Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Koko: px
Aloita esitys sivulta:

Download "Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara"

Transkriptio

1 Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004

2 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1

3 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen yksinkertaisia asioita ymmärtää ja määritellä, mutta siitä huolimatta ne tuottavat opiskelijoille vaikeuksia vuosi vuoden jälkeen. Yksinkertaisuudestaan huolimatta asia on kuitenkin tärkeä jo sen keskeisyyden (ei pelkästään algebrassa vaan myös muualla matematiikassa) vuoksi, ja vasta funktioiden syvällisen ymmärtämisen jälkeen voi opiskelija pystyä omaksumaan mitään monimutkaisempaa tietoa. 2

4 2 Kuvauksista Kuvausten yleinen teoria on algebrassa, kuten muissakin matematiikan suuntauksissa, keskeisellä sijalla. Erityisesti ryhmäteorian oppiminen vaatii vankan otteen kuvauksista. Määritelmä 2.1. Olkoot X ja Y joukkoja. Kuvaus (tai funktio) f : X Y on sääntö, joka yhdistää jokaisen joukon X alkion x johonkin joukon Y yksikäsitteiseen alkioon f(x). Määritelmä 2.2. Kuvaus f : X Y on injektio, jos f kuvaa erilliset joukon X alkiot erillisiksi joukon Y alkioiksi, ts. jos x 1 x 2, niin f(x 1 ) f(x 2 ) ts. jos f(x 1 ) = f(x 2 ), niin x 1 = x 2. Esimerkki. Olkoot f, g : R R. Nyt f(x) = 2x + 1 on injektio, mutta g(x) = x 2 ei ole. Määritelmä 2.3. Kuvaus f : X Y on surjektio, jos jokainen joukon Y alkio y voidaan esittää joukon X alkion kuvana ts. Kaikille y Y on olemassa sellainen x X, että f(x) = y. Esimerkki. Jos f : N N, niin f(x) = 2x + 1 ei ole surjektio. Kuitenkin, jos f : R R, niin f(x) on surjektio. Määritelmä 2.4. Kuvaus f : X Y on bijektio, jos f on injektio ja surjektio. Esimerkki. f(x) = 2x + 1, kun f : R R, on bijektio. f(x) = e x, kun f : R R, ei ole bijektio (ei ole surjektio). Huomautus. Jotta kaksi kuvausta f : X Y ja g : X Y ovat samat, tulee olla f(x) = g(x) kaikilla x X. Lisäksi kuvaukset f : X Y ja g : Z Y voivat olla samat ainoastaan, jos X = Z. Useasti Algebrassa ollaan kiinnostuneita tapauksesta, jossa molemmilla joukoilla X ja Y on äärellinen määrä alkioita. Tällaisissa tapauksissa kuvausta ei yleensä määritellä jonkin kaavan avulla vaan antamalla sen kaikille arvoille vastaava kuvaus. Esimerkki. Olkoon X joukko {a, b} ja Y joukko {u, v}. Nyt jokaista kuvausta f : X Y varten täytyy tuntea f(a) ja f(b). On olemassa neljä tällaista kuvausta: 3

5 f 1 (a) = u, f 1 (b) = v; f 2 (a) = v, f 2 (b) = u; f 3 (a) = u, f 3 (b) = u sekä f 4 (a) = v, f 4 (b) = v. Näistä kuvauksista f 3 ja f 4 eivät ole selvästikään injektioita tai surjektioita kun taas f 1 ja f 2 ovat molemmat bijektioita. Määritelmä 2.5. Olkoot f : X Y ja g : Y Z funktioita. Yhdistetty funktio g f : X Z on määritelty g f(x) = g(f(x)) kaikille x X. Esimerkki. Olkoot f, g : R R sellaisia funktioita, että f(x) = 2x + 1 ja g(x) = e x. Siispä f g(x) = f(g(x)) = 2e x + 1 kun taas g f(x) = g(f(x)) = e 2x+1. Lause 2.1. Olkoot f : X Y, g : Y Z ja h : Z W kuvauksia. Yhdistetyt kuvaukset (h g) f : X W ja h (g f) : X W ovat samat. Todistus. Määritelmän nojalla kaikille x X pätee ((h g) f)(x) = (h g)(f(x)) = h(g(f(x))) = h(g f(x)) = (h (g f))(x). Siis kuvaukset (h g) f ja h (g f) ovat samat. Määritelmä 2.6. Jokaiselle joukolle X identiteettikuvaus on kuvaus I X : X X, joka määritellään I X (x) = x kaikille x X. Nyt on selvää, että jos f : X Y on mikä tahansa kuvaus, niin f I X = f ja I Y f = f. Määritelmä 2.7. Olkoon f : X Y kuvaus. Kuvauksella f on käänteiskuvaus jos on olemassa sellainen kuvaus g : Y X, että g f = I X ja f g = I Y. Käänteiskuvausta merkitään f 1. Esimerkki. Funktion f : R R, f(x) = 2x + 1 käänteisfunktio on g(x) = x 1 2 sillä f(g(x)) = x ja g(f(x)) = x. Lause 2.2. Jos kuvauksella f : X Y on käänteiskuvaus, tämä käänteiskuvaus on yksikäsitteinen. Todistus. Oletetaan, että g ja h ovat molemmat funktion f käänteiskuvauksia. Siis g f = h f = I X ja f g = f h = I Y, 4

6 joten h = h I Y = h (f g) = (h f) g = I X g = g, kuten vaadittiin. Lause 2.3. Kuvauksella f : X Y on käänteiskuvaus jos ja vain jos f on bijektio. Todistus. Oletetaan aluksi, että f on bijektio. Olkoon g : Y X sellainen kuvaus, että g(y) = x jos ja vain jos f(x) = y. Nyt g on kuvaus, sillä joukossa X on korkeintaan yksi alkio, jonka g(y) määrää (f on injektio), mutta jokainen joukon Y alkio on yhdistetty johonkin joukon X alkioon x (koska f on surjektio). Määritelmästä seuraa, että f g ja g f ovat molemmat identiteettikuvauksia. Oletetaan nyt, että funktiolla f on käänteiskuvaus f 1 ja että f(x 1 ) = f(x 2 ). Nyt sijoittamalla molemmat puolet funktioon f 1 saadaan x 1 = I X (x 1 ) = f 1 (f(x 1 )) = f 1 (f(x 2 )) = I X (x 2 ) = x 2. Siis f on injektio. Olkoon nyt y Y. Siispä y = I Y (y) = f f 1 (y) = f(f 1 (y)) = f(x), missä x X. Siis f on surjektio ja väite pätee. Seurauslause 2.4. Jos kuvaukset f : X Y ja g : Y Z ovat bijektioita, myös kuvaus g f on bijektio. Todistus. Lauseen 2.3 nojalla riittää osoittaa, että kuvauksella g f on käänteiskuvaus. Koska kuvaukset f ja g ovat bijektioita, niillä on käänteiskuvaukset (Lause 2.3), joten voidaan tarkastella seuraavia kuvauksia: (i) Ensiksi kuvaus (g f) (f 1 g 1 ). Määritelmän 2.7 nojalla g(f(f 1 (g 1 (x)))) = g(g 1 (x)) = x aina, kun x Z, joten (g f)(f 1 g 1 ) = I Z. (ii) Toiseksi kuvaus (f 1 g 1 ) (g f). Määritelmän 2.7 nojalla f 1 (g 1 (g(f(x)))) = f 1 (f(x)) = x aina, kun x X, joten (f 1 g 1 )(g f) = I X. 5

7 Nyt määritelmän 2.7 nojalla g f:llä on käänteiskuvaus f 1 g 1, joten se on bijektio. Määritelmä 2.8. Bijektio π joukolta X itselleen on X:n permutaatio. Esimerkki. Olkoon kuvaus π : {1, 2, 3} {1, 2, 3}. Jos π(1) ( = 2, ) π(2) = 3 ja π(3) = 1, kyseessä on permutaatio. Merkitään tätä π = = (1 2 3) Seurauslause 2.5. Olkoon X mielivaltainen joukko. Tällöin kaikkien permutaatioiden f : X X joukko S(X) on ryhmä varustettuna kuvausten yhdistämisellä. Todistus. Tutkitaan ryhmäaksioomien olemassaolo: Olkoot f, g, h S(X). (RA1) Lauseen 2.1 nojalla ((f g) h)(x) = (f (g h))(x) eli assosiatiivisuus on voimassa. (RA2) Olkoon I X : X X sellainen kuvaus, että I X (x) = x. Nyt selvästi I X S(X). Määritelmän nojalla f I X = f ja I X f = f eli neutraalialkio on olemassa. (RA3) Käänteisfunktion määritelmän nojalla, jos f 1 on funktion f käänteisfunktio, niin f on funktion f 1 käänteisfunktio ja siis f 1 on bijektio ja täten permutaatio ts. f 1 S(X). Siis kaikille f S(X) on olemassa sellainen käänteisfunktio f 1 S(X), että f f 1 = f 1 f = I X eli käänteisalkio on olemassa. Kohdista (RA1) (RA3) seuraa, että kyseessä on ryhmä. Jatkossa merkitään π ρ = πρ permutaatioiden kohdalla. Esimerkki. Olkoon X = {1, 2, 3}. On olemassa 27 erilaista kuvausta joukolta itselleen, mutta ainoastaan kuusi näistä kuvauksista on permutaatioita. Kaikkien permutaatioiden joukkoa merkitään S(3). Permutaatiot ovat seuraavat: π 1 = (1), π 2 = (1 2 3), π 3 = (1 3 2), π 4 = (1)(2 3), π 5 = (1 3)(2), π 6 = (1 2)(3). Yhdistetty kuvaus lasketaan selvittämällä, miksi 1, 2 ja 3 kuvautuvat. Siis esimerkiksi π 3 π 4 : (π 3 π 4 )(1) = π 3 (π 4 (1)) = π 3 (1) = 3; (π 3 π 4 )(2) = π 3 (π 4 (2)) = π 3 (3) = 2; (π 3 π 4 )(3) = π 3 (π 4 (3)) = π 3 (2) = 1. 6

8 Siispä π 3 π 4 = π 5. Samaan tapaan saadaan muutkin yhdistetyt kuvaukset. Tämä voidaan esittää taulukkona, jossa alkio (i, j) on yhdistetty funktio π i π j : i j π 1 π 2 π 3 π 4 π 5 π 6 π 1 π 1 π 2 π 3 π 4 π 5 π 6 π 2 π 2 π 3 π 1 π 6 π 4 π 5 π 3 π 3 π 1 π 2 π 5 π 6 π 4 π 4 π 4 π 5 π 6 π 1 π 2 π 3 π 5 π 5 π 6 π 4 π 3 π 1 π 2 π 6 π 6 π 4 π 5 π 2 π 3 π 1 Selvästikin siis S(3) on ryhmä jolla on kuusi alkiota. 7

9 3 Relaatioista Toinen keskeinen teoria Algebran alkeissa koskee relaatioita. Määritelmä 3.1. Binäärinen relaatio joukossa X on karteesisen tulon X X = {(x 1, x 2 ) x 1, x 2 X} osajoukko R. Merkitään xry, kun (x, y) toteuttaa relaation R. Esimerkki. Eräitä perusesimerkkejä ovat <, >, ja joukossa R. Siis esimerkiksi jos R on relaatio <, niin (3, 5) on relaatiossa R sillä 3 < 5, mutta (4, 3) ei ole relaatiossa R, sillä 4 3. Esimerkki. Olkoon n > 1 kokonaisluku. Relaatio kongruenssi modulo n joukossa X = Z on määritelty xry jos ja vain jos x y (mod n). Siis kaksi kokonaislukua x ja y ovat kongruentteja modulo n jos ja vain jos niillä on sama jakojäännös jaettaessa luvulla n. Kun n = 2, on olemassa kaksi kongruenssi- eli jäännösluokkaa kokonaislukuja: ne, joiden jakojäännös on nolla (parilliset kokonaisluvut), ja ne, joiden jakojäännös on yksi (parittomat kokonaisluvut). Määritelmä 3.2. Jouko X relaatio R on X:n ekvivalenssirelaatio jos R toteuttaa seuraavat ehdot: Kaikille x, y, z X: (1) xrx (refleksiivisyys) (2) jos xry niin yrx (symmetrisyys) (3) jos xry ja yrz niin xrz (transitiivisuus). Esimerkki. Mikään relaatioista <, >, ja ei ole ekvivalenssirelaatio, sillä yksikään näistä ei ole symmetrinen. Esimerkki. Relaatio kongruenssi modulo n on ekvivalenssirelaatio, sillä se täyttää kolme ehtoa: (1) x x (mod n), sillä n jakaa nollan (0 = 0 n). (2) Jos x y (mod n), niin n (x y) eli n (y x) ja täten y x (mod n). (3) Jos x y (mod n), ja y z (mod n), niin n (x y) ja n (y z):n ja täten myös n ((x y) + (y z)) eli n (x z) ja siis x z (mod n). 8

10 Määritelmä 3.3. Olkoon R joukon X relaatio. Joukon X alkion x ekvivalenssiluokka [x] R on joukko X:n alkioita, jotka ovat relaatiossa x:n kanssa, ts. [x] R = {y X (x, y) R}. Huomautus. Koska ekvivalenssirelaatio on symmetrinen, ei ole väliä kirjoitetaanko (x, y) R vai (y, x) R määritelmässä 3.3 Määritelmä 3.4. Perhe joukon X epätyhjiä osajoukkoja on X:n ositus (partitio), jos jokainen joukon alkio on täsmälleen yhdessä osajoukossa. Määritelmästä seuraa suoraan, että osajoukkojen unioni on itse X, mutta minkä tahansa kahden osajoukon leikkaus on tyhjä joukko. Lause 3.1. Joukon X minkä tahansa ekvivalenssirelaation ekvivalenssiluokat muodostavat joukon X osituksen. Todistus. Koska R on refleksiivinen, mikä tahansa alkio x X kuuluu ekvivalenssiluokkaan [x] R, joten kaikkien ekvivalenssiluokkien unioni on X. Jos z kuuluu sekä ekvivalenssiluokkaan [x] R, että [y] R, niin xrz ja yrz. Koska R on symmetrinen, niin zry, ja koska R on transitiivinen, niin xry. Nyt jos a [x] R, niin xra, joten edellisen nojalla yra ja siis a [y] R. Siispä [x] R [y] R. Samoin jos b [y] R, niin yrb ja jälleen edellä osoitetun nojalla saadaan, että xrb ja täten b [x] R. Siis [y] R [x] R. Saadaan siis haluttu tulos, sillä [x] R = [y] R ja siis osituksen määritelmä täyttyy. Kun tarkastellaan relaatiota kongruenssi modulo n, viitataan yleensä kongruenssi- eli jäännösluokkiin ekvivalenssiluokkien sijaan. Alkion x kongruenssiluokkaa merkitään [x] n. Kun n = 2, jäännösluokkia on kaksi: [0] 2, joka sisältää kaikki parilliset kokonaisluvut, sekä [1] 2, joka sisältää kaikki parittomat kokonaisluvut. Jäännösluokille on mahdollista määritellä yhteen- ja kertolasku seuraavasti: [x] n + [y] n = [x + y] n ja [x] n [y] n = [xy] n. On kuitenkin syytä huomioida, että vaikka kyseessä ovat helpon näköiset kaavat, ei tilanne ole ihan niin yksinkertainen kuin miltä se näyttää. Merkintä [x] n vastaa äärettömän montaa eri kokonaislukua, joilla on sama jakojäännös jaettaessa luvulla n. Siispä täytyy kiinnittää erityistä huomiota siihen, että yhteen- ja kertolasku todellakin ovat hyvin määritellyt. Tätä tarkastellaan seuraavassa: 9

11 Lause 3.2. Jäännösluokkien modulo n yhteen- ja kertolasku ovat hyvin määriteltyjä. Todistus. Olkoon [x 1 ] n = [x 2 ] n ja [y 1 ] n = [y 2 ] n. Siispä n (x 1 x 2 ) ja n (y 1 y 2 ). Tämä voidaan kirjoittaa myös muodossa x 1 x 2 = nr ja y 1 y 2 = ns joillain r, s Z. Näin ollen (x 1 + x 2 ) + (y 1 + y 2 ) = nr + ns = n(r + s) eli n ((x 1 + x 2 ) + (y 1 + y 2 )) ja siten [x 1 + x 2 ] n = [y 1 + y 2 ] n kuten vaadittua. Tarkastellaan seuraavaksi kertolaskua. Koska x 1 x 2 = nr, niin x 1 = nr + x 2, ja samoin, koska y 1 y 2 = ns, niin y 1 = ns + y 2. Nyt siis toisin sanoen eli x 1 y 1 = (nr + x 2 )(ns + y 2 ) = n 2 rs + nry 2 + nsx 2 + x 2 y 2 = n(nrs + ry 2 + sx 2 ) + x 2 y 2, x 1 y 1 x 2 y 2 = n(nrs + ry 2 + sx 2 ) [x 1 y 1 ] n = [x 2 y 2 ] n. Seurauslause 3.3. Joukko Z n on Abelin ryhmä varustettuna jäännösluokkien yhteenlaskulla. Todistus. Tutkitaan ryhmäaksioomat: Olkoot [a] n, [b] n, [c] n Z n. (RA1) [a] n + ([b] n + [c] n ) = [a] n + ([b + c] n ) = [a] n + [b + c] n = [a + (b + c)] n = [(a + b) + c] n = [a + b] n + [c] n = ([a + b] n ) + [c] n = ([a] n + [b] n ) + [c] n ts. assosiatiivisuus on voimassa. 10

12 (RA2) [0] n Z n. Nyt [a] n + [0] n = [a + 0] n = [a] n = [0 + a] n = [0] n + [a] n ts. neutraalialkio on olemassa. (RA3) Kun [x] n Z n niin myös [ x] n Z n. [x] n + [ x] n = [x + ( x)] n = [x x] n = [0] n [ x] n + [x] n = [ x + x] n = [0] n ts. käänteisalkio on olemassa. (RA4) [a] n + [b] n = [a + b] n = [b + a] n = [b] n + [a] n ts. kommutatiivisuus on voimassa. Siispä (RA1) (RA4) nojalla Z n on Abelin ryhmä. Esimerkki. Joukossa Z 3 [0] 3 kuvaa niitä kokonaislukuja, jotka ovat kolmella jaollisia, [1] 3 kuvaa niitä kokonaislukuja, joiden jakojäännös kolmella jaettaessa on yksi (kuten 10 tai 5) ja [2] 3 kuvaa niitä kokonaislukuja, joiden jakojäännös kolmella jaettessa on kaksi. Siispä joukolla Z 3 on seuraava ryhmätaulu: + [0] 3 [1] 3 [2] 3 [0] 3 [0] 3 [1] 3 [2] 3 [1] 3 [1] 3 [2] 3 [0] 3 [2] 3 [2] 3 [0] 3 [1] 3 11

13 Lähdeluettelo Humpreys A Course in Group Theory, s. 8 17, Oxford University Press, 1996 M. Niemenmaa Algebra I & Algebra II luennot 12

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014

Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014 Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Perusteita 3 1.1 Kuvauksista............................ 3 1.2 Relaatioista............................

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9 Tuntitehtävät 9-10 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 13-14 loppuviikon harjoituksissa. Kotitehtävät 11-12 tarkastetaan loppuviikon

Lisätiedot

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Johdatus diskreettiin matematiikkaan Harjoitus 1, Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195 Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20 Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

2 ALGEBRA I. Sisällysluettelo

2 ALGEBRA I. Sisällysluettelo ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin

Lisätiedot

6 Relaatiot. 6.1 Relaation määritelmä

6 Relaatiot. 6.1 Relaation määritelmä 6 Relaatiot 6. Relaation määritelmä Määritelmä 6... Oletetaan, että X ja Y ovat joukkoja. Jos R µ X Y, sanotaan, että R on joukkojen X ja Y välinen relaatio. Jos R µ X X, sanotaan, että R on joukon X relaatio.

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Tekijäryhmät ja homomorsmit

Tekijäryhmät ja homomorsmit Tekijäryhmät ja homomorsmit LuK-tutkielma Henna Isokääntä 1953004 henna.isokaanta@gmail.com Matemaattiset tieteet Oulun yliopisto Kevät 2019 Sisältö Johdanto 1 1 Tekijäryhmät 1 2 Homomorsmit 3 Lähdeluettelo

Lisätiedot

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1) MS-A0401 Diskreetin matematiikan perusteet Tentti ja välikokeiden uusinta 10.11.015 Kirjoita jokaiseen koepaperiin nimesi, opiskelijanumerosi ym. tiedot! Laskimia tai taulukoita ei saa käyttää tässä kokeessa!

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

Jäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan

Jäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan Jäännösluokat LUKUTEORIA JA TODIS- TAMINEN, MAA Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan lukujoukkoja 3k k Z =, 6, 3, 0, 3, 6, 3k + k Z =,,,,, 7, 3k + k Z =,,,,, 8, Osoita,

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta

Lisätiedot

DISKREETTIÄ MATEMATIIKKAA.

DISKREETTIÄ MATEMATIIKKAA. Heikki Junnila DISKREETTIÄ MATEMATIIKKAA. LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset..... 3 2. Luonnolliset luvut. Induktio.... 9 3. Äärelliset joukot.... 14 4. Joukon ositukset.

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

Kvasiryhmistä ja niiden sovelluksista

Kvasiryhmistä ja niiden sovelluksista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Suvi Pasanen Kvasiryhmistä ja niiden sovelluksista Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2016 Tampereen yliopisto Informaatiotieteiden yksikkö PASANEN,

Lisätiedot

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet kurssin kotisivuilla.

Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet kurssin kotisivuilla. Johdatus yliopistomatematiikkaan Avoin yliopisto Kesä 2017 Harjoitus 6, viimeinen harjoitus (15 tehtävää) Viimeinen palautuspäivä 21.6. Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet

Lisätiedot

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X, Relaation Joukossa X määritelty relaatio R on (r) refleksiivinen, jos xrx kaikilla x X, (ir) irrefleksiivinen, jos x Rx kaikilla x X, (s) symmetrinen, jos xry yrx, (as) antisymmetrinen, jos xry yrx x =

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Tenttiin valmentavia harjoituksia

Tenttiin valmentavia harjoituksia Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.

Lisätiedot

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai MATP15 Approbatur 1B Ohjaus Keskiviikko 4.11. torstai 5.11.015 1. (Opiskeluteht. 6 s. 0.) Määritä sellainen vakio a, että polynomilla x + (a 1)x 4x a on juurena luku x = 1. Mitkä ovat tällöin muut juuret?.

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. (24.3-25.3) Jeremias Berg 1. Olkoot A 1 = {1, 2, 3}, A 2 = {A 1, 5, 6}, A 3 = {A 2, A 1, 7}, D = {A 1, A 2, A 3 } Kirjoita auki seuraavat joukot:

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 Kertausta toiseen välikokeeseen Yhteenveto Kurssin sisältö 1. Algoritmin käsite 2. Lukujärjestelmät ja niiden muunnokset; lukujen esittäminen tietokoneessa 3. Logiikka

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I

MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I MS-A0402 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 3. huhtikuuta 2014 G. Gripenberg (Aalto-yliopisto) MS-A0402 Diskreetin matematiikan perusteetyhteenveto, 3. osahuhtikuuta

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet

Joukko-oppi. Joukko-oppi. Joukko-oppi. Joukko-oppi: Mitä opimme? Joukko-opin peruskäsitteet TKK () Ilkka Mellin (2004) 1 Joukko-oppi Liite: Joukko-oppi TKK () Ilkka Mellin (2004) 2 Joukko-oppi: Mitä opimme? Tämän liitteen tavoitteena on esitellä joukko-opin peruskäsitteet ja - operaatiot laajuudessa,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2014 Tero Vedenjuoksu Sisältö 1 Johdanto 3 2 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Matematiikan peruskurssi 2

Matematiikan peruskurssi 2 Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Sisältö 1 Luupeista 2 1.1 Luupit ja niiden kertolaskuryhmät................. 2 2 Transversaalit 5 3

Lisätiedot

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause

Lisätiedot

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Joukko-oppi. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Joukko-oppi TKK (c) Ilkka Mellin (2005) 1 Joukko-oppi Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot ja funktioiden

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Abstraktin algebran rakenteista sekä näiden välisistä morfismeista

Abstraktin algebran rakenteista sekä näiden välisistä morfismeista Abstraktin algebran rakenteista sekä näiden välisistä morfismeista Pro gradu -tutkielma Kari Kostama Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö Johdanto 2 1 Kahden alkion laskutoimitus

Lisätiedot

Diskreetti matematiikka Toinen välikoe Vastauksia. 1. Olkoot X = {a, b, c, d} ja Y = {1, 2, 3}, sekä R, S X Y relaatiot

Diskreetti matematiikka Toinen välikoe Vastauksia. 1. Olkoot X = {a, b, c, d} ja Y = {1, 2, 3}, sekä R, S X Y relaatiot Diskreetti matematiikka Toinen välikoe 14.12.2006 Vastauksia 1. Olkoot X = {a, b, c, d} ja Y = {1, 2, 3}, sekä R, S X Y relaatiot Määritä relaatiot a) R S b) R 1 c) S R 1. Ratkaisu: a) R = {(a, 1), (a,

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014 Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot