renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

Koko: px
Aloita esitys sivulta:

Download "renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x"

Transkriptio

1 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta joukoilta joitakin samoja ominaisuuksia joita kokonaisluvuilla on, mutta kertolasku ei välttämättä ole kommutatiivinen. Määritelmä 8.1. Olkoon R joukko, jolla on määritelty kaksi assosiatiivista laskutoimitusta + ja. Kolmikko(R, +, ) on (ykkösellinen) rengas, jos (1) (R, +) on kommutatiivinen ryhmä, (2) kertolasku on distributiivinen yhteenlaskun suhteen ja (3) kertolaskulla on neutraalialkio 1=1 R R. Laskutoimituksen + neutraalialkiolle käytetään merkintää 0=0 R.Ryhmä(R, +) on renkaan R additiivinen ryhmä. Rengasonkommutatiivinen, joskertolaskuon kommutatiivinen. Kertolaskun distributiivisuus yhteenlaskun suhteen renkaassa R tarkoittaa, että kaikille a, b, c R pätee a(b + c) =ab + ac ja (b + c)a = ba + ca. Esimerkki 8.2. (a) (Z, +, ), (Q, +, ), (R, +, ) ja (C, +, ) ovat kommutatiivisia renkaita. (b) Olkoon q N. KongruenssiluokkienmuodostamajoukkoZ/qZ varustettuna kokonaislukujen yhteen- ja kertolaskujen tekijälaskutoimituksilla on kommutatiivinen rengas, jota kutsutaan jäännösluokkarenkaaksi. (Harjoitustehtävä97) (c) Olkoon X, jaolkoonr rengas. Olkoon F (X, R) joukko, joka koostuu kaikista kuvauksista joukolta X renkaaseen R. Määritellään tässä joukossa yhteenja kertolasku pisteittäin: Olkoot f,g F (X, R). Asetamme (f + g)(x) = f(x)+g(x) ja (fg)(x) = f(x)g(x) kaikilla x X. Joukko F (X, R) varustettuna näillä laskutoimituksilla on rengas, jota kutsutaan funktiorenkaaksi. Laskutoimitusten assosiatiivisuus, yhteenlaskun kommutatiivisuus ja kertolaskun distributiivisuus yhteenlaskun suhteen seuraa siitä, että funktioiden arvot ovat renkaassa R ja funktioiden laskutoimitukset on määritelty pisteittäin. Yhteenlaskun (vastaavasti kertolaskun) neutraalialkio on vakiofunktio 0: X R (vastaavasti 1: X R), joka määritellään asettamalla 0(x) =0 R (vastaavasti 1(x) =1 R) kaikilla x X. Funktionf F (X, R) käänteisalkio yhteenlaskun suhteen on funktio f, jokamääritelläänasettamalla( f)(x) = f(x) kaikilla x R. Tässä esimerkissä merkitsemme kuten on tapana renkaan F (X, R) yhteen- ja kertolaskuja samoilla merkinnöillä + ja kuin renkaan R laskutoimituksia. Samoin yhteen- ja kertolaskun neutraalialkioille on tapana käyttää merkintöjä 0 ja 1 useimmissa renkaissa. Rengas F (X, R) on kommutatiivinen, jos R on kommutatiivinen. Esimerkiksi siis F (R, R) on kommutatiivinen rengas. Propositio 8.3. Olkoon R rengas. Tällöin (1) 0 R x =0 R kaikilla x R, (2) x( y) =( x)y = (xy) ja ( x)( y) =xy kaikilla x, y R, (3) x(y z) =xy xz ja (y z)x = yx zx kaikilla x, y, z R, Todistus. (1) Distributiivisuuden nojalla 0 R x + x =(0 R +1 R )x =1 R x = x 51

2 kaikilla x R. Renkaan R additiivisen ryhmän supistussäännöstä seuraa, että 0 R x =0 R. Loput todistetaan harjoitustehtävässä 99. Edellä osoitettujen laskusääntöjen avulla on helppo osoittaa seuraavat perusominaisuudet Propositio 8.4. Olkoon R rengas. Jos #R 2, niin (1) 0 1ja (2) yhteenlaskun neutraalialkiolla 0 ei ole käänteisalkiota kertolaskun suhteen. Todistus. (1) Jos 1=0,niin kaikille x R pätee Proposition 8.3 nojalla x =1x =0x =0. Toinen väite todistetaan harjoitustehtävänä 101. Määritelmä 8.5. Jos R on rengas ja alkiolla u R on käänteisalkio kertolaskun suhteen, niin u on renkaan R yksikkö. Renkaan R yksiköiden ryhmä (tai multiplikatiivinen ryhmä) on R = {u R : u on yksikkö} varustettuna renkaan R kertolaskun indusoimalla laskutoimituksella. Propositio 8.6. Renkaan yksiköiden joukko varustettuna kertolaskulla on ryhmä. Todistus. Renkaan R kertolasku on assosiatiivinen laskutoimitus, jonka neutraalialkio on 1. Yksiköidenjoukkoonvakaakertolaskunsuhteen:Josu ja v ovat yksiköitä, niin uv on yksikkö koska (uv)(v 1 u 1 )=1=(v 1 u 1 )(uv). Kertolasku on siis assosiatiivinen laskutoimitus yksiköiden joukossa. Laskutoimituksella on neutraalialkio koska 1 on yksikkö. Määritelmän mukaan jokaisella yksiköllä u on käänteisalkio u 1 renkaassa R. Myösu 1 on yksikkö koska (u 1 ) 1 = u. Esimerkki 8.7. (a) Jos renkaassa on ainakin kaksi alkiota, niin 0 1ja 0 ei ole yksikkö. (b) Renkaissa Q, R ja C kaikki nollasta poikkeavat alkiot ovat yksiköitä, joten aiemmin esitellyt multiplikatiiviset ryhmät Q, R ja C ovat yhteensopivat Määritelmän 8.5 kanssa. (c) Kokonaislukujen renkaan yksiköiden ryhmä on Z = { 1, 1}. (d) Funktiorenkaan F (X, R) alkio f on yksikkö, jos ja vain jos f(x) R. Renkaan yhteen- ja kertolaskuiksi kutsuttujen laskutoimitusten ei tarvitse olla tavanomaisia lukujen yhteen- ja kertolaskuja tai näistä lukujen 1 ja 3 konstruktioilla muodostettuja laskutoimituksia vaan ne voivat olla mitä tahansa laskutoimituksia, joilla on vaaditut ominaisuudet. Esimerkki 8.8. (a) Olkoon (A, +) kommutatiivinen ryhmä. Olkoon Hom(A, A) ={φ: A A : φ on homomorfismi}. Varustamme joukon Hom(A, A) kahdella laskutoimituksella: Homomorfismien yhteenlasku määritellään asettamalla (φ + φ )(a) =φ(a)+φ (a) kaikille a A ja kertolaskuna käytetään homomorfismien yhdistämistä. 52

3 Yhteenlasku on laskutoimitus: Jos φ, φ Hom(A, A), niin (φ + φ )(a + b) =φ(a + b)+φ (a + b) =φ(a)+φ(b)+φ (a)+φ (b) =(φ + φ )(a)+(φ + φ )(b), joten φ + φ Hom(A, A). Laskutoimituksellavarustettujoukko(Hom(A, A), +) on kommutatiivinen ryhmä. Laskutoimituksen assosiatiivisuus ja kommutatiivisuus osoitetaan harjoitustehtävässä 100. Homomorfismien yhteenlaskun neutraalialkio on nollahomomorfismi 0 ja homomorfismin φ käänteisalkio yhteenlaskun suhteen on homomorfismi φ, joka määritellään asettamalla( φ)(a) = φ(a) kaikilla a A Kertolasku osoitettiin laskutoimitukseksi harjoitustehtävässä 13. Identtinen homomorfismi on homomorfismien kertolaskun neutraalialkio, joten tarkastettavaksi jää kertolaskun distributiivisuus yhteenlaskun suhteen: Jos φ,ψ,ζ Hom(A, A),niin (ψ + ζ)φ(a) =ψφ(a)+ζφ(a) =(ψφ + ζφ)(a), ja φ(ψ + ζ)(a) = φ(ψ(a)+ζ(a)) = φψ(a)+φζ(a) =(φψ + φζ)(a). Koska homomorfismien yhdistäminen on renkaan Hom(A, A) kertolasku, homomorfismien yhdistetty kuvaus on yllä merkitty ilman yhdistetyn kuvauksen merkkiä. (b) Olkoon R rengas, #R 2. KaikkienR-kertoimisten n n-matriisien joukko M n (R) varustettuna matriisien yhteen- ja kertolaskulla on rengas. Kun R = R, kaikki muut renkaan ominaisuudet paitsi distributiivisuus osoitettiinesimerkissä 1.15(b) ja harjoitustehtävässä 6 tapauksessa n =2.Kunn 2, niinm n (R) ei ole kommutatiivinen rengas, koska matriisien kertolasku ei olekommutatiivinen. Määritelmä 8.9. Olkoot R ja R renkaita. Kuvaus φ : R R on rengashomomorfismi, jos φ: (R, +) (R, +) on homomorfismi, φ: (R, ) (R, ) on homomorfismi ja φ(1) = 1. Bijektiivinen rengashomomorfismi on rengasisomorfismi. Propositiossa 1.16 osoitettiin, että surjektiivinen homomorfismi kuvaa neutraalialkion neutraalialkioksi, mutta ilman surjektiivisuutta näin ei välttämättä ole. Ryhmähomomorfismille ei tarvita vastaavaa vaatimusta Proposition 4.12 nojalla. Erityisesti siis rengashomomorfismi kuvaa nollan nollaksi. Huomaa, että Proposition 8.4 nojalla rengashomomorfismille φ: R R pätee φ(1) = 0 vain, jos R = {0}. Esimerkki (a) Luonnollinen kuvaus renkaasta (Z, +, ) jäännösluokkarenkaaseen (Z/qZ, +, ) on surjektiivinen rengashomomorfismi. (b) Olkoon X epätyhjä joukko ja olkoon R rengas. Olkoon a X. Evaluaatiokuvaus E a : F (X, R) R, E a (f) =f(a) on rengashomomorfismi: ja E a (f + g) =(f + g)(a) =f(a)+g(a) =E a (f)+e a (g), E a (fg)=(fg)(a) =f(a)g(a) =E a (f)e a (g) E a (1) = 1(a) =1. Propositio (1) Jos f : R S ja g : S T ovat rengashomomorfismeja, niin g f on rengashomomorfismi. (2) Rengashomomorfismi f : R S on rengasisomorfismi, jos ja vain jos on rengashomomorfismi f : S R, jolle f f = id R ja f f = id S. Todistus. Harjoitustehtävät 104 ja

4 Kokonaislukujen renkaan Z kaikki alkiot ovat alkion 1 monikertoja. Tästä seuraa erityisominaisuus renkaassa Z määritellyille rengashomomorfismeille: Propositio Olkoon R rengas. On täsmälleen yksi rengashomomorfismi φ: Z R. Todistus. Koska 1 virittää additiivisen ryhmän (Z, +), Proposition 5.14 nojalla halutunlaisia homomorfismeja on korkeintaan yksi. Väite seuraa havainnosta, että kuvaus φ: Z R, φ(n) =n1 R =1 R +1 R + +1 R,onrengashomomorfismi: φ(m + n) =(m + n)1 R = m1 R + n1 R = φ(m)+φ(n) ja φ(mn) =mn1 R = m1 R n1 R = φ(m)φ(n). Lisäksi kuvauksen φ määritelmän mukaan φ(1) = 1 R. Monilla renkailla on yhteen- ja kertolaskun suhteen vakaita osajoukkoja, jotka ovat renkaita. Määritelmä Olkoon R rengas ja olkoon S R vakaa yhteenlaskun ja kertolaskun suhteen. Jos S varustettuna indusoiduilla laskutoimituksilla on rengas ja jos 1 S =1 R,niinS on renkaan R alirengas. Määritelmän mukaan alirenkaan inkluusiokuvaus i : S R, i(s) =s, on rengashomomorfismi. Esimerkki (a) Z on renkaan Q alirengas. (b) Joukko {( ) } a 0 S = : a R M (R) on rengas renkaasta ( ) M 2 (R) indusoiduilla laskutoimituksilla. Sen kertolaskun neutraalialkio on,jotens ei ole renkaan M (R) alirengas. Rengas S on rengasisomorfinen renkaan R kanssa: Kuvaus a on rengasisomorfismi. ( ) a Alirenkaalle on samanlainen testi kuin aliryhmälle (vertaa Propositioon 5.12). Propositio Olkoon R rengas, ja olkoon S R, S. TällöinS on renkaan R alirengas, jos ja vain jos (1) Kaikille x, y Sx+ y S ja xy S, ja (2) 1 S. Todistus. Harjoitustehtävä 106. Esimerkki (a) Samaan tapaan kuin permutaatioryhmille määriteltiin aliryhmiä rajoittumalla kuvauksiin, joilla on tiettyjä ominaisuuksia, voimme määritellä funktiorenkaiden F (X, R) alirenkaita. Kurssilla Analyysi 2 osoitetaan, että indusoiduilla laskutoimituksilla varustetut joukot C(R) ={f : R R : f on jatkuva}, ja C k (R) ={f : R R : f on k kertaa jatkuvasti derivoituva}, k N. ovat funktiorenkaan F (R, R) alirenkaita (b) Vektoriavaruuden R n lineaarikuvaukset muodostavat renkaan Hom(R n, R n ) alirenkaan, vektoriavaruuden R n endomorfismirenkaan End(R n )={L : R n R n : L on lineaarikuvaus}. 54

5 Lineaarikuvaukset ovat additiivisen ryhmän (R n, +) homomorfismeja itselleen, joten niiden summa on myös homomorfismi kuten Esimerkissä 8.8 todettiin. Lisäksi kaikille L, L End(R n ), x R n ja a R pätee (L + L )(ax) =L(ax)+L (ax) =al(x)+al (x) =a(l(x)+l (x)) = a(l + L )(x), joten lineaarikuvauksen toinenkin ehto toteutuu. Lineaarialgebran kurssilla on osoitettu, että lineaarikuvausten yhdistetty kuvaus on lineaarikuvaus: Jos L 1,L 2 End(R n ), x, y R n ja α, β R, niin L 2 L 1 (αx + βy)=l 2 (L 1 (αx + βy)) = L 2 (αl 1 (x)+βl 1 (y)) = αl 2 (L 1 (x)) + βl 2 (L 1 (y)) = αl 2 L 1 (x)+βl 2 L 1 (y). Siis molemmat laskutoimitukset toteuttavat Proposition 8.15 ehdon (1). Lisäksi identtinen kuvaus id: R n R n on lineaarikuvaus, kuten myös id, jotenproposition 8.15 mukaan End(R n ) on renkaan Hom(R n, R n ) alirengas. (c) Esimerkissä 4.13 käsitelty kuvaus Mat: End(R n ) M n (R), jokaliittäälineaarikuvaukseen L sen matriisin kiinnitetyssä kannassa, on rengasisomorfismi. Jos L, L End(R n ),niin(l + L )(v) =Lv + L v,joten Mat(L + L )=Mat(L)+Mat(L ), eli Mat on ryhmähomomorfismi additiivisten ryhmien välillä. Lisäksi kaikille lineaarikuvauksille L, L End(R n ) pätee ja identtisen kuvauksen matriisi on I n. Mat(L L)=Mat(L )Mat(L) Alirenkaat ja rengashomomorfismit ovat yhteensopivia samaan tapaan kuin aliryhmät ja ryhmähomomorfismit: Propositio Olkoon φ: R R rengashomomorfismi. (1) Jos S on renkaan R alirengas, niin φ(s) on renkaan R alirengas. (2) Jos S on renkaan R alirengas, niin φ 1 (S ) on renkaan R alirengas. Todistus. (1) Proposition 5.8 mukaan (φ(s), +) on kommutatiivinen ryhmä, joten Propositiota 8.15 sovellettaessa riittää kohdassa (1) tarkastella kertolaskua ja kertolaskun neutraalialkion kuvautumista. Olkoot φ(a),φ(b) φ(s). Tällöin φ(a)φ(b) =φ(ab) φ(s) kosak φ: (R, ) (R, ) on homomorfismi. Koska 1 R S, niinpropositio4.12 sovellettuna additiiviseen ryhmään antaa 1 R = φ(1 R )=φ( 1 R ) φ(s). Siis Proposition 8.15 oletukset ovat voimassa. (2) Harjoitustehtävä

6 Harjoitustehtäviä. Tehtävä 97. Osoita, että Z/qZ varustettuna kokonaislukujen yhteen- ja kertolaskujen tekijälaskutoimituksilla on kommutatiivinen rengas. Tehtävä 98. Olkoon X joukko. Määritellään joukkojen A, B P(X) symmetrinen erotus asettamalla A B =(A B) (B A). Osoita, että ( P(X),, ) on rengas. Onko se kommutatiivinen? Tehtävä 99. Olkoon R rengas. Osoita, että (1) x( y) =( x)y = (xy) kaikilla x, y R, (2) x(y z) =xy xz ja (y z)x = yx zx kaikilla x, y, z R, Tehtävä 100. Olkoon (A, +) kommutatiivinen ryhmä. Osoita, että joukon Hom(A, A) laskutoimitus +, joka määritellään asettamalla on assosiatiivinen ja kommutatiivinen. (φ + φ )(a) =φ(a)+φ (a), Tehtävä 101. Olkoon R {0} rengas. Osoita, että yhteenlaskun neutraalialkiolla 0 ei ole käänteisalkiota kertolaskun suhteen. Tehtävä 102. Määritellään joukossa Z 3 yhteenlasku komponenteittain ja kertolasku asettamalla (a, b, c)(x, y, z) =(ax, bx + cy, cz) kaikilla (a, b, c), (x, y, z) Z 3.OnkoZ 3 varustettuna näillä laskutoimituksilla rengas? Onko se kommutatiivinen? Tehtävä 103. Ovatko funktiorenkaat F ( [0, 1], R ) ja F ( [0, 2], R ) isomorfisia? Tehtävä 104. Olkoot f : R S ja g : S T rengashomomorfismeja. Osoita, että g f on rengashomomorfismi. Tehtävä 105. Osoita, että rengashomomorfismi f : R S on rengasisomorfismi, jos ja vain jos on rengashomomorfismi f : S R, jolle f f = idr ja f f = id S. Tehtävä 106. Olkoon R rengas, ja olkoon S R, S. Osoita,ettäS on renkaan R alirengas, jos ja vain jos x + y S ja xy S kaikilla x, y S, ja 1 S. Tehtävä 107. Olkoon φ: R R rengashomomorfismi. Olkoon S renkaan R alirengas. Osoita, että φ 1 (S ) on renkaan R alirengas. Tehtävä 108. Osoita, että renkaalla Z ei ole muita alirenkaita kuin Z. Tehtävä 109. Olkoon q N {0, 1}. Osoita,ettäeiolerengashomomorfismia jäännösluokkarenkaalta Z/qZ renkaaseen Z. 98 Vihje: Harjoitustehtävä Vihje: (1, 0, 1) 56

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a).

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a). ALGEBRA 2007 15 Todistus. Mieti, miksi kuvaus on hyvin määritelty! Surjektiivisuus on selvää. Lisäksi φ(xkyk) = φ(xyk) = xyh = xhyh = φ(xk)φ(yk), joten kuvaus on homomorfismi. Jos y H, niin φ(yk) = yh

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Rengashomomorfismi ψ :

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,

Lisätiedot

Kuvaus. Määritelmä. LM2, Kesä /160

Kuvaus. Määritelmä. LM2, Kesä /160 Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Algebra I, Harjoitus 6, , Ratkaisut

Algebra I, Harjoitus 6, , Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina 10.8.2015 klo 16.15. Tehtäväsarja I Tutustu lukuun 15, jossa vektoriavaruuden

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44 Tehtävät 1-3 lasketaan alkuviikon harjoituksissa, verkkotehtävien dl on lauantaina aamuyöllä. Tehtävät 4 ja 5 lasketaan loppuviikon harjoituksissa.

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20 Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen

Lisätiedot

ALGEBRA KEVÄT 2011 JOUNI PARKKONEN

ALGEBRA KEVÄT 2011 JOUNI PARKKONEN ALGEBRA KEVÄT 2011 JOUNI PARKKONEN Sisältö 1. Laskutoimitukset 1 2. Kompleksiluvut 8 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut 15 4. Ryhmät 20 5. Aliryhmät 26 6. Aärelliset permutaatioryhmät

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................

Lisätiedot

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013

Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo

Lisätiedot

Kvasiryhmistä ja niiden sovelluksista

Kvasiryhmistä ja niiden sovelluksista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Suvi Pasanen Kvasiryhmistä ja niiden sovelluksista Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2016 Tampereen yliopisto Informaatiotieteiden yksikkö PASANEN,

Lisätiedot

Algebra, 1. demot, 18.1.2012

Algebra, 1. demot, 18.1.2012 Algebra, 1. demot, 18.1.2012 1. Mielivaltaisen joukon X potenssijoukko eli kaikkien osajoukkojen joukko P(X) määritellään asettamalla P(X) = {A A X}. Päteekö ehto X P(X) a) aina, b) ei koskaan tai c) joskus?

Lisätiedot

Algebran ja lukuteorian harjoitustehtävien ratkaisut

Algebran ja lukuteorian harjoitustehtävien ratkaisut Algebran ja lukuteorian harjoitustehtävien ratkaisut Versio 1.0 (27.1.2006 Turun yliopisto Lukuteoria 1. a Tarkistetaan ekvivalenssirelaation ehdot. on refleksiivinen, sillä identiteettikuvaus, id : C

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Sisältö 1 Luupeista 2 1.1 Luupit ja niiden kertolaskuryhmät................. 2 2 Transversaalit 5 3

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

Tehtävä 4 : 2. b a+1 (mod 3)

Tehtävä 4 : 2. b a+1 (mod 3) Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

1 Cli ordin algebra. Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n :

1 Cli ordin algebra. Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n : 1 Cli ordin algebra Cli ordin algebron tai geometristen algebrojen tarkoitus on määritellä geometrinen tulo vektoriavaruudessa esim avaruudessa R n : Joukossa R voidaan määritellä summa ja tulo. Myöskin

Lisätiedot

Laskutoimitusten operaattorinormeista

Laskutoimitusten operaattorinormeista Laskutoimitusten operaattorinormeista Rami Luisto 27. tammikuuta 2012 Tiivistelmä Tässä kirjoitelmassa määrittelemme vektoriavaruuksien väliselle lineaarikuvaukselle normin ja laskemme sen eksplisiittisesti

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Insinöörimatematiikka D

Insinöörimatematiikka D Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Algebra. Jouni Parkkonen. Lukijalle

Algebra. Jouni Parkkonen. Lukijalle Algebra Jouni Parkkonen Lukijalle Tämä moniste perustuu kevään 2007 Algebran kurssiin. Koko materiaali on mahdollista käydä 12 viikon kurssilla, mahdollisesti algebran peruslauseen todistusta lukuunottamatta.

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

5.6 Yhdistetty kuvaus

5.6 Yhdistetty kuvaus 5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.

Lisätiedot

Algebra I, harjoitus 8,

Algebra I, harjoitus 8, Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja

Lisätiedot

1. Tekijärakenteet. 1. R on refleksiivinen, eli xrx. 2.R on symmetrinen, eli josxry, niinyrx. 3.R on transitiivinen, eli josxry jayrz, niinxrz.

1. Tekijärakenteet. 1. R on refleksiivinen, eli xrx. 2.R on symmetrinen, eli josxry, niinyrx. 3.R on transitiivinen, eli josxry jayrz, niinxrz. 1. Tekijärakenteet Tässä osassa tarkastellaan tekijärakenteita, kuten tekijäryhmiä ja tekijärenkaita, lähtien liikkeelle mahdollisimman yleisistä periaatteista. Tekijärakenteiden ajatuksena on päästä tarkastelemasta

Lisätiedot

Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016

Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Sisältö Johdanto 2 1 Ryhmäteoriaa 4 1.1 Ryhmän määritelmä....................... 4 1.2 Kertaluku.............................

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

(1.1) Ae j = a k,j e k.

(1.1) Ae j = a k,j e k. Lineaarikuvauksen determinantti ja jälki 1. Lineaarikuvauksen matriisi. Palautetaan mieleen, mikä lineaarikuvauksen matriisi annetun kannan suhteen on. Olkoot V äärellisulotteinen vektoriavaruus, n = dim

Lisätiedot

Ortogonaalinen ja ortonormaali kanta

Ortogonaalinen ja ortonormaali kanta Ortogonaalinen ja ortonormaali kanta Määritelmä Kantaa ( w 1,..., w k ) kutsutaan ortogonaaliseksi, jos sen vektorit ovat kohtisuorassa toisiaan vastaan eli w i w j = 0 kaikilla i, j {1, 2,..., k}, missä

Lisätiedot

Peruskäsitteet. 0. Kertausta

Peruskäsitteet. 0. Kertausta Peruskäsitteet 0. Kertausta Tässä luvussa käydään läpi sellaiset peruskäsitteet ja merkinnät, joiden oletetaan olevan tuttuja aiemmalta algebran kurssilta. 0.1. Laskutoimitukset. Olkoon X joukko. Joukon

Lisätiedot

Teemu Ojansivu Polynomien resultanteista

Teemu Ojansivu Polynomien resultanteista PRO GRADU -TUTKIELMA Teemu Ojansivu Polynomien resultanteista TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Helmikuu 2015 Tampereen yliopisto Matematiikan ja tilastotieteen laitos Ojansivu,

Lisätiedot

802320A LINEAARIALGEBRA OSA III

802320A LINEAARIALGEBRA OSA III 802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

Lineaarialgebra ja matriisilaskenta I

Lineaarialgebra ja matriisilaskenta I Lineaarialgebra ja matriisilaskenta I 29.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/26 Kertausta: Kanta Määritelmä Oletetaan, että w 1, w 2,..., w k W. Vektorijono ( w 1, w 2,..., w k ) on aliavaruuden

Lisätiedot

1 Määrittelyjä ja aputuloksia

1 Määrittelyjä ja aputuloksia 1 Määrittelyjä ja aputuloksia 1.1 Supremum ja infimum Aluksi kerrataan pienimmän ylärajan (supremum) ja suurimman alarajan (infimum) perusominaisuuksia ja esitetään muutamia myöhemmissä todistuksissa tarvittavia

Lisätiedot

(a, 0) + (c, 0) = (a + c, 0)

(a, 0) + (c, 0) = (a + c, 0) . Kompleksiluvut Kompleksiluvut C saadaan varustamalla taso R komponenteittaisella yhteenlaskulla (Esimerkki.3 (b)) ja kertolaskulla, joka määritellään asettamalla Huomaa, että ja (a, b)(c, d) =(ac bd,

Lisätiedot

Abstraktin algebran rakenteista sekä näiden välisistä morfismeista

Abstraktin algebran rakenteista sekä näiden välisistä morfismeista Abstraktin algebran rakenteista sekä näiden välisistä morfismeista Pro gradu -tutkielma Kari Kostama Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö Johdanto 2 1 Kahden alkion laskutoimitus

Lisätiedot

KOMBINATORIIKKA JOUKOT JA RELAATIOT

KOMBINATORIIKKA JOUKOT JA RELAATIOT Heikki Junnila KOMBINATORIIKKA LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset....3 2. Luonnolliset luvut. Äärelliset joukot...9 3. Joukon ositukset. Ekvivalenssirelaatiot......

Lisätiedot

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,

Lisätiedot

3 Skalaari ja vektori

3 Skalaari ja vektori 3 Skalaari ja vektori Määritelmä 3.1 Skalaari on suure, jolla on vain suuruus, jota mitataan jossakin mittayksikössä. Skalaaria merkitään reaaliluvulla. Esimerkki 3.2 Paino, pituus, etäisyys, pinta-ala,

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016 Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang 2187044 Matematiikan yksikkö Oulun yliopisto 2016 Sisältö Johdanto 2 1 Esitietoja 3 1.1 Ryhmät.............................. 3 1.1.1 Ryhmä ja aliryhmä....................

Lisätiedot

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Kantavektorien kuvavektorit määräävät lineaarikuvauksen Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 9 1 Implisiittinen derivointi Tarkastellaan nyt yhtälöä F(x, y) = c, jossa x ja y ovat muuttujia ja c on vakio Esimerkki tällaisesta yhtälöstä on x 2 y 5 + 5xy = 14

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot