k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

Koko: px
Aloita esitys sivulta:

Download "k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0"

Transkriptio

1 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota usein kutsutaan muuttuksi. Symbolin 1 sovitaan tarkoittavan ääretöntä negatiivista lukua, jolle pätee 1 <akaikilla kokonaisluvuilla a, = 1, 1 + a = 1 kaikilla kokonaisluvuilla a. Symbolille 1 ei ole määritelty muita operaatioita, käytämme sitä ainoastaan nollapolynomin asteen merkkinä. Määritelmä 1.1. Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Olkoon n N, olkoota n,a n 1,...,a 1,a 0 K. Lauseke nx P (X) = a k X k = a n X n + a n 1 X n a 1 X + a 0 on yhden muuttun K-kertoiminen polynomi.lukua 0 on polynomin P (X) vakiotermi. Josylläolevassalausekkeessaa n 6=0,niinpolynominP (X) aste on deg(p (X)) = n a n on polynomin P (X) korkeimman asteen kerroin. Nollapolynomin0 aste on 1. Kaikkien K-kertoimisten polynomien joukkoa merkitään K[X]. Kommutatiivinen rengas K on polynomin P (X) K[X] kerroinrengas. Olkoot P (X) = P n k=1 a kx k Q(X) = P m k=1 b kx k K-kertoimisia polynome, n m. Olkootb m+1 = b m+ = = b n =0,josn>m.Polynomiensummatulo määritellään asettamalla nx P (X)+Q(X) = (a k + b k )X k (1) P (X)Q(X) = n+m X X i+j=k a i b j X k. Vähemmän havainnollinen mutta täsmällisempi Määritelmän 1.1 kanssa ekvivalentti tapa määritellä polynomit on korvata polynomin lauseke P n a kx k kertoimien muodostamalla jonolla (a 0,a 1,...,a n, 0, 0,...) määritellä yhteenlasku komponenteittain kuten jonoille on tapana kertolasku kaavan (1) mukaisesti. Tällöin jono (0, 1, 0, 0, 0,...) on symbolin X vastine: Määritelmä 1.1. Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Kuvaus! : N! K, jolleonn! N siten, että!(k) =0kaikille k N!, on K-kertoiminen polynomi. Kaikkien K-kertoimisten polynomien joukko on K[X]. Määritellään laskutoimitukset + joukossa K[X] asettamalla (! +! 0 )(k) =!(k)+! 0 (k) (!! 0 )(k) = kaikille k N. Polynomin! 6= 0aste on Nollapolynomin 0 aste on 1. X i,jn:i+j=k!(i)! 0 (j) deg! =max{k N :!(k) 6= 0}. 7

2 Huomaa, että polynomeille P (X),Q(X) K[X] pätee P (X) =Q(X) täsmälleen silloin, kun niiden kerroinjonot ovat samat. Propositio 1.. Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Joukko K[X] varustettuna polynomien yhteen- kertolaskulla on kommutatiivinen rengas. Kuvaus i: K! K[X], jokakuvaarenkaank alkion a polynomiksi a K[X], oninjektiivinenrengashomomorfismi. Todistus. Selvästi polynomit 0 1 ovat yhteenlaskun kertolaskun neutraalialkiot. Muut renkaan määrittelevät ominaisuudet seuraavat suoraviivaisesti siitä, että K on kommutatiivinen rengas. Kuvauksen i ominaisuudet on myös helppo tarkastaa. Polynomirenkaat ovat tärkeitä kommutatiivisia renkaita, havainnollistamme niiden merkitystä hieman kurssin viimeisessä luvussa, kun sovellamme niitä äärellisten kuntien konstruktiossa. Rengas K voidaan atella Proposition 1. kuvauksen i avulla polynomirenkaan K[X] alirenkaaksi. Kun tarkastelemme polynomirengasta (Z/qZ)[X], merkitsemme kerrointa a + qz yksinkertaisuuden vuoksi edustalla a. Esimerkki 1.3. (1) Olkoot P (X),Q(X) Z[X], P (X) =X +, Q(X) =1+X. Tällöin P (X)Q(X) =4X 3 +X +4X +. Nyt deg(p (X)) =, deg(q(x)) = 1 deg(p (X)Q(X)) = 3. () Jos polynomit P (X),Q(X) (Z/4Z)[X] määritellään samoilla lausekkeilla kuin edellä polynomin kertoimena oleva kokonaisluku a k tulkitaan edellä tehdyn sopimuksen mukaan kongruenssiluokaksi a k +4Z Z/4Z, niin P (X)Q(X) =X +. Nyt pätee P (X)Q(X) =P (X) =P (X) 1 mutta Q(X) 6= 1,jotenkertolaskun supistussääntö ei päde polynomirenkaassa (Z/4Z)[X]. Siis Proposition nolla (Z/4Z)[X] ei ole kokonaisalue. Itse asiassa polynomi X on nollan ka renkaassa (Z/4Z)[X]: (X)(X) =4X =0. Lisäksi pätee deg(p (X)) =, deg(q(x)) = 1 mutta nyt deg(p (X)Q(X)) = < 3=+1 1 =deg0=deg((x)(x)) < deg(x) =. Lemma 1.4. Olkoon K kommutatiivinen rengas, K 6= {0}. Tällöin kaikille P (X),Q(X) K[X]. deg(p (X)Q(X)) apple deg P (X)+degQ(X) Todistus. Olkoot P (X) = P n a kx k Q(X) = P m b kx k oletetaan, että a n 6=0, b m 6=0.TulopolynominP (X)Q(X) korkeimman asteen termi on a n b m X n+m, jos a n b m 6=0,muutenasteonalempi. Propositio 1.5. Jos Kon kokonaisalue, niin K[X] on kokonaisalue. Tällöin deg(p (X)Q(X)) = deg(p (X)) + deg(q(x)). Todistus. Lemman 1.4 merkinnöillä tulopolynomin korkeimman asteen termin kerroin on a n b m 6=0,silläK on kokonaisalue. 73

3 Polynomirengas ei ole koskaan kunta. Jos K on kokonaisalue, niin Proposition 1.5 mukaan ainoat polynomit, joilla on käänteisalkio kertolaskun suhteen ovat vakiopolynomit u, missäu K.Sensian,joskerroinrengaseiolekokonaisalue,niin vakiopolynomeilla a, missä a onnollanka renkaassa K, ei ole käänteisalkiota Propositioiden nolla. Tässä tapauksessa kuitenkin joillakin korkeamman asteen polynomeilla on käänteisalkiot. Esimerkki 1.6. Renkaassa (Z/4Z)[X] pätee (X +1)(X +1)=4X +4X +1=1. Koska merkitsemme renkaan (Z/qZ) alkiota käyttämällä sen kokonaislukuedustaa, on syytä olla huolellinen ollisuuden kanssa: "samalla lausekkeella annettujen polynomien ollisuus riippuu tarkasteltavasta polynomirenkaasta": Esimerkki 1.7. (a) (X 1) (X 1) (X +1) (X 1) kaikissa polynomirenkaissa R[X]: (X 1)(X +1)=X +(1 1)X 1=X 1. (b) (X +1) (X +1)renkaassa (Z/Z)[X], sillä1= 1 renkaassa Z/Z. (c) Polynomi (X+1) ei a polynomia (X +1) renkaassa C[X]:Jos(X+1) (X +1), niin on A, B C,joille(X +1)(AX +B) =X +1. Tällöin toisen nollannen asteen kertoimia tarkastelemalla havaitaan, että pitää olla A =1=B, muttaensimmäisen asteen termit eivät täsmää. Olemme käyttäneet kurssilla muutamia kerto kokonaislukujen koyhtälöä: Olkoot a, b Z b 6= 0. Tällöin on yksikäsitteiset q, j Z, joille a = qb + j 0 apple j< b. Tämä tulos on hyvin uskottava se todistetaan tarkasti lukuteorian alkeiskursseilla. Todistamme seuraavaksi vastaavan tuloksen polynomeille: Lause 1.8 (Jakoyhtälö). Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Olkoot A(X), B(X) K[X] siten, että B(X) 6= 0 polynomin B(X) korkeimman asteen termin kerroin on yksikkö. Tällöin on yksikäsitteiset polynomit Q(X),J(X) K[X], joillepätee deg J(X) < deg B(X). A(X) =Q(X)B(X)+J(X) Todistus. Osoitetaan ensin, että on polynomit Q(X) J(X), jotkatoteuttavatväitteen yhtälön. Jos B(X) kaa polynomin A(X), ei ole mitään todistettavaa. Muuten olkoon S = {A(X) D(X)B(X) :D(X) K[X]}. Koska B(X) ei a polynomia A(X), niin0 / S, jotenjoukko deg S = {deg P (X) :P (X) S} on luonnollisten lukujen joukon epätyhjä osajoukko sillä on siis minimi m 0. Olkoon Q(X) K[X] polynomi, jolle pätee deg(a(x) Q(X)B(X)) = m.olkoon J(X) =A(X) Q(X)B(X) =a m X m + + a 0. Nyt polynomit Q(X) J(X) siis toteuttavat väitteen yhtälön. Osoitetaan sitten, että m<d=degb(x). Olkoonb d polynomin B(X) korkeimman asteen kerroin, joka on oletuksen mukaan yksikkö. Jos olisi m d, niin J(X) a m b 1 d Xm d B(X) =A(X) (Q(X)+a m b 1 d Xm d )B(X) S 74

4 deg J(X) a m b 1 d Xm d B(X) <m,muttatämäonmahdotonta,koskapolynomin J(X) aste on minimaalinen. Osoitetaan lopuksi polynomien Q(X) J(X) yksikäsitteisyys. Jos e Q(X) e J(X) ovat polynome, joille pätee niin A(X) = e Q(X)B(X)+ e J(X), (Q(X) e Q(X))B(X) = e J(X) J(X). Jos e Q(X) 6= Q(X), niinyhtälönvasemmanpuolenpolynominasteonvähintäänd. Kuitenkin, jos deg e J(X) <d,niin deg( e J(X) Siis e Q(X) =Q(X) e J(X) =J(X). J(X)) <d. Seuraus 1.9 (Jakoyhtälö). Olkoon K kunta. Olkoot A(X), B(X) K[X] siten, että B(X) 6= 0.Tällöin on yksikäsitteiset Q(X),J(X) R[X], joille deg J(X) < deg B(X). A(X) =Q(X)B(X)+J(X) Esimerkki Jakoyhtälö voidaan toteuttaa algoritmisesti kokulman avulla kuten kokonaisluvuillekin. Tällöin esimerkiksi polynomeille A(X) =X 3 +X X 1 B(X) =X renkaassa Z[X] kokulma antaa Toisin sanoen X +1 X X 3 +X X 1 X 3 ±4X X +3X 1 X ± 3X +1 X 3 + X X 1=(X +1)(X ) + 3X +1, joten Jakoyhtälön merkinnöillä Q(X) =X +1 J(X) =3X +1. Renkaassa (Z/3Z)[X] polynomeille A(X) B(X) pätee (13) X 3 + X X 1=(X +1)(X ) + 1 = (X +1)(X +1)+1. Jos B(X) =X +1,niin koyhtälö ei toimi renkaassa Z[X]: kokulmassa päädytään ongelmalliseen tilanteeseen X 3 + X X 1=X (X +1) X 1, josta ei voi tkaa. Tämä johtuu siitä, että Z ei ole yksikkö. Sen sian renkaassa (Z/3Z)[X] voidaan tkaa, koska Z/3Z on kunta. Nyt X 1=X +=(X +1)+1 päädytään yhtälöön (13). Renkaassa Q[X] koa voi myös tkaa, saadaan X 3 + X X 1=(X 1 )(X +1) 1. Määritelmä Olkoon K kommutatiivinen rengas. Polynomin nx P (X) = a k X k K[X] määräämä polynomifunktio on P : K! K, x 7! P n a kx k = P (x). 75.

5 Algebrassa tulee pitää erillään polynomin polynomifunktion käsitteet käyttää määritelmän 1.11 merkintätapo. Jokaisen kommutatiivisen renkaan K polynomirengas K[X] on ääretön mutta, jos K on äärellinen, niin funktioita joukolta K joukkoon K on ainoastaan äärellinen määrä. Propositio 1.1. Olkoon K kommutatiivinen rengas. Kuvaus, joka liittää K- kertoimiseen polynomiin P (X) polynomifunktion P : K! K, on rengashomomorfismi polynomirenkaasta K[X] funktiorenkaaseen F (K, K). Todistus. Harjoitustehtävä 157. Esimerkki Olkoot Q(X) =X,P(X) =X (Z/Z)[X]. Tällöin P (0) = 0=0 = Q(0), P (1) = 1 = 1 = Q(1), jotenpolynomitp (X) Q(X) vastaavat samaa polynomifunktiota. Nollasta poikkeava polynomi Q(X) P (X) =X X, määrää nollakuvauksen renkaalta Z/Z itselleen. Määritelmä Olkoon K kommutatiivinen rengas, olkoon P (X) K[X]. Alkio c K on polynomin P (X) juuri, josp (c) =0. Jakoyhtälö antaa seuraavan perustuloksen: Propositio Olkoon K kommutatiivinen rengas. Olkoon P (X) K[X], c K. TällöinP (c) =0,josvainjos(X c) P (X). Todistus. Oletetaan, että P (c) =0.JakoyhtälönmukaanonK-kertoimiset polynomit Q(X) J(X), joilledeg J(X) < 1 P (X) =Q(X)(X c)+j(x). Koska deg J<1, J(X) on vakiopolynomi, joten on b K, jollej(a) =b kaikilla a K. Erityisesti 0=P (c) =Q(c)(c c)+j(c) =b, joten b =0. Toisaalta, jos P (X) =(X c)q(x) jollain polynomilla Q(X) K[X], niin P (c) =(c c)q(c) =0. Propositio Olkoon K kokonaisalue. Olkoon P (X) K[X] polynomi, olkoot c 1,c,...,c k K polynomin P (X) k eri juurta. Tällöin on Q(X) K[X], jolle P (X) =(X c 1 )(X c ) (X c k )Q(X). Todistus. Harjoitustehtävä 155. Lause Olkoon K kokonaisalue olkoon n 1. Jos P (X) K[X] deg P (X) =n, niinpolynomillap (X) on korkeintaan n eri juurta. Todistus. Propositioiden mukaan, jos polynomilla P (X) on k eri juurta, niin deg(p (X)) k. Propositio Olkoon K ääretön kokonaisalue. Tällöin jokaista kokonaisalueen K polynomifunktiota vastaa yksikäsitteinen polynomi renkaassa K[X]. Todistus. Kuvaus, joka liittää polynomiin vastaavan polynomifunktion on on rengashomomorfismi, joten riittää osoittaa, että tämän homomorfismin ydin on {0}. Jos polynomia P (X) vastaa nollafunktio, niin sillä on äärettömän monta juurta. Lauseen 1.17 nolla ainoa tällainen polynomi on 0. Seuraus Olkoon K jokin kokonaisalueista Z, Q, R tai C. Kuvaus, joka liittää jokaiseen polynomiin P (X) K[X] vastaavan polynomifunktion P : K! K, on injektio. 76

6 Erityisesti Propositio.1 antaa kaikki toisen asteen kompleksikertoimisen polynomiyhtälön ratkaisut. Seuraus 1.0. Olkoot a 0,a 1 C. Yhtälön ratkaisut ovat z 1 = a 1 + s a1 z + a 1 z + a 0 =0 a 0 z = a 1 s a1 a 0. Todistus. Jos z 1 6= z,niinväiteseuraasuoraanlauseesta1.17.josz 1 = z = a 1, niin X +a 1 X +a 0 =(X z 1 ).Lauseen1.17mukaanpolynomillaX +a 1 X +a 0 voi olla korkeintaan yksi muu juuri. Kertolaskun supistussääntö pätee renkaassa C[X] Proposition 1.5 nolla, joten yhtälöstä (X z 1 ) = X + a 1 X + a 0 =(X z 1 )(X d) seuraa X z 1 = X c. Siisc = z 1. Määritelmä 1.1. Kunta K onalgebrallisesti suljettu,josjokaisella vakiosta poikkeavalla polynomilla P (X) K[X] on juuri. Seuraus 1.. Jos K algebrallisesti suljettu kunta, niin jokainen vakiosta poikkeava polynomi P (X) K[X] on ensimmäisen asteen polynomien tulo. Jos (X c) k kaa polynomin P (X) renkaassa R[X], niinc on polynomin P (X) k-kertainen juuri. Yleensä,kunlasketaanpolynominjuuria,k-kertaiset juuret huomioidaan laskussa k kertaa. Esimerkiksi 0 on polynomin X kaksinkertainen juuri, kertaluku huomioiden polynomilla X on siis kaksi juurta. Seuraus 1.3. Jos K algebrallisesti suljettu kunta, niin jokaisella nollasta poikkeavalla polynomilla P (X) K[X] on juurten kertaluku huomioiden deg P (X) juurta. Lukualueiden kompleksianalyysin kursseilla todistetaan seuraava tärkeä tulos: Lause 1.4 (Algebran peruslause). Kompleksilukujen kunta on algebrallisesti suljettu. Seuraus 1.5. Jokainen vakiosta poikkeava polynomi P (X) C[X] on ensimmäisen asteen polynomien tulo. Nollasta poikkeavalla polynomilla P (X) C[X] on juurten kertaluku huomioiden deg P (X) juurta. Usein polynomeilla on vähemmän juuria kuin niiden asteesta tuleva maksimimäärä. Esimerkiksi polynomilla X 3 + X R[X] on täsmälleen yksi juuri polynomilla X +1 R[X] ei ole juuria lainkaan. Harjoitustehtäviä. Tehtävä 149. Olkoon K kommutatiivinen rengas, jossa on ainakin kaksi alkiota. Osoita, että K(X) on kommutatiivinen rengas. Tehtävä 150. Olkoot P (X),Q(X) (Z/8Z)[X], P (X) =3+X +4X +X 3 Q(X) =4+4X +4X +4X 3 +4X 4. (1) Kerro Q(X) polynomilla P (X). () Jaa Q(X) polynomilla P (X). 77

7 Tehtävä 151. Jaa polynomi P (X) =X 3 +X +3X + polynomilla Q(X) =X +3X +1 (1) polynomirenkaassa Q[X] () polynomirenkaassa (Z/7Z)[X]. Tehtävä 15. Osoita, että F (X) =1 X on yksikkö renkaassa (Z/16Z)[X]. Tehtävä 153. Olkoon p alkuluku. Montako juurta polynomilla X p on? X (Z/pZ)[X] Tehtävä 154. Olkoon K kokonaisalue. Olkoot P (X),Q(X) K[X]. Osoita: Jos P (X) Q(X) Q(X) P (X), niinonu K,jolleP (X) =uq(x). Tehtävä 155. Olkoon K kokonaisalue. Olkoon P (X) K[X] polynomi, olkoot c 1,c,...,c k K polynomin P (X) juuria. Osoita, että on Q(X) K[X], jolle P (X) =(X c 1 )(X c ) (X c k )Q(X). 1 on äärettömän monta ratkaisua Ha- Tehtävä 156. Osoita, että yhtälöllä x = miltonin kvaternioiden vinossa kunnassa. Tehtävä 157. Olkoon K kommutatiivinen rengas. Osoita, että kuvaus, joka liittää polynomiin P (X) K[X] vastaavan polynomifunktion P F (K, K), onrengashomomorfismi. Tehtävä 158. Olkoon p alkuluku. Osoita, että 1+pZ 1+pZ ovat ainoat kunnan Z/pZ alkiot, jotka ovat omat käänteisalkionsa kertolaskun suhteen. Osoita, että Tehtävä 159. Osoita, että jos p on alkuluku. Tehtävä 160. Osoita, että jos q 6 ei ole alkuluku. ( + pz)(3 + pz) (p +pz) =1+pZ. (p 1)! 1 mod p, (q 1)! 0 mod q 15 Vihje: Kerroinrengas Z/16Z ei ole kokonaisalue. 153 Vihje: Käytä ryhmäteoriaa! 156 Vihje: Tarkastele kvaternioita, jotka ovat muotoa ai + bj + ck, a + b + c =1. 78

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Algebran ja lukuteorian harjoitustehtävien ratkaisut

Algebran ja lukuteorian harjoitustehtävien ratkaisut Algebran ja lukuteorian harjoitustehtävien ratkaisut Versio 1.0 (27.1.2006 Turun yliopisto Lukuteoria 1. a Tarkistetaan ekvivalenssirelaation ehdot. on refleksiivinen, sillä identiteettikuvaus, id : C

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Johdatus lineaarialgebraan

Johdatus lineaarialgebraan Johdatus lineaarialgebraan Osa II Lotta Oinonen, Johanna Rämö 28. lokakuuta 2014 Helsingin yliopisto Matematiikan ja tilastotieteen laitos Sisältö 15 Vektoriavaruus....................................

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

Algebra, 1. demot, 18.1.2012

Algebra, 1. demot, 18.1.2012 Algebra, 1. demot, 18.1.2012 1. Mielivaltaisen joukon X potenssijoukko eli kaikkien osajoukkojen joukko P(X) määritellään asettamalla P(X) = {A A X}. Päteekö ehto X P(X) a) aina, b) ei koskaan tai c) joskus?

Lisätiedot

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään

(Monisteen Esimerkki 2.6.8) Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään Monisteen Esimerkki 2.6.8 Olkoon R polynomifunktioiden rengas R[x]. Kiinnitetään c R. Merkitään I c = {px R pc = 0}. Osoitetaan, että I c on renkaan R ihanne. Ratkaisu: Vakiofunktio 0 R I c joten I c.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Lukijalle. Modernin algebran alkeita on yleensä tapana opettaa tiukan aksiomaattis abstraktilla

Lukijalle. Modernin algebran alkeita on yleensä tapana opettaa tiukan aksiomaattis abstraktilla Lukijalle Matematiikan opetuksessa käsiteltävä aines voidaan järjestää ainakin seuraavien kolmen periaatteen mukaan: matematiikan historiallinen kehitysjärjestys, matematiikan looginen esitysjärjestys

Lisätiedot

Proäärelliset ryhmät ja kuntalaajennukset

Proäärelliset ryhmät ja kuntalaajennukset Proäärelliset ryhmät ja kuntalaajennukset Matti Åstrand Helsinki 25.5.2009 Pro gradu -tutkielma HELSINGIN YLIOPISTO Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY

Lisätiedot

ALGEBRA. Tauno Metsänkylä. K f. id K

ALGEBRA. Tauno Metsänkylä. K f. id K ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................

Lisätiedot

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................

Lisätiedot

ALKULUVUISTA (mod 6)

ALKULUVUISTA (mod 6) Oulun Yliopisto Kandidaatintutkielma ALKULUVUISTA (mod 6) Marko Moilanen Opiskelijanro: 1681871 17. joulukuuta 2014 Sisältö 1 Johdanto 2 1.1 Tutkielman sisältö........................ 2 1.2 Alkulukujen

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

Yleiset lineaarimuunnokset

Yleiset lineaarimuunnokset TAMPEREEN YLIOPISTO Pro gradu -tutkielma Kari Tuominen Yleiset lineaarimuunnokset Matematiikan ja tilastotieteen laitos Matematiikka Toukokuu 29 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

Lukujoukot luonnollisista luvuista reaalilukuihin

Lukujoukot luonnollisista luvuista reaalilukuihin Lukujoukot luonnollisista luvuista reaalilukuihin Pro gradu -tutkielma Esa Pulkka 517378 Itä-Suomen Yliopisto Fysiikan ja matematiikan laitos 26. maaliskuuta 2012 Sisältö 1 Johdanto 1 2 Luonnolliset luvut

Lisätiedot

Kvaterniot. Anna-Kaisa Markkanen. Matematiikan pro gradu -tutkielma

Kvaterniot. Anna-Kaisa Markkanen. Matematiikan pro gradu -tutkielma Kvaterniot Anna-Kaisa Markkanen Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 014 Tiivistelmä: A-K. Markkanen, Kvaterniot (engl. Quaternions), matematiikan

Lisätiedot

Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä

Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Anne-Maria Ernvall-Hytönen 14. tammikuuta 2011 Sisältö 1 Jaollisuus, alkuluvut, ynnä muut perustavanlaatuiset asiat 2 1.1 Lukujen tekijöiden

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

2 ALGEBRA I. Sisällysluettelo

2 ALGEBRA I. Sisällysluettelo ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Cauchyn ja Sylowin lauseista

Cauchyn ja Sylowin lauseista Cauchyn ja Sylowin lauseista Pro gradu-tutkielma Jukka Kuru Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Peruskäsitteet 4 1.1 Funktion käsitteitä........................ 4

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma

Polynomimatriisit. Antti Lindberg. Matematiikan pro gradu -tutkielma Polynomimatriisit Antti Lindberg Matematiikan pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kesä 2014 Tiivistelmä: Antti Lindberg, Polynomimatriisit, Matematiikan pro

Lisätiedot

Automaatit. Muodolliset kielet

Automaatit. Muodolliset kielet Automaatit Automaatit ovat teoreettisia koneita, jotka käsittelevät muodollisia sanoja. Automaatti lukee muodollisen sanan kirjain kerrallaan, vasemmalta oikealle, ja joko hyväksyy tai hylkää sanan. Täten

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21

Lisätiedot

Lukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Lukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto Lukuteorian helmiä lukiolaisille Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto 0. Taustaa Sain 24.4.2007 Marjatta Näätäseltä sähköpostiviestin, jonka aihe oli Fwd: yhteistyökurssi,

Lisätiedot

LUKUTEORIAN ALKEET HELI TUOMINEN

LUKUTEORIAN ALKEET HELI TUOMINEN LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen

Lisätiedot

Yksinkertaisin (jollain tavalla mielenkiintoinen) yhtälö lienee muotoa. x + a = b,

Yksinkertaisin (jollain tavalla mielenkiintoinen) yhtälö lienee muotoa. x + a = b, Kompleksiluvut c Pekka Alestalo 013 Tämä moniste sisältää perusasiat kompleksiluvuista. Tähdellä merkityt kohdat ovat lähinnä oheislukemistoksi tarkoitettua materiaalia. 1 Lukujoukot Uuden tyyppisten lukujen

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

ALGEBRA Tauno Mets ankyl a Marjatta N a at anen 2010

ALGEBRA Tauno Mets ankyl a Marjatta N a at anen 2010 ALGEBRA Tauno Metsänkylä Marjatta Näätänen 2010 c Tauno Metsänkylä ja Marjatta Näätänen ALGEBRA Tauno Metsänkylä Marjatta Näätänen Esipuhe Tämä kirja on syntynyt toisen tekijän(t.m.) Turun yliopistossa

Lisätiedot

Lyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen

Lyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen yhyt johdatus alkeelliseen lukuteoriaan Esa V. Vesalainen Sisällysluettelo 1 Aritmetiikan peruslause 0 Jakoyhtälö.................................. 0 Jaollisuus.................................. 0 Alkuluvut..................................

Lisätiedot

1.4 Funktion jatkuvuus

1.4 Funktion jatkuvuus 1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,

Lisätiedot

Hieman joukko-oppia. A X(A a A b A a b).

Hieman joukko-oppia. A X(A a A b A a b). Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät

1. LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT. 1.1 Lineaariset yhtälöryhmät 1 1 LINEAARISET YHTÄLÖRYHMÄT JA MATRIISIT Muotoa 11 Lineaariset yhtälöryhmät (1) a 1 x 1 + a x + + a n x n b oleva yhtälö on tuntemattomien x 1,, x n lineaarinen yhtälö, jonka kertoimet ovat luvut a 1,,

Lisätiedot

Insinöörimatematiikka IA

Insinöörimatematiikka IA Isiöörimatematiikka IA Harjoitustehtäviä. Selvitä oko propositio ( p q r ( p q r kotradiktio. Ratkaisu: Kirjoitetaa totuustaulukko: p q r ( p q r p q r ( p q r ( p q r 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Lisätiedot

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1

1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1 Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,

Lisätiedot

Kolmannen asteen yhtälön ratkaisukaava

Kolmannen asteen yhtälön ratkaisukaava TAMPEREEN YLIOPISTO Pro gradu -tutkielma Johanna Harju Kolmannen asteen yhtälön ratkaisukaava Matematiikan tilastotieteen laitos Matematiikka Heinäkuu 008 Tampereen yliopisto Matematiikan tilastotieteen

Lisätiedot

Lukuteorian kurssi lukioon

Lukuteorian kurssi lukioon TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sini Siira Lukuteorian kurssi lukioon Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö SIIRA, SINI: Lukuteorian

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

Kommentteja Markku Halmetojan ops-ehdotuksesta

Kommentteja Markku Halmetojan ops-ehdotuksesta Jorma Merikoski 10.1.2015 Kommentteja Markku Halmetojan ops-ehdotuksesta Markku Halmetoja on laatinut ehdotuksen lukion pitkän matematiikan uudeksi opetussuunnitelmaksi. Hän esittelee sitä matematiikan

Lisätiedot

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä

Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä 1 MAT-1345 LAAJA MATEMATIIKKA 5 Tampereen teknillinen yliopisto Risto Silvennoinen Kevät 9 Ensimmäisen ja toisen kertaluvun differentiaaliyhtälöistä Yksi tavallisimmista luonnontieteissä ja tekniikassa

Lisätiedot

(2) C on joukko, jonka alkioita kutsutaan sala(kirjoite)tuiksi viesteiksi (engl. ciphertext);

(2) C on joukko, jonka alkioita kutsutaan sala(kirjoite)tuiksi viesteiksi (engl. ciphertext); 2. Salausjärjestelmä Salausjärjestelmien kuvaamisessa käytetään usein apuna kolmea henkilöä : Liisa (engl. Alice), Pentti (engl. Bob) ja Erkki (eng. Eve eavesdrop 10 ). Salausjärjestelmillä pyritään viestin

Lisätiedot

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla 6. Digitaalinen allekirjoitus Digitaalinen allekirjoitus palvelee samaa tarkoitusta kuin perinteinen käsin kirjotettu allekirjoitus, t.s. Liisa allekirjoittaessaan Pentille lähettämän viestin, hän antaa

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

Lukuteoriaa ja salakirjoitusta, osa 1

Lukuteoriaa ja salakirjoitusta, osa 1 Solmu 3/2007 1 Lukuteoriaa ja salakirjoitusta, osa 1 Heikki Apiola Dosentti Matematiikan laitos, Teknillinen korkeakoulu Johdanto Lukuteoriaa on joskus pidetty esteettisesti kauniina, mutta käytännössä

Lisätiedot

Sarjat ja differentiaaliyhtälöt

Sarjat ja differentiaaliyhtälöt Sarjat ja differentiaaliyhtälöt Johdanto Tämä luentomoniste on tarkoitettu korvaamaan luentomuistiinpanoja Sarjat ja differentiaaliyhtälöt-kurssilla. Tämä ei kuitenkaan ole oppikirja, mikä tarkoittaa sitä,

Lisätiedot

Heikki Junnila VERKOT JOUKOISTA JA RELAATIOISTA

Heikki Junnila VERKOT JOUKOISTA JA RELAATIOISTA Heikki Junnila VERKOT LUKU I JOUKOISTA JA RELAATIOISTA 1. Joukkojen symmetrinen erotus.....................................1 2. Relaation sisältämät kuvaukset.................................... 7 Harjoitustehtäviä................................................

Lisätiedot

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x 4. 8. Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun. Matematiikka KoTiA1 Demotehtäviä 1. Ratkaise epäyhtälöt x + 1 x 2 b) 3 x 1 < 2 x + 1 c) x 2 x 2 2. Ratkaise epäyhtälöt 2 x < 1 2 2 b) x 3 < x 2x 3. Olkoon f (x) kolmannen asteen polynomi jonka korkeimman

Lisätiedot

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö 3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö Yhtälön (tai funktion) y = a + b + c, missä a 0, kuvaaja ei ole suora, mutta ei ole yhtälökään ensimmäistä astetta. Funktioiden

Lisätiedot

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28 14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu,

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

Residylause ja sen sovelluksia

Residylause ja sen sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Henry Joutsijoki Residylause ja sen sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 7 Tampereen yliopisto Matematiikan, tilastotieteen

Lisätiedot

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 811120P 3. 5 op Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 ja laskenta tarkastelemme terveeseen järkeen perustuvaa päättelyä formaalina järjestelmänä logiikkaa sovelletaan

Lisätiedot

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2

2.3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. b b 4ac = 2 .3 Juurien laatu. Juurien ja kertoimien väliset yhtälöt. Jako tekijöihin. Toisen asteen yhtälön a + b + c 0 ratkaisukaavassa neliöjuuren alla olevaa lauseketta b b 4ac + a b b 4ac a D b 4 ac sanotaan yhtälön

Lisätiedot

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt

3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3 Toisen kertaluvun lineaariset differentiaaliyhtälöt 3.1 Homogeeniset lineaariset differentiaaliyhtälöt Toisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon Jos r(x)

Lisätiedot

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5

Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 Mat-2.148 Dynaaminen optimointi, mallivastaukset, kierros 5 1. Kotitehtävä. 2. Lasketaan aluksi korkoa korolle. Jos korkoprosentti on r, ja korko maksetaan n kertaa vuodessa t vuoden ajan, niin kokonaisvuosikorko

Lisätiedot

Saatteeksi. Lassi Kurittu

Saatteeksi. Lassi Kurittu Sisältö 1 Johdanto 1 1.1 Yleiskatsaus.............................. 1 1.2 Esimerkkikieli............................. 3 1.2.1 Syntaksi............................ 4 1.2.2 Semantiikka..........................

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

jakokulmassa x 4 x 8 x 3x

jakokulmassa x 4 x 8 x 3x Laudatur MAA ratkaisut kertausarjoituksiin. Polynomifunktion nollakodat 6 + 7. Suoritetaan jakolasku jakokulmassa 5 4 + + 4 8 6 6 5 4 + 0 + 0 + 0 + 0+ 6 5 ± 5 5 4 ± 4 4 ± 4 4 ± 4 8 8 ± 8 6 6 + ± 6 Vastaus:

Lisätiedot

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut

Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien

Lisätiedot

PERUSKOULUSTA PITKÄLLE

PERUSKOULUSTA PITKÄLLE Raimo Seppänen Tytti Kiiski PERUSKOULUSTA PITKÄLLE KERTAUSTA JA TÄYDENNYSTÄ LUKION PITKÄLLE MATEMATIIKALLE JA MATEMATIIKKAA VAATIVAAN AMMATILLISEEN KOULUTUKSEEN MFKA-KUSTANNUS OY HELSINKI 2007 SISÄLLYS

Lisätiedot

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin

z muunnos ja sen soveltaminen LTI järjestelmien analysointiin z muunnos ja sen soveltaminen LTI järjestelmien analysointiin muunnoksella (eng. transform) on vastaava asema diskreettiaikaisten signaalien ja LTI järjestelmien analyysissä kuin Laplace muunnoksella jatkuvaaikaisten

Lisätiedot

Raja-arvo ja jatkuvuus, L5

Raja-arvo ja jatkuvuus, L5 ja jatkuvuus, L5 1 Wikipedia: (http://fi.wikipedia.org/wiki/ ) 2 Funktion f () = 2 4 2 a ei voi laskea kohdassa = 2. Jos eroaa kahdesta ( 2), niin funktion voidaan laskea ja seuraavasta taulukosta nähdään,

Lisätiedot

DISKREETTIÄ MATEMATIIKKAA.

DISKREETTIÄ MATEMATIIKKAA. Heikki Junnila DISKREETTIÄ MATEMATIIKKAA. LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset..... 3 2. Luonnolliset luvut. Induktio.... 9 3. Äärelliset joukot.... 14 4. Joukon ositukset.

Lisätiedot

1 Kannat ja kannanvaihto

1 Kannat ja kannanvaihto 1 Kannat ja kannanvaihto 1.1 Koordinaattivektori Oletetaan, että V on K-vektoriavaruus, jolla on kanta S = (v 1, v 2,..., v n ). Avaruuden V vektori v voidaan kirjoittaa kannan vektorien lineaarikombinaationa:

Lisätiedot

MAA7 HARJOITUSTEHTÄVIÄ

MAA7 HARJOITUSTEHTÄVIÄ MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Talousmatematiikan perusteet, L2

Talousmatematiikan perusteet, L2 Talousmatematiikan perusteet, L2 orms.1030 EPKY / kevät 2011 Toisen Laskutoimitukset tehdään seuraavassa järjestyksessä 1. Sulkujen sisällä olevat (alkaen sisältä ulospäin) 2. potenssit ja juuri 3. kerto-

Lisätiedot