutatiivinen rengas. Tehtävä 59. Olkoon X joukko. Määritellään joukkojen A, B P(X) symmetrinen erotus asettamalla A B = (A \ B) (B \ A). Osoita, että (P(X),, ) on rengas. Onko se kommutatiivinen? Tehtävä 60. Olkoon R rengas. Osoita, että (1) x( y) = ( x)y = (xy) aina, kun x, y R, (2) x(y z) = xy xz ja (y z)x = yx zx aina, kun x, y, z R, (3) jos joukossa R on ainakin kaksi eri alkiota, niin 0 1. Tehtävä 61. Olkoon (A, +) kommutatiivinen ryhmä, ja olkoon Hom(A, A) = {φ : A A : φ on homomorfismi}. Todista, että joukon Hom(A, A) laskutoimitus, joka määritellään asettamalla on assosiatiivinen ja kommutatiivinen. Tehtävä 62. Todista Propositio 5.5. Tehtävä 63. (φ + φ )(a) = φ(a) + φ (a), Olkoon R kommutatiivisen renkaan R yksiköiden joukko. Osoita, että R varustettuna kertolaskun indusoimalla laskutoimituksella on ryhmä. Tehtävä 64. Määritellään joukossa Z 3 yhteenlasku komponenteittain ja kertolasku asettamalla (a, b, c)(x, y, z) = (ax, bx + cy, cz) aina, kun (a, b, c), (x, y, z) Z 3. Onko kertolaskuoperaatio kommutatiivinen? Onko Z 3 varustettuna näillä laskutoimituksilla rengas? 10

11 Tehtävä 65. Olkoot R = {f : [0, 1] R} S = {g : [0, 2] R} varustettu kuvausrenkaiden laskutoimituksilla. Ovatko renkaat R ja S isomorfisia? Tehtävä 66. Olkoon R rengas, ja olkoon S R ja olkoon joukossa S ainakin 2 eri alkiota. Osoita, että S on renkaan R alirengas, jos ja vain jos (i) x + y S ja xy S aina, kun x, y S, ja (ii) 1 S. Tehtävä 67. Olkoon φ : R R rengashomomorfismi. Olkoon S renkaan R alirengas. Osoita, että φ 1 (S ) on renkaan R alirengas. Tehtävä 68. Olkoon K kunta, ja olkoon K sen alikunta. Osoita, että alikunnan K yhteenlaskun ja kertolaskun neutraalialkiot ovat samat kuin kunnan K. Tehtävä 69. Osoita, että kunnan K osajoukko K on K:n alikunta, jos ja vain jos (i) joukossa K on ainakin 2 eri alkiota, (ii) a b K aina, kun a, b K, ja (iii) ab 1 K aina, kun a, b K, b 0. 11

12 To pidetyt harjoitukset Tehtävä 70. Osoita, että alkulukuja on äärettömän monta. Tehtävä 71. Osoita, että jokainen luonnollinen luku n 2 voidaan esittää alkulukujen tulona. Tehtävä 72. Todista, että luku n N, n 2 ei ole alkuluku jos, ja vain jos on olemassa alkuluku p, jolle p 2 n, ja joka jakaa n:n. Tehtävä 73. Todista: alkio [a] Z n, 0 < a < n, on nollan jakaja, jos ja vain jos syt(a, n) 1. Tehtävä 74. Määritä renkaiden Z 6 ja Z 8 ja Z 101 yksiköt. Tehtävä 75. Olkoon p N. Olkoon a Z. Millä ehdolla [a] on ryhmän Z p virittäjä? Tehtävä 76. (a) Mitkä alkiot ovat nollan jakajia renkaassa Z 9? (b) Mitkä alkiot ovat yksiköitä renkaassa Z 9? (c) Onko renkaan Z 9 yksiköiden ryhmä (tulo-operaation suhteen) syklinen? (Vihje: kirjoita auki kertolaskutaulu!) 12

13 Viikon 16 harjoitukset Tehtävä 77. Olkoon R rengas, ja olkoon I R. Osoita, että (1) I on vasen ideaali jos, ja vain jos xa + x a I kaikilla x, x R ja a, a I. (2) I on kaksipuolinen ideaali, jos, ja vain jos se on vasen ideaali ja oikea ideaali. Tehtävä 78. Olkoon φ : R S rengashomomorfismi. Olkoon I renkaan R vasen ideaali. Osoita, että φ(i) on renkaan φ(r) vasen ideaali. Tehtävä 79. Olkoon R rengas. Olkoot a 1, a 2,, a n R. Osoita, että (a 1, a 2,, a n ) = {x 1 a 1 + x 2 a x n a n x 1, x 2,, x n R} on renkaan R vasen ideaali. Tehtävä 80. Olkoot L ja M renkaan R vasempia ideaaleja. Olkoot ja LM = {x 1 y 1 + x 2 y x n y n x i L, y i M, n N } L + M = {x + y x L, y M}, Osoita, että LM ja L + M ovat renkaan R vasempia ideaaleja. Tehtävä 81. Olkoot L ja M renkaan R vasempia ideaaleja. (1) Osoita, että L M on renkaan R vasen ideaali. (2) Osoita, että jos I i, i Γ on renkaan R vasen ideaali (Γ jokin ideksijoukko), niin i Γ I i on renkaan R vasen ideaali. (3) Osoita, että LM L M, jos R on kommutatiivinen. Tehtävä 82. Olkoon R rengas, ja olkoon I sen kaksipuolinen ideaali. Osoita, että R/I on rengas. 13

14 Tehtävä 83. Olkoon p alkuluku. Olkoon Olkoon edelleen R = { m n syt(m, n) = 1 ja n ei ole jaollinen luvulla p} I = { m n R m on jaollinen luvulla p} Osoita, että R on kommutatiivinen rengas, ja että I on renkaan R ideaali. (Rationaaliluku m n on supistetussa muodossa, jos syt(m, n) = 1.) Tehtävä 84. Todista renkaiden isomorfismilause. Tehtävä 85. Olkoot K ja K kuntia. Olkoon φ : K K kuntahomomorfismi. Osoita, että φ on injektio. 14

15 Viikon 17 harjoitukset Tehtävä 101. Osoita, että polynomi P (X) = 1 2X on yksikkö renkaassa Z 16 [X]. (Vihje: Etsi Z 16 [X]:n polynomi Q(X) jolle P(X)Q(X) = 1.) Tehtävä 102. Olkoon p alkuluku. Montako juurta polynomilla X p X Z p [X] on? (Vihje: Tutki - vaikka verkosta - mitä sanoo Fermat n pieni lause.) Tehtävä 103. Olkoon K kokonaisalue. Olkoot P (X), Q(X) K[X]. Osoita: Jos P (X) Q(X) ja Q(X) P (X), niin on olemassa kokonaisalueen K nollasta poikkeva alkio u jolle P (X) = uq(x). Tehtävä 104. Olkoon R kommutatiivinen rengas. Olkoot A(X), B(X) R[X] siten, että B(X) 0 ja B(X):n korkeimman asteen termin kerroin on yksikkö. Osoita, että tällöin on olemassa polynomit P (X), J(X) R[X], joille A(X) = Q(X)B(X)+ J(X) ja degj(x) < degb(x). Tehtävä 105. Olkoon K kokonaisalue. Olkoon P (X) K[X] polynomi, ja olkoot c 1,, c k K polynomin P (X) juuria. Osoita, että on olemassa polynomi Q(X) K[X], jolle P (X) = (X c 1 )(X c 2 ) (X c k )Q(X). Tehtävä 106. Olkoot P (X), Q(X) Z 8 [X], P (X) = 3 + 2X + 4X 2 + 2X 3 ja Q(X) = 4 + 4X + 4X 2 + 4X 3 + 4X 4. (a) Kerro Q(X) polynomilla P (X) ja (b) jaa Q(X) polynomilla P (X). Tehtävä 107. Olkoon K kunta. Polynomi P (X) K[X] on jaoton, jos ei ole olemassa polynomeja A(X), B(X) K[X], joille dega(x), degb(x) > 0 siten, että P (X) = A(X)B(X). Osoita, että toisen asteen polynomi P (X) K[X] on jaoton jos, ja vain jos sillä ei ole juurta kunnassa K. Tehtävä 108. Onko polynomirenkaan Z 5 [X] polynomi (a) X 2 2 (b) X jaoton? 15

16 Tehtävä 109. Jaa polynomi P (X) = X 3 + 2X 2 + 3X + 2 polynomilla Q(X) = 2X 2 + 3X + 1 (a) polynomirenkaassa Q[X] ja (b) polynomirenkaassa Z 7 [X]. 16

17 Viikon 18 harjoitukset Tehtävä 110. Todista, että (a) joukon A esijärjestys R generoi ekvivalenssin joukkoon A, kun asetataan x y joss xry ja yrx ja että (b) tekijäjoukkoon A/ generoituu järjestysrelaatio ehdolla Tehtävä 111. [x] [y] joss xry. Todista, että hilan L hilaoperaatiot ja toteuttavat seuraavat ehdot aina, kun x, y, z L: x x = x x x = x x y = y x x y = y x x (y z) = (x y) z x (y z) = (x y) z x = x (x y) = x (x y) x y joss x y = x joss x y = y. Tehtävä 112. Todista: hilassa L ehdot (i) a (b c) = (a b) (a c) ja (ii) a (b c) = (a b) (a c) implikoivat toinen toisensa eli jos (i) on voimassa kaikilla a, b, c L, niin myös (ii) on voimassa ja kääntäen. Tehtävä 113. Osoita totuustaulujen avulla, että kaikki logiikan aksioomat ovat tautologioita. Tehtävä 114. Jos kaikkien logiikan lauseiden joukossa F määritellään relaatio R s.e. αrβ joss (αimpβ), on R refleksiivinen. Todista, että se on myös transitiivinen. Tehtävä 115. Todista, että Lindenbaum-Tarski algebrassa (F/,,, ) luokka [αjaβ] on luokkaparin {[α], [β]} suurin alaraja. 17

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Rengashomomorfismi ψ :

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Algebra kl Tapani Kuusalo

Algebra kl Tapani Kuusalo Algebra kl. 2010 Tapani Kuusalo Sisältö Luku 1. Luonnolliset luvut 1 Luku 2. Laskutoimitukset 4 1. Laskutoimitusten yleiset ominaisuudet 4 2. Neutraali- ja käänteisalkiot 6 3. Indusoidut laskutoimitukset,

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Esko Turunen Luku 9. Logiikan algebralisointi

Esko Turunen Luku 9. Logiikan algebralisointi Logiikan algebralisointi Tässä viimeisessä luvussa osoitamme, miten algebran peruskäsitteitä käytetään logiikan tutkimuksessa. Käsittelemme vain klassista lauselogiikkaa ja sen suhdetta Boolen algebraan,

Lisätiedot

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä 800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio

Lisätiedot

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a).

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a). ALGEBRA 2007 15 Todistus. Mieti, miksi kuvaus on hyvin määritelty! Surjektiivisuus on selvää. Lisäksi φ(xkyk) = φ(xyk) = xyh = xhyh = φ(xk)φ(yk), joten kuvaus on homomorfismi. Jos y H, niin φ(yk) = yh

Lisätiedot

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20 Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

Algebran ja lukuteorian harjoitustehtävien ratkaisut

Algebran ja lukuteorian harjoitustehtävien ratkaisut Algebran ja lukuteorian harjoitustehtävien ratkaisut Versio 1.0 (27.1.2006 Turun yliopisto Lukuteoria 1. a Tarkistetaan ekvivalenssirelaation ehdot. on refleksiivinen, sillä identiteettikuvaus, id : C

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

ALGEBRA KEVÄT 2011 JOUNI PARKKONEN

ALGEBRA KEVÄT 2011 JOUNI PARKKONEN ALGEBRA KEVÄT 2011 JOUNI PARKKONEN Sisältö 1. Laskutoimitukset 1 2. Kompleksiluvut 8 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut 15 4. Ryhmät 20 5. Aliryhmät 26 6. Aärelliset permutaatioryhmät

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Algebra, 1. demot, 18.1.2012

Algebra, 1. demot, 18.1.2012 Algebra, 1. demot, 18.1.2012 1. Mielivaltaisen joukon X potenssijoukko eli kaikkien osajoukkojen joukko P(X) määritellään asettamalla P(X) = {A A X}. Päteekö ehto X P(X) a) aina, b) ei koskaan tai c) joskus?

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 Olen valinnut kunkin luvun teemaksi yhden ryhmän. Ensimmäisen luvun teema on pienin epätriviaali ryhmä, eli ryhmä, jossa on kaksi alkiota. Merkitsen

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016 Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang 2187044 Matematiikan yksikkö Oulun yliopisto 2016 Sisältö Johdanto 2 1 Esitietoja 3 1.1 Ryhmät.............................. 3 1.1.1 Ryhmä ja aliryhmä....................

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

Äärellisten mallien teoria

Äärellisten mallien teoria Äärellisten mallien teoria Harjoituksen 2 ratkaisut Tehtävä 1 Olkoon X = {a, b, c} kolmen alkion joukko. a) Mikä on joukon X eri laskutoimitusten lukumäärä? b) Kuinka moni näistä laskutoimituksista on

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Algebra. Jouni Parkkonen. Lukijalle

Algebra. Jouni Parkkonen. Lukijalle Algebra Jouni Parkkonen Lukijalle Tämä moniste perustuu kevään 2007 Algebran kurssiin. Koko materiaali on mahdollista käydä 12 viikon kurssilla, mahdollisesti algebran peruslauseen todistusta lukuunottamatta.

Lisätiedot

Johdatus p-adisiin lukuihin

Johdatus p-adisiin lukuihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anne Keskinen Johdatus p-adisiin lukuihin Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Eräitä ratkeavuustarkasteluja

Eräitä ratkeavuustarkasteluja Eräitä ratkeavuustarkasteluja Pro gradu-tutkielma Milla Jantunen 2124227 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö 1 Ryhmät ja aliryhmät 3 1.1 Ryhmä...............................

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 94 KERTOMAT, BINOMIKERTOIMET Kertoma/Factorial Määritellään

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut

Lisätiedot

Algebra I, harjoitus 8,

Algebra I, harjoitus 8, Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio

Lisätiedot

Kokonaislukuoptimointi

Kokonaislukuoptimointi Kokonaislukuoptimointi Algebrallisen geometrian sovelluksia Sisältö Taustaa algebrallisesta geometriasta Gröbnerin kanta Buchbergerin algoritmi Kokonaislukuoptimointi Käypyysongelma Algoritmi ratkaisun

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

11. Jaollisuudesta. Lemma Oletetaan, että a, b R.

11. Jaollisuudesta. Lemma Oletetaan, että a, b R. 11. Jaollisuudesta Edellisen luvun esimerkissä tarvittiin tietoa erään polynomin jaottomuudesta. Tämä on hyvin tavallista kuntalaajennosten yhteydessä. Seuraavassa tarkastellaan hieman jaollisuuskäsitettä

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

2 Renkaat ja kunnat. toteutuvat: 1. pari (K, +) on Abelin ryhmä, jonka neutraalialkio on 0 K,

2 Renkaat ja kunnat. toteutuvat: 1. pari (K, +) on Abelin ryhmä, jonka neutraalialkio on 0 K, 1 Ryhmät Olkoot S on joukko ja X S. Jos kuvaus : S S S, (x, y) x y toteuttaa ehdon x y X kaikilla x, y X, niin sanotaan, että binäärinen operaatio on suljettu joukon X suhteen. Määritelmä 1. Olkoot G joukko

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

Peruskäsitteet. 0. Kertausta

Peruskäsitteet. 0. Kertausta Peruskäsitteet 0. Kertausta Tässä luvussa käydään läpi sellaiset peruskäsitteet ja merkinnät, joiden oletetaan olevan tuttuja aiemmalta algebran kurssilta. 0.1. Laskutoimitukset. Olkoon X joukko. Joukon

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

Teemu Ojansivu Polynomien resultanteista

Teemu Ojansivu Polynomien resultanteista PRO GRADU -TUTKIELMA Teemu Ojansivu Polynomien resultanteista TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Helmikuu 2015 Tampereen yliopisto Matematiikan ja tilastotieteen laitos Ojansivu,

Lisätiedot

Ratkeavista ryhmistä: teoriaa ja esimerkkejä

Ratkeavista ryhmistä: teoriaa ja esimerkkejä Ratkeavista ryhmistä: teoriaa ja esimerkkejä Pro Gradu-tutkielma Lauri Kangas 2192712 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2015 Sisältö 1 Perusteita 3 1.1 Ryhmät ja aliryhmät.......................

Lisätiedot

Lukualueet Matemaattiset tieteet Oulun yliopisto 2017

Lukualueet Matemaattiset tieteet Oulun yliopisto 2017 Lukualueet Matemaattiset tieteet Oulun yliopisto 2017 Sisältö 1 Johdanto 5 1.1 Joukko-opin kertausta...................... 6 1.2 Funktioiden kertausta....................... 7 1.3 Relaatioista............................

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

1. Tekijärakenteet. 1. R on refleksiivinen, eli xrx. 2.R on symmetrinen, eli josxry, niinyrx. 3.R on transitiivinen, eli josxry jayrz, niinxrz.

1. Tekijärakenteet. 1. R on refleksiivinen, eli xrx. 2.R on symmetrinen, eli josxry, niinyrx. 3.R on transitiivinen, eli josxry jayrz, niinxrz. 1. Tekijärakenteet Tässä osassa tarkastellaan tekijärakenteita, kuten tekijäryhmiä ja tekijärenkaita, lähtien liikkeelle mahdollisimman yleisistä periaatteista. Tekijärakenteiden ajatuksena on päästä tarkastelemasta

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot