1 Lukujen jaollisuudesta
|
|
- Aune Ranta
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Matematiikan mestariluokka, syksy Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun jatkossa puhutaan luvuista, niin ilman eri mainintaa tarkoitetaan kokonaislukuja. 1.1 Jaollisuus Määritelmä 1.1 Sanotaan, että kokonaisluku a on jaollinen luvulla b, jos a = kb, jollakin luvulla k. Tällöin sanotaan myös, että b on luvun a tekijä tai että b jakaa luvun a. Merkintä. Jos b on luvun a tekijä, niin merkitään b a. Jos b ei ole luvun a tekijä, merkitään b a. Esimerkki. 3 12, ( 5) 45 ja Luvun 6 tekijät ovat ±1, ±2, ±3 ja ±6. Esimerkki. Todista: a) Jos a b ja b c, niin a c. b) Jos c a ja c b, niin c (a + b). Ratkaisu. a) Jos a b ja b c, niin b = ka ja c = lb, joten c = l(ka) = (kl)a. Siis a c. b) Jos c a ja c b, niin a = kc ja b = lc, joten a + b = kc + lc = (k + l)c. Siis c (a + b). Lause 1.2 Jos c a ja c b, niin c (ax + by) kaikilla x, y Z. Todistus. Jos c a ja c b, niin a = kc ja b = lc, joillakin k, l Z. Tällöin ax + by = (kc)x + y(lc)y = (kx + ly)c, joten c (ax + by). Esimerkki. a) Jos c a ja c b, niin c (a + b). Nimittäin, jos olisi c a ja c (a + b), niin a = kc ja a + b = lc, joten b = lc a = lc kc = (l k)c eli c b, mikä on ristiriita. b) Vastaavasti päättelemällä saadaan: Jos c a ja c b, niin c (a b). 1 Pitävätkö seuraavat väitteet paikkansa? Perustele vastauksesi! a) Jos b a ja d c, niin bd ac. b) Jos b a ja d c, niin (b + d) (a + c). 2 Pitävätkö seuraavat väitteet paikkansa? Perustele vastauksesi! a) Jos c ab, niin c a tai c b. b) Jos c (a + b), niin c a tai c b. 3 Onko olemassa sellaisia kokonaislukuja a, b ja c, että a bc, mutta a b ja a c?
2 Matematiikan mestariluokka, syksy Jakoyhtälö Tarkastellaan lukuja a ja b, missä b > 0. Voidaan todistaa, että b:n peräkkäisen luvun joukossa {a, a 1, a 2,..., a (b 1)} on täsmälleen yksi b:llä jaollinen luku. Käytetään tälle luvulle merkintää a r. Tällöin siis on olemassa sellainen yksikäsitteinen luku q, että a r = qb eli a = qb + r. On päätelty: Lause 1.3 (Jakoyhtälö) Lukuja a ja b > 0 kohti on olemassa yksikäsitteiset luvut q ja r, joille pätee a = qb + r, missä 0 r < b. Jakoyhtälön lukua a sanotaan jaettavaksi, lukua b jakajaksi, lukua q osamääräksi ja lukua r jakojäännökseksi. Esimerkki. a) Parillinen luku on muotoa 2k ja pariton luku on muotoa 2k + 1, k Z. b) Kolmella jaollinen luku on muotoa 3k ja luku, joka ei ole jaollinen kolmella, on muotoa 3k + 1 tai 3k + 2, k Z. Esimerkki. Osoita, että kahden peräkkäisen luvun tulo on aina parillinen. Ratkaisu. Tutkitaan tuloa a(a + 1). Jos a on parillinen eli a = 2k, niin a(a + 1) = 2k(a + 1), joka on parillinen luku. Jos a on pariton eli a = 2k + 1, niin a + 1 = (2k + 1) + 1 = 2(k + 1), jolloin a(a + 1) = 2a(k + 1), joka myös on parillinen luku. Esimerkki. Todista, että a 2 on parillinen, jos ja vain jos a on parillinen. Ratkaisu. Oletetaan ensin, että a on parillinen, eli että a = 2k. Tällöin a 2 = (2k) 2 = 4k 2 = 2(2k 2 ), joten a 2 on parillinen. Oletetaan sitten, että a on pariton, eli että a = 2k + 1. Tällöin a 2 = (2k + 1) 2 = 4k 2 + 4k + 1 = 2(2k 2 + 2k) + 1, joten a 2 on pariton. Siis a 2 on parillinen ainoastaan silloin, kun a on parillinen. 4 Osoita, että jos a on pariton, niin a 2 1 on jaollinen luvulla 8. 5 Todista, että a 3 a on aina kolmella jaollinen. Opastus: Jakoyhtälön mukaan a on muotoa 3k, 3k + 1 tai 3k Osoita, että luku on jaollinen luvulla 6, jos ja vain jos se on jaollinen luvuilla 2 ja 3. 7 Osoita, että kolmen peräkkäisen kokonaisluvun tulo on aina jaollinen luvulla 6. Opastus. Edellinen tehtävä.
3 Matematiikan mestariluokka, syksy Lukujärjestelmät Kokonaisluvut esitetään tavallisesti kymmenjärjestelmässä. Lukuja on mahdollista esittää myös lukujärjestelmissä, joissa kantaluku on jokin muu luku kuin kymmenen. Tämä perustuu seuraavaan tulokseen. Lause 1.4 Olkoon b 2. Jokainen positiivinen kokonaisluku a voidaan esittää yksikäsitteisesti muodossa missä 0 a i < b, kaikilla i = 0,..., n. a = a n b n + a n 1 b n a 2 b 2 + a 1 b + a 0, Todistus. Olkoon a > 0 ja b 2. Jakoyhtälön nojalla on olemassa sellaiset luvut q 0 ja a 0, että a = q 0 b + a 0, 0 a 0 < b. Jos q 0 = 0, niin a = a 0 ja tarkastelu voidaan lopettaa. Jos q > 0, niin sovelletaan jakoyhtälöä lukuihin q 0 ja b. On siis olemassa sellaiset luvut q 1 ja a 1, että q 0 = q 1 b + a 1, 0 a 1 < b. Jos q 1 = 0, niin a = a 1 b + a 0 ja tarkastelu voidaan lopettaa. Jos q > 0, niin jatketaan jakoyhtälön soveltamista, kunnes jollain indeksillä n saadaan q n = 0. Lukujen q 0,..., q n 1 esityksistä saadaan a = q 0 b + a 0 = (q 1 b + a 1 )b + a 0 = q 1 b 2 + a 1 b + a 0 =... = a n b n + a n 1 b n a 1 b + a 0. Jakoyhtälön antamat luvut a 0,..., a n ovat yksikäsitteisiä, joten esitys on yksikäsitteinen. Esimerkki. Esitä 5-järjestelmässä ja 8-järjestelmässä luku 93. Ratkaisu. 5-järjestelmässä saadaan 93 = = ( ) = = ja 8-järjestelmässä saadaan 93 = = ( ) = = Esitä 5- ja 7-järjestelmissä luku Esitä kymmenjärjestelmässä a) 8-järjestelmän luku 427 8, b) 5-järjestelmän luku , c) 3-järjestelmän luku
4 Matematiikan mestariluokka, syksy Suurin yhteinen tekijä ja Eukleideen algoritmi Määritelmä 1.5 Lukujen a ja b suurin yhteinen tekijä syt(a, b) on näiden lukujen yhteisistä tekijöistä suurin. Esimerkki. Tarkastamalla lukujen 114 ja 42 tekijät huomataan, että syt(114, 42) = 6. Kahden luvun suurin yhteinen tekijä saadaan selville Eukleideen algoritmilla. Sen periaate selviää seuraavasta esimerkistä. Esimerkki. Tarkastellaan lukuja 114 ja 42. Muodostetaan jakoyhtälö 114 = Sovelletaan jakoyhtälöä edelleen lukuihin 42 ja 30, jolloin saadaan 42 = Edelleen jakoyhtälöä soveltamalla lukuihin 30 ja 12 saadaan Tämän jälkeen jako meneekin tasan, eli 30 = = Viimeisen yhtälön jakaja on suurin yhteinen tekijä, eli syt(114, 42) = 6. Perustellaan, että suurin yhteinen tekijä löydetään edellisen esimerkin menetelmällä. Ensiksikin kulkemalla yhtälöitä lopusta alkuun saadaan 12 = 2 6, 30 = 2 (2 6) + 6 = 5 6, 42 = 1 (5 6) = 7 6, 114 = 2 (7 6) = Luku 6 on siis lukujen 114 ja 42 yhteinen tekijä. Toisaalta tarkastelemalla jakojännöksiä lopusta alkuun saadaan 6 = = 30 2 (42 30) = = ( ) = Koska löydettiin luvut x = 3 ja y = 8, joille pätee 6 = 114x + 42y, niin Lauseen 1.2 mukaan jokainen lukujen 114 ja 42 yhteinen tekijä on myös luvun 6 tekijä. Yhdistämällä nämä kaksi huomiota saadaan, että syt(114, 42) = 6.
5 Matematiikan mestariluokka, syksy Esimerkki. Etsitään Eukleideen algoritmillä syt(7695, 2205). Siis syt(7695, 2205) = = = = Esimerkki. Etsitään sellaiset x ja y, että 7695x y = 45. Kulkemalla edellisen esimerkin yhtälöitä lopusta alkuun päin saadaan 45 = = ( ) = Siis x = 2 ja y = 7. Todistetaan seuraavaksi Eukleideen algoritmi täsmällisesti. Sitä varten kirjataan: Huomautus. c = syt(a, b), jos ja vain jos c toteuttaa seuraavat ehdot: 1) c a ja c b. 2) Jos d a ja d b, niin d c. Käytetään tätä huomiota seuraavan tuloksen todistuksessa. Apulause 1.6 Jos a = qb + r, niin syt(a, b) = syt(b, r). Todistus. Merkitään c = syt(a, b). On siis todistettava, että syt(b, r) = c. 1) Koska c a ja c b, niin c ( qb) ja siis c (a qb) eli c r. Näin ollen c on lukujen b ja r yhteinen tekijä. 2) Jos nyt d b ja d r, niin Lauseen 1.2 perusteella on d (qb + r) eli d a. Koska nyt d a, d b ja c = syt(a, b), niin d c. Siis c on lukujen b ja r tekijöistä suurin. Nyt on helppo todistaa Eukleideen algoritmi: Lause 1.7 (Eukleideen algoritmi) Positiivisille luvuille a ja b voidaan kirjoittaa Tällöin syt(a, b) = r k. a = q 1 b + r 1, 0 < r 1 < b, b = q 2 r 1 + r 2, 0 < r 2 < r 1 r 1 = q 3 r 2 + r 3, 0 < r 3 < r 2. r k 2 = q k r k 1 + r k, 0 < r k < r k 1 r k 1 = q k+1 r k + 0. Todistus. Koska jakojäännöksille pätee r 1 > r 2 >..., niin prosessi todella jossain vaiheessa pysähtyy, eli r k+1 = 0. Apulauseen nojalla on syt(a, b) = syt(b, r 1 ) = = syt(r k, 0) = r k.
6 Matematiikan mestariluokka, syksy Kulkemalla Eukleideen algoritmi lopusta alkuun saadaan: Lause 1.8 On olemassa sellaiset luvut x ja y, että syt(a, b) = ax + by. Esimerkki. Todista, että jos c a ja c b, niin c syt(a, b). Ratkaisu. Edellinen lause antaa esityksen syt(a, b) = ax + by. Koska c a ja c b, niin Lauseen 1.2 perusteella on c (ax + by) eli c syt(a, b). Lauseen 1.8 avulla voidaan todistaa myös: Lause 1.9 (Eukleideen lemma) Jos a bc ja syt(a, b) = 1, niin a c. Todistus. Lauseen 1.8 mukaan on 1 = ax + by, joten c = axc + byc. Koska a axc ja oletuksen mukaan a byc, niin a (axc + byc) eli a c. Jos syt(a, b) = 1, niin luvut a ja b ovat keskenään jaottomia. Sanotaan myös, että luvut a ja b ovat suhteellisia alkulukuja. 10 Osoita, että kaksi peräkkäistä lukua ovat aina keskenään jaottomia. 11 Laske syt(162, 138) ja esitä se muodossa 162x + 138y. 12 Laske syt(1769, 2378) ja esitä se muodossa 1769x y. 13 Olkoon k > 0. Osoita, että syt(ka, kb) = k syt(a, b). 14 Olkoon c = syt(a, b). Osoita, että c d, jos ja vain jos d = ax + by joillakin luvuilla x ja y. 15 Osoita, että jos b a ja c a, missä b ja c ovat keskenään jaottomia, niin bc a. 16 Olkoon syt(a, b) = ax + by. Osoita, että x ja y ovat keskenään jaottomia.
Matematiikan mestariluokka, syksy 2009 7
Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty
LisätiedotLUKUTEORIA johdantoa
LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,
LisätiedotYhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).
Yhtäpitävyys Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite). Toisaalta ollaan osoitettu, että n 2 on parillinen (oletus) n on parillinen (väite). Nämä kaksi väitelausetta
LisätiedotDiofantoksen yhtälön ratkaisut
Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön
LisätiedotLukuteorian kertausta
Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +
LisätiedotValitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.
MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi
LisätiedotTekijä Pitkä Matematiikka 11 ratkaisut luku 2
Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen
Lisätiedotrm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
LisätiedotTestaa taitosi 1: Lauseen totuusarvo
Testaa taitosi 1: Lauseen totuusarvo 1. a) Laadi lauseen A (B A) totuustaulu. b) Millä lauseiden A ja B totuusarvoilla a-kohdan lause on tosi? c) Suomenna a-kohdan lause, kun lause A on olen vihainen ja
LisätiedotMatematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku
LisätiedotEsitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
LisätiedotR : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on
0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset
LisätiedotAlgebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
Lisätiedot2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
LisätiedotR 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,
2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään
LisätiedotJaollisuus kymmenjärjestelmässä
Jaollisuus kymmenjärjestelmässä Lauseen 4.5 mukaan jokaiselle n N on yksikäsitteiset kokonaisluvut s 0 ja a 0, a 1,..., a s, joille n = a s 10 s + a s 1 10 s 1 + + a 1 10 + a 0 = a s a a 1... a 0, (1)
LisätiedotJokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
LisätiedotLUKUTEORIAN ALKEET HELI TUOMINEN
LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen
Lisätiedot2017 = = = = = = 26 1
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu
LisätiedotVastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
LisätiedotSalausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 6. Alkeislukuteoria 6.1 Jaollisuus Käsitellään kokonaislukujen perusominaisuuksia: erityisesti jaollisuutta Käytettävät lukujoukot: Luonnolliset luvut IN = {0,1,2,3,...
LisätiedotTodistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
LisätiedotJohdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma
Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen
LisätiedotLukuteorian kurssi lukioon
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sini Siira Lukuteorian kurssi lukioon Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö SIIRA, SINI: Lukuteorian
LisätiedotTee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!
MAA11 Koe.4.014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan
LisätiedotSalausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)
Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai
LisätiedotALKULUKUJA JA MELKEIN ALKULUKUJA
ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja
LisätiedotSuurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.)
Suurin yhteinen tekijä (s.y.t.) ja pienin yhteinen monikerta (p.y.m.) LUKUTEORIA JA TODISTAMINEN, MAA11 Määritelmä, yhteinen tekijä ja suurin yhteinen tekijä: Annettujen lukujen a ja b yhteinen tekijä
LisätiedotLUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO
LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO Matemaatikot eivät ole tyytyväisiä tietäessään asioita neljästä miljoonasta tai neljästä miljardista kokonaisluvusta. He haluavat tietää asioita jokaisesta äärettömän
LisätiedotJuuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) 72 = 2 36 = 2 2 18 = 2 2 2 9 = 2 2 2 3 3 = 2 3 3 2 252 = 2 126 = 2 2 63 = 2 2 3 21 = 2 2 3 3 7 = 2 2 3 2 7 syt(72, 252) = 2 2 3 2 = 36 b) 252 = 72 3 + 36 72 = 36 2 syt(72, 252) = 36 c) pym(72,
LisätiedotMääritelmä, alkuluku/yhdistetty luku: Esimerkki . c) Huomautus Määritelmä, alkutekijä: Esimerkki
Alkuluvut LUKUTEORIA JA TODISTAMINEN, MAA11 Jokainen luku 0 on jaollinen ainakin itsellään, vastaluvullaan ja luvuilla ±1. Kun muita eri ole, niin kyseinen luku on alkuluku. Määritelmä, alkuluku/yhdistetty
LisätiedotLUKUTEORIAN ALKEET KL 2007
LUKUTEORIAN ALKEET KL 2007 HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 5 2.1. Jaollisuus 6 2.2. Suurin
LisätiedotH = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,
Lisätiedot(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =
JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 7, MALLIRATKAISUT Tehtävä Etsi seuraavien rationaalilukujen ketjumurtokehitelmät: (i) 7 6 (ii) 4 7 (iii) 65 74 (iv) 63 74 Ratkaisu Sovelletaan Eukleideen algoritmia
LisätiedotMitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.
Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden
Lisätiedota b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotLukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)
Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten
LisätiedotLUKUTEORIAN ALKEET. 1. Luonnolliset luvut. N = {1, 2, 3,... } luonnolliset luvut Z = {..., 3, 2, 1, 0, 1, 2, 3,... } kokonaisluvut
LUKUTEORIAN ALKEET Alkusanat Tässä on Heli Tuomisen luentomonisteeseen perustuvat muistiinpanot kevään 2013 Lukuteorian alkeet -kurssista. Kurssi on suunnattu erityisesti aineenopettajiksi opiskeleville
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO
8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................
LisätiedotTodistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.
18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.
Lisätiedot802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III
802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on
Lisätiedot2 j =
1. Modulaariaritmetiikkaa Yksinkertaisissa salausjärjestelmissä käytettävä matematiikka on paljolti lukuteoriaan pohjautuvaa suurten lukujen modulaariaritmetiikkaa (lasketaan kokonaisluvuilla modulo n).
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille
LisätiedotLukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto
Lukuteorian helmiä lukiolaisille Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto 0. Taustaa Sain 24.4.2007 Marjatta Näätäseltä sähköpostiviestin, jonka aihe oli Fwd: yhteistyökurssi,
Lisätiedot(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................
LisätiedotEnnakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
Lisätiedoton Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
Lisätiedota k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx
x x x x x x x x Matematiikan johdantokurssi, syksy 08 Harjoitus, ratkaisuista Hanoin tornit -ongelma: Tarkastellaan kolmea pylvästä A, B ja C, joihin voidaan pinota erikokoisia renkaita Lähtötilanteessa
LisätiedotJOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
LisätiedotDiskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg
Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:
LisätiedotMatematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Lisätiedotk=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0
1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota
Lisätiedot= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä
Lisätiedot3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi
3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,
Lisätiedota ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
LisätiedotEkvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa
Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden
LisätiedotLukion matematiikkakilpailun alkukilpailu 2015
Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä
LisätiedotLUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että
LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,
LisätiedotTörmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä
Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Anne-Maria Ernvall-Hytönen 14. tammikuuta 2011 Sisältö 1 Jaollisuus, alkuluvut, ynnä muut perustavanlaatuiset asiat 2 1.1 Lukujen tekijöiden
Lisätiedot11. Jaollisuudesta. Lemma Oletetaan, että a, b R.
11. Jaollisuudesta Edellisen luvun esimerkissä tarvittiin tietoa erään polynomin jaottomuudesta. Tämä on hyvin tavallista kuntalaajennosten yhteydessä. Seuraavassa tarkastellaan hieman jaollisuuskäsitettä
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]
LisätiedotAlkulukujen harmoninen sarja
Alkulukujen harmoninen sarja LuK-tutkielma Markus Horneman Oiskelijanumero:2434548 Matemaattisten tieteiden laitos Oulun ylioisto Syksy 207 Sisältö Johdanto 2 Hyödyllisiä tuloksia ja määritelmiä 3. Alkuluvuista............................
Lisätiedot! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
Lisätiedot4. Eulerin ja Fermat'n lauseet
4. Eulerin ja Fermat'n lauseet 4.1 Alkuluokka ja Eulerin φ-funktio Yleensä olemme kiinnostuneita vain niistä jäännösluokista modulo m, joiden alkiot ovat suhteellisia alkulukuja luvun m kanssa. Näiden
Lisätiedota b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotFunktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
Lisätiedot[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko
3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin
LisätiedotKantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
Lisätiedot1 Algebralliset perusteet
1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
Lisätiedot1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.
Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i
LisätiedotDiskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8
Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon
Lisätiedot+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain
Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain
LisätiedotLukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)
Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten
LisätiedotTAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jussi Tervaniemi. Primitiiviset juuret
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jussi Tervaniemi Primitiiviset juuret Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Heinäkuu 2006 Sisältö Johdanto 3 1 Lukuteorian peruskäsitteitä
LisätiedotMatematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 6 Sarjojen suppeneminen Kiinnostuksen kohteena on edelleen sarja a k = a + a 2 + a 3 + a 4 +... k= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan
LisätiedotTenttiin valmentavia harjoituksia
Tenttiin valmentavia harjoituksia Alla olevissa harjoituksissa suluissa oleva sivunumero viittaa Juha Partasen kurssimonisteen siihen sivuun, jolta löytyy apua tehtävän ratkaisuun. Funktiot Harjoitus.
LisätiedotRationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,
Lisätiedot1. Osoita juuren määritelmän ja potenssin (eksponenttina kokonaisluku) laskusääntöjen. xm = ( n x) m ;
MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Ohjaus 11 7.1.009 alkavalle viikolle Ratkaisut (AK) Luennoilla on nyt menossa vaihe, missä Hurri-Syrjäsen monistetta käyttäen tutustutaan tärkeiden transkendenttifunktioiden
LisätiedotKurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.
HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on
LisätiedotPrimitiiviset juuret: teoriaa ja sovelluksia
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,
LisätiedotLiite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa
Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa - johdanto - matemaattinen induktiotodistus - matriisien kertolaskun käyttömahdollisuus - käsinlaskuesimerkkejä - kaikki välivaiheet esittävä
LisätiedotLineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
LisätiedotMatematiikan tukikurssi, kurssikerta 1
Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon
LisätiedotÄärellisesti generoitujen Abelin ryhmien peruslause
Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.
Lisätiedot802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä
802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian
LisätiedotBijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
LisätiedotTOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28
TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS
LisätiedotALKULUVUISTA (mod 6)
Oulun Yliopisto Kandidaatintutkielma ALKULUVUISTA (mod 6) Marko Moilanen Opiskelijanro: 1681871 17. joulukuuta 2014 Sisältö 1 Johdanto 2 1.1 Tutkielman sisältö........................ 2 1.2 Alkulukujen
Lisätiedot