Diofantoksen yhtälön ratkaisut
|
|
- Anna Kahma
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017
2 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön ratkaisut 5 4 Lineaarisen kongruenssiyhtälön ratkaisut 8 Lähdeluettelo 11 1
3 Johdanto Tämän tutkielman pääasiana on Diofantoksen yhtälön ax + by = c ratkaiseminen ja ratkaisujen olemassaolo. Sitä ennen esitellään suurin yhteinen tekijä ja Eukleideen algoritmi, joitten avulla saadaan Diofantoksen yhtälön tarkastelu tehtyä. Lisäksi käsitellään lineaarisen kongruenssiyhtälön ratkaisemista ja ratkaisujen olemassaoloa. Tutkielmassa on käytetty lähteenä teosta [1]. 1 Suurin yhteinen tekijä Lause 1. Olkoot a ja b kokonaislukuja, joista ainakin toinen on nollasta eroava. Jos d on suurin sellainen positiivinen kokonaisluku, että d a ja d b, niin on olemassa sellaiset kokonaisluvut x ja y, että d = ax + by. Todistus. Olkoon epätyhjä joukko A = {ax+by a, b, x, y Z, ax+by > 0}. Olkoon d joukon A pienin alkio, joten on olemassa sellaiset x 1 ja y 1, että d = ax 1 + by 1. Lisäksi on olemassa alkiot q ja r, joilla a = d q + r, 0 r < d. Osoitetaan, että d a. Toisin sanoen, tulemme näyttämään, että r = 0. Tehdään vastaoletus r 0, jolloin Tällöin r = a d q = a (ax 1 + by 1 )q. r = a(1 x 1 q) + b( y 1 q). Oletuksen nojalla tiedämme, että r 0. Täten on selvää, että r > 0 ja r = ax 2 + by 2, jossa x 2 = 1 x 1 ja y 2 = y 1 q. Tämän pitäisi kuitenkin olla mahdotonta oletuksen nojalla, sillä d on joukon A pienin alkio. Täten r = 0, josta seuraa d a. Samoin voidaan osoittaa, että d b. Siis d on alkioiden a ja b yhteinen jakaja. Olkoon m kokonaislukujen a ja b yhteinen tekijä. Siten m ax 1 + by 1 ja täten m d, mistä seuraa, että m d. Näin d on suurin kokonaislukujen a ja b yhteisistä tekijöistä eli d = d = ax + by kaikilla x, y Z. Huomautus 1. Edellisen lauseen positiivinen kokonaisluku d on yksikäsitteinen. Jos on kaksi positiivista kokonaislukua d 1 ja d 2 näillä omaisuuksilla, niin d 1 d 2 ja d 2 d 1. Täten d 1 = d 2. Edellisestä lauseesta seuraa tulos: 2
4 Seuraus 2. Jokaisella kokonaisluvulla e, joilla on e a ja e b, seuraa e d. Määritelmä 1. Olkoon a ja b Z, missä ainakin toinen kokonaisluvuista ei ole nolla. Kokonaislukua d > 0 kutsutaan alkioiden a ja b suurimmaksi yhteiseksi tekijäksi (jota merkitään d = syt(a, b)) jos ja vain jos d a ja d b sekä kaikilla positiivisilla kokonaisluvuilla e, joilla on e a ja e b, pätee e d. Lause 3. Olkoon d = syt(a 1, a 2,..., a n ), missä a 1, a 2,..., a n Z. Tällöin ( a1 syt d, a 2 d,, a ) n = 1. d Todistus. On selvää, että d a 1, d a 2,..., d a n. Täten a 1 = k 1 d, a 2 = k 2 d,..., a n = k n d, (1) missä k 1 Z jokaisella i = 1, 2,..., n. Olkoon ( a1 syt d, a 2 d,, a ) n = d > 1. d Vastaavasti saadaan d a 1 d, d a 2 d,..., d a n d. Tästä seuraa, että on olemassa k 1, k 2,..., k n, joille a 1 d = k 1d, a 2 d = k 2d,..., a n d = k nd. (2) Tällöin yhtälöryhmien (1) ja (2) nojalla saadaan Täten, a 1 = k 1d d, a 2 = k 2d d,..., a n = k nd d. d d a 1, d d a 2,..., d d a n. Siten, dd d, mikä on mahdotonta sillä d > 1. Täten d = 1. Lause 4. Olkoon a, b ja c Z ja a bc. Jos syt(a, b) = 1, niin a c. Todistus. Jos syt(a, b) = 1, niin 1 = ax + by, missä x, y Z. Täten Koska a acx ja a bcy, niin a c. c = acx + bcy. 3
5 2 Eukleideen algoritmi Olkoon a ja b kokonaislukuja. Yksi tapa kokonaislukujen a ja b suurimman yhteisen tekijän tuottamiseen on löytää pienin luku joukosta A = {ax + by a, b, x, y Z, ax + by > 0}. On kuitenkin olemassa paljon tehokkaampi keino suurimman yhteisen tekijän löytämiseen. Sitä kutsutaan Euklidiseksi algoritmiksi ja seuravassa näytämme, miten se toimii. Jos haluamme tuottaa suurimman yhteisen tekijän syt(a, b), ilman että menettäisimme oletuksen b a. Siis syt(a, b) = syt(b, r), missä r on jakojäännös alkiosta a jaettuna alkiolla b. Tämä tapahtuu, koska a = bq + r tai r = a bq, jollakin kokonaisluvulla q ja siten syt(a, b) r. Lisäksi syt(a, b) b. Täten suurimman yhteisen tekijän määritelmän nojalla saadaan syt(a, b) syt(b, r). (3) Samoin, koska a = bq + r, saamme syt(b, r) b ja syt(b, r) a. Täten syt(b, r) syt(a, b). (4) Yhtälöryhmistä (3) ja (4) saadaan yhtälö syt(a, b) = syt(b, r). Jos b = a, niin syt(a, b) = syt(a, 0) = syt(0, b) = a = b ja algoritmi päättyy. Yleensä saadaan kuitenkin syt(a, b) = syt(b, r 1 ) = syt(r 1, r 2 ) = = syt(r n 1, r n ) = syt(r n, 0) = r n, missä a = bq 1 + r 1, b a b = r 1 q 2 + r 2, 0 r 1 < b r 1 = r 2 q 3 + r 3, 0 r 2 < r 1. r n 2 = r n 1 q n + r n, 0 r n < r n 1 r n 1 = r n q n+1 + 0, 0 r n < r n 1. Tällöin r n on lukujen a ja b suurin yhteinen tekijä. 4
6 Esimerkki 1. Olkoot kokonaisluvut 1234 ja 250 ja lasketaan niiden suurin yhteinen tekijä. Tällöin Eukleideen algoritmin avulla 1234 = , = , < = , 0 16 < = , 0 10 < = , 0 6 < 10 6 = , 0 4 < 6 4 = < 4. Tällöin Eukleideen algoritmin nojalla syt(1234, 50) = 2. 3 Diofantoksen yhtälön ratkaisut Lause 5. Olkoon a, b ja c kokonaislukuja, joista ainakin a tai b ovat erisuuria kuin nolla. Jos d = syt(a, b) ja d c, niin Diofantoksen yhtälöllä on äärettömän monta ratkaisua ax + by = c x = x 0 + b d n, y = y 0 a d n, missä n on kokonaisluku ja (x 0, y 0 ) on yhtälön ratkaisu. Jos d ei jaa kokonaislukua c, niin Diofantoksen yhtälöllä ei ole ratkaisua. ax + by = c Todistus. Tapaus 1. Jos d c, niin on olemassa kokonaisluku k, jolla c = kd. Koska d on kokonaislukujen a ja b suurin yhteinen tekijä, Lauseen 1 mukaan on olemassa kokonaisluvut k 1 ja k 2, joilla saadaan yhtälö d = k 1 a + k 2 b, ja siten c = kk 1 a + kk 2 b. 5
7 Tällöin on ainakin yksi pari kokonaislukuja x 0 = kk 1 ja y 0 = kk 2, jotka ovat Diofantoksen yhtälön ratkaisuja. Pitää osoittaa, että on äärettömän monta ratkaisua ja varsinkin muodossa x = x 0 + b d n, y = y 0 + a d n, jossa (x, y) on Diofantoksen yhtälön mielivaltainen ratkaisu. Tällöin meillä on ax + by = c ja Täten eli joten Täten Koska ax 0 + by 0 = c. a(x x 0 ) + b(y y 0 ) = 0 a(x x 0 ) = b(y 0 y), a d (x x 0) = b d (y 0 y). (5) b d a d (x x 0). syt( a d, b d ) = 1, niin b d (x x 0). On siis olemassa kokonaisluku n, jolla saadaan yhtälö x = x 0 + n b d. (6) Tehdään oletus, että b ei ole nolla. Tällöin yhtälöiden (5) ja (6) nojalla saadaan a d n b d = b d (y 0 y) eli eli a d n = y 0 y y = y 0 a d n. 6
8 Tapauksessa a 0 menetelmä on samanlainen ja päättyy samaan tulokseen. Tällöin kiinnitetylle kokonaisluvulle n saadaan pari (x, y), missä x = x 0 + b d n, y = y 0 a d n, joka on yhtälön ax + by = c ratkaisu. Jos t on sellainen kokonaisluku, että niin x = x 0 + b d t, y = y 0 a d t, c = a(x 0 + b d t) + b(y 0 a d t) = ax 0 + ab d t + by 0 ba d t = ax 0 + by 0, mikä pitää paikkansa. Täten Diofantoksen yhtälöllä ax + by = c on ääretön määrä ratkaisua x = x 0 + b d n, y = y 0 a d n, missä n on kokonaisluku. Tapaus 2. Oletetaan, että d ei jaa lukua c. Kuitenkin d a ja d b, joten d ax + by, joten d c, mikä on ristiriita. Tässä tapauksessa Diofantoksen yhtälöllä ax + by = c ei ole yhtään ratkaisua. Esimerkki 2. Olkoon kokonaisluvut a = 12, b = 21 ja c = 100. Tällöin syt(12, 21) = 3. Kuitenkaan kokonaisluku 3 ei jaa kokonaislukua 100, joten Diofantoksen yhtälöllä 12x + 21y = 100 ei ole ratkaisua. Esimerkki 3. Olkoon kokonaisluvut a = 18, b = 28, ja c = 24. Tällöin syt(18, 28) = 2. Nyt 2 24 eli Diofantoksen yhtälöllä on äärettömän monta ratkaisua missä n on kokonaisluku. 18x + 28y = 24, x = x n, y = y 0 9n, 7
9 4 Lineaarisen kongruenssiyhtälön ratkaisut Lause 6. Olkoon a ja b kokonaislukuja ja m luonnollinen luku. Jos d = syt(a, m) ja d b, niin lineaarisella kongruenssiyhtälöllä ax b (mod m) on d kappaletta pareittain erilaisia ratkaisuja modulo m. Jos d ei jaa kokonaislukua b, niin lineaarisella kongruenssiyhtälöllä ei ole ratkaisua. Huomautus 2. Kaksi ratkaisua x 1 ja x 2 ovat erilaiset jos ja vain jos ne eivät ole ekvivalentteja toistensa kanssa modulo m. Todistus. Tapaus 1. Jos d b, niin lineaarisella kongruenssiyhtälöllä ax b (mod m) on ratkaisu, jos Diofantoksen yhtälöllä ax my = b (7) on ratkaisu. Yhtälöllä (7) on äärettömän monta ratkaisua x = x 0 m d n, missä (x 0, y 0 ) on yhtälön (7) ratkaisu. Aiomme osoittaa, että äärettömän monesta lineaarisen kongruenssiyhtälön ax b (mod m) ratkaisuista ainostaan pareittain erilaisia ovat d kappaletta. Huomataan, että kaikki kokonaisluvut x 0, x 0 m d, x 0 2 m d,, x 0 (d 1) m d ovat lineaarisen kongruenssiyhtälön ax b (mod m) ratkaisuja. Nämä ratkaisut ovat parettain erilaiset, sillä jos olisi sellaiset ratkaisuparit, jossa m x 0 n 1 d x m 0 n 2 d (mod m), missä n 1 ja n 2 ovat kokonaislukuja sekä 1 n 1 < n 2 d 1, niin eli m n 1 d n m 2 d (mod m) m (n 1 n 2 ) m d. 8
10 Tästä seuraa, että d (n 1 n 2 ), joka on ristiriita, sillä 1 n 1 < n 2 d 1. Tällöin ratkaisut x 0, x 0 m d, x 0 2 m d,, x 0 (d 1) m d ovat parettain erilaiset. Aiomme nyt todistaa, että lineaarisella kongruenssiyhtälöllä ax b (mod m) ei ole muita kuin pareittain erilaiset ratkaisut. Olkoon kokonaisluku k lineaarisen kongruenssiyhtälön ratkaisu, mutta erilainen kuin aikaisemmat. Tällöin ak b (mod m), kun tiedämme, että ax 0 b (mod m) on myös voimassa. Tällöin saadaan ak ax 0 (mod m). (8) Koska syt(a, m) = d, niin a = λ 1 d, m = λ 2 d, missä λ 1 ja λ 2 ovat kokonaislukuja. Yhtälön (8) nojalla saadaan λ 1 dk λ 1 dx 0 (mod λ 2 d). Täten λ 2 λ 1 (k x 0 ). Koska syt(λ 1, λ 2 ) = 1, niin λ 2 (k x 0 ). Tällöin on olemassa sellainen kokonaisluku ν, että k = x 0 + νλ 2. Jakoalgoritmilla saadaan ν = dq + r, missä q ja r, 0 r < d, ovat kokonaislukuja. Tästä saadaan k = x 0 + dλ 2 q + λ 2 r = x 0 + mq + m d r (9) ja täten mq = k (x 0 + m d r). 9
11 Näin k x 0 + m d r (mod m), missä 0 r d 1. Tällöin k ei ole yhtälölle uusi pareittain erilainen ratkaisu, mikä on ristiriidassa oletuksen kanssa. Tämä todistaa väitteen, että lineaarisella kongruenssilla ax b (mod m) on d kappaletta pareittain erilaisia ratkaisuja modulo m. Tapaus 2. Jos d ei jaa kokonaislukua b, niin Diofantoksen yhtälöllä ax my = b ei ole ratkaisua. Täten lineaarisella kongruenssilla ei ole myöskään ratkaisua. ax b (mod m) Huomautus 3. Silloin, kun syt(a, m) = 1, lineaarisella kongruensilla ax b (mod m) on yksikäsitteinen ratkaisu. Esimerkki 4. Olkoot kokonaisluvut a = 7 ja b = 11 sekä luonnollinen luku m = 21. Tällöin syt(7, 21) = 3, mutta kokonaisluku 7 ei jaa kokonaislukua 11. Tällöin lineaarisella kongruenssilla 7x 11 (mod 21) ei ole yhtään ratkaisua. Esimerkki 5. Olkoot kokonaisluvut a = 8 ja b = 12 sekä luonnollinen luku m = 20. Tällöin syt(8, 20) = 4 ja Tällöin lineaarisella kongruenssilla 8x 12 (mod 20) on 4 kappaletta pareittain erilaisia ratkaisuja. 10
12 Lähdeluettelo [1] Michael Th. Rassias: Problem-Solving and Selected Topics in Number Theory; In the Spirit of the Mathematical Olympiads, Spinger,
1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
LisätiedotLukuteorian kertausta
Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +
LisätiedotLineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
LisätiedotAlgebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
Lisätiedot2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...
LisätiedotAlkulukujen harmoninen sarja
Alkulukujen harmoninen sarja LuK-tutkielma Markus Horneman Oiskelijanumero:2434548 Matemaattisten tieteiden laitos Oulun ylioisto Syksy 207 Sisältö Johdanto 2 Hyödyllisiä tuloksia ja määritelmiä 3. Alkuluvuista............................
LisätiedotTekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
Lisätiedotrm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
Lisätiedota ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
LisätiedotAvaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,
LisätiedotSalausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotLUKUTEORIA johdantoa
LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,
LisätiedotR : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on
0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jenny Virolainen. Kongruenssista
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jenny Virolainen Kongruenssista Matematiikan, tilastotieteen ja losoan laitos Matematiikka Lokakuu 007 Tampereen yliopisto Matematiikan, tilastotieteen ja losoan
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotJOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
LisätiedotSalausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
LisätiedotRationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen
LisätiedotLUKUTEORIAN ALKEET HELI TUOMINEN
LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen
Lisätiedota b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jussi Tervaniemi. Primitiiviset juuret
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jussi Tervaniemi Primitiiviset juuret Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Heinäkuu 2006 Sisältö Johdanto 3 1 Lukuteorian peruskäsitteitä
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotPolynomien suurin yhteinen tekijä ja kongruenssi
Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Mikaela Hellstén. Pellin yhtälö
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Mikaela Hellstén Pellin yhtälö Luonnontieteiden tiedekunta Matematiikka Kesäkuu 017 Tampereen yliopisto Luonnontieteiden tiedekunta HELLSTÉN, MIKAELA: Pellin yhtälö
LisätiedotALKULUKUJA JA MELKEIN ALKULUKUJA
ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja
Lisätiedot3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi
3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,
Lisätiedot1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
LisätiedotKuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
LisätiedotSisällöstä. Oppimateriaali. 1 Lukujärjestelmät. 1.1 Jakoyhtälö
1 Sisällöstä Lukuteorian kurssi on ensisijaisesti tarkoitettu opettajalinjan maisterikurssiksi. Tämä näkyy mm. siten, että perinteisesti lukuteoriaan kuuluvan materiaalin lisäksi kurssi sisältää jonkin
LisätiedotTestaa taitosi 1: Lauseen totuusarvo
Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
LisätiedotR 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,
2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotEnsimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]
LisätiedotValitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.
MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi
Lisätiedot2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Lisätiedot(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)
1. Pätevätkö seuraavat kongruenssiyhtälöt? (a) 40 13 (mod 9) (b) 211 12 (mod 2) (c) 126 46 (mod 3) Ratkaisu. (a) Kyllä, sillä 40 = 4 9+4 ja 13 = 9+4. (b) Ei, sillä 211 on pariton ja 12 parillinen. (c)
LisätiedotEnsimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
LisätiedotDiofantoksen yhtälöt Pro gradu -tutkielma Pasi Juopperi Matematiikan ja tilastotieteen laitos Helsingin yliopisto Syksy 2013
Diofantoksen yhtälöt Pro gradu -tutkielma Pasi Juopperi Matematiikan ja tilastotieteen laitos Helsingin yliopisto Syksy 2013 Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis- luonnontieteellinen
LisätiedotPrimitiiviset juuret: teoriaa ja sovelluksia
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,
LisätiedotLiite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä
LisätiedotTehtävä 4 : 2. b a+1 (mod 3)
Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,
Lisätiedota k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
LisätiedotToispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
LisätiedotLuonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
Lisätiedot(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
LisätiedotKannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Lisätiedot2. Eukleideen algoritmi
2. Eukleideen algoritmi 2.1 Suurimman yhteisen tekijän tehokas laskutapa Tässä luvussa tarkastellaan annettujen lukujen suurimman yhteisen tekijän etsimistä tehokkaalla tavalla. Erinomaisen käyttökelpoinen
LisätiedotLUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO
LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO Matemaatikot eivät ole tyytyväisiä tietäessään asioita neljästä miljoonasta tai neljästä miljardista kokonaisluvusta. He haluavat tietää asioita jokaisesta äärettömän
LisätiedotTodistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.
18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset
LisätiedotMalliratkaisut Demot
Malliratkaisut Demot 5 2.2.28 Tehtävä a) Tehtävä voidaan sieventää muotoon max 5x + 9x 2 + x 3 s. t. 2x + x 2 + x 3 x 3 x 2 3 x 3 3 x, x 2, x 3 Tämä on tehtävän kanoninen muoto, n = 3 ja m =. b) Otetaan
LisätiedotLUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että
LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,
LisätiedotAlgebran perusteet. 44 ϕ(105) = (105). Näin ollen
Algebran perusteet Harjoitus 4, ratkaisut kevät 2016 1 a) Koska 105 = 5 21 = 3 5 7 ja 44 = 2 2 11, niin syt(44, 105) = 1 Lisäksi ϕ(105) = ϕ(3 5 7) = (3 1)(5 1)(7 1) = 2 4 6 = 48, joten Eulerin teoreeman
LisätiedotYhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).
Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta
LisätiedotTee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!
MAA11 Koe.4.014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan
Lisätiedot7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
LisätiedotLiittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
LisätiedotMatematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
LisätiedotKanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
LisätiedotMatematiikan mestariluokka, syksy 2009 7
Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty
LisätiedotHN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
LisätiedotJuuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,
LisätiedotJäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan
Jäännösluokat LUKUTEORIA JA TODIS- TAMINEN, MAA Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan lukujoukkoja 3k k Z =, 6, 3, 0, 3, 6, 3k + k Z =,,,,, 7, 3k + k Z =,,,,, 8, Osoita,
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
LisätiedotDiskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:
LisätiedotOminaisvektoreiden lineaarinen riippumattomuus
Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin
LisätiedotLatinalaiset neliöt ja taikaneliöt
Latinalaiset neliöt ja taikaneliöt LuK-tutkielma Aku-Petteri Niemi Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2018 Sisältö Johdanto 2 1 Latinalaiset neliöt 3 1.1 Latinalainen neliö.........................
Lisätiedot= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
Lisätiedot. Silloin 1 c. Toisaalta, koska c on lukujen a d ja b d. (a 1,a 2,..., a n )
Lukuteorian alkeita Matematiikkakilpailuissa on yleensä tehtäviä, joiden aiheala on alkeellinen lukuteoria. Tässä esitellään perustellen ne lukuteorian tiedot, joihin lukuteoria-aiheisissa tehtävissä yleensä
LisätiedotLiite 2. Ryhmien ja kuntien perusteet
Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja
Lisätiedoton Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
LisätiedotEsitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
LisätiedotTodistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
Lisätiedotkaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
LisätiedotH = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Ville-Matti Erkintalo. Lukuteoria ja RSA
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Ville-Matti Erkintalo Lukuteoria ja RSA Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2008 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
LisätiedotApprobatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
Lisätiedot41 s. Neljännessä luvussa käsitellään erikseen parillisia täydellisiä lukuja. Luvussa osoitetaan Eukleides Euler teoreema,
Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis luonnontieteellinen tiedekunta Tekijä/Författare Author Katja Niemistö Työn nimi / Arbetets titel Title Täydelliset luvut Oppiaine /Läroämne Subject
Lisätiedot[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko
3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin
LisätiedotDerivaattaluvut ja Dini derivaatat
Derivaattaluvut Dini derivaatat LuK-tutkielma Helmi Glumo 2434483 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Taustaa 2 2 Määritelmät 4 3 Esimerkkejä lauseita 7 Lähdeluettelo
LisätiedotLineaarinen toisen kertaluvun yhtälö
Lineaarinen toisen kertaluvun yhtälö Keijo Ruotsalainen Mathematics Division Lineaarinen toisen kertaluvun differentiaaliyhtälö Toisen kertaluvun täydellinen lineaarinen yhtälö muotoa p 2 (x)y + p 1 (x)y
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan
Lisätiedot6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
Lisätiedot33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen
LisätiedotLukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto
Lukuteorian helmiä lukiolaisille Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto 0. Taustaa Sain 24.4.2007 Marjatta Näätäseltä sähköpostiviestin, jonka aihe oli Fwd: yhteistyökurssi,
LisätiedotLuuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006
Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Sisältö 1 Luupeista 2 1.1 Luupit ja niiden kertolaskuryhmät................. 2 2 Transversaalit 5 3
LisätiedotLineaarialgebra ja matriisilaskenta I, HY Kurssikoe Ratkaisuehdotus. 1. (35 pistettä)
Lineaarialgebra ja matriisilaskenta I, HY Kurssikoe 26.10.2017 Ratkaisuehdotus 1. (35 pistettä) (a) Seuraavat matriisit on saatu eräistä yhtälöryhmistä alkeisrivitoimituksilla. Kuinka monta ratkaisua yhtälöryhmällä
LisätiedotJohdatus lukuteoriaan Harjoitus 11 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus syksy 008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä Todista ketjumurtoluvun peräkkäisille konvergenteille kaava ( ) n induktiolla käyttämällä jonojen ( ) ja ( ) rekursiokaavaa.
LisätiedotSyklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016
Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Sisältö Johdanto 2 1 Ryhmäteoriaa 4 1.1 Ryhmän määritelmä....................... 4 1.2 Kertaluku.............................
Lisätiedot