k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0"

Transkriptio

1 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota usein kutsutaan muuttuksi. Symbolin 1 sovitaan tarkoittavan ääretöntä negatiivista lukua, jolle pätee 1 <akaikilla kokonaisluvuilla a, = 1, 1 + a = 1 kaikilla kokonaisluvuilla a. Symbolille 1 ei ole määritelty muita operaatioita, käytämme sitä ainoastaan nollapolynomin asteen merkkinä. Määritelmä 1.1. Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Olkoon n N, olkoota n,a n 1,...,a 1,a 0 K. Lauseke nx P (X) = a k X k = a n X n + a n 1 X n a 1 X + a 0 on yhden muuttun K-kertoiminen polynomi.lukua 0 on polynomin P (X) vakiotermi. Josylläolevassalausekkeessaa n 6=0,niinpolynominP (X) aste on deg(p (X)) = n a n on polynomin P (X) korkeimman asteen kerroin. Nollapolynomin0 aste on 1. Kaikkien K-kertoimisten polynomien joukkoa merkitään K[X]. Kommutatiivinen rengas K on polynomin P (X) K[X] kerroinrengas. Olkoot P (X) = P n k=1 a kx k Q(X) = P m k=1 b kx k K-kertoimisia polynome, n m. Olkootb m+1 = b m+ = = b n =0,josn>m.Polynomiensummatulo määritellään asettamalla nx P (X)+Q(X) = (a k + b k )X k (1) P (X)Q(X) = n+m X X i+j=k a i b j X k. Vähemmän havainnollinen mutta täsmällisempi Määritelmän 1.1 kanssa ekvivalentti tapa määritellä polynomit on korvata polynomin lauseke P n a kx k kertoimien muodostamalla jonolla (a 0,a 1,...,a n, 0, 0,...) määritellä yhteenlasku komponenteittain kuten jonoille on tapana kertolasku kaavan (1) mukaisesti. Tällöin jono (0, 1, 0, 0, 0,...) on symbolin X vastine: Määritelmä 1.1. Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Kuvaus! : N! K, jolleonn! N siten, että!(k) =0kaikille k N!, on K-kertoiminen polynomi. Kaikkien K-kertoimisten polynomien joukko on K[X]. Määritellään laskutoimitukset + joukossa K[X] asettamalla (! +! 0 )(k) =!(k)+! 0 (k) (!! 0 )(k) = kaikille k N. Polynomin! 6= 0aste on Nollapolynomin 0 aste on 1. X i,jn:i+j=k!(i)! 0 (j) deg! =max{k N :!(k) 6= 0}. 7

2 Huomaa, että polynomeille P (X),Q(X) K[X] pätee P (X) =Q(X) täsmälleen silloin, kun niiden kerroinjonot ovat samat. Propositio 1.. Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Joukko K[X] varustettuna polynomien yhteen- kertolaskulla on kommutatiivinen rengas. Kuvaus i: K! K[X], jokakuvaarenkaank alkion a polynomiksi a K[X], oninjektiivinenrengashomomorfismi. Todistus. Selvästi polynomit 0 1 ovat yhteenlaskun kertolaskun neutraalialkiot. Muut renkaan määrittelevät ominaisuudet seuraavat suoraviivaisesti siitä, että K on kommutatiivinen rengas. Kuvauksen i ominaisuudet on myös helppo tarkastaa. Polynomirenkaat ovat tärkeitä kommutatiivisia renkaita, havainnollistamme niiden merkitystä hieman kurssin viimeisessä luvussa, kun sovellamme niitä äärellisten kuntien konstruktiossa. Rengas K voidaan atella Proposition 1. kuvauksen i avulla polynomirenkaan K[X] alirenkaaksi. Kun tarkastelemme polynomirengasta (Z/qZ)[X], merkitsemme kerrointa a + qz yksinkertaisuuden vuoksi edustalla a. Esimerkki 1.3. (1) Olkoot P (X),Q(X) Z[X], P (X) =X +, Q(X) =1+X. Tällöin P (X)Q(X) =4X 3 +X +4X +. Nyt deg(p (X)) =, deg(q(x)) = 1 deg(p (X)Q(X)) = 3. () Jos polynomit P (X),Q(X) (Z/4Z)[X] määritellään samoilla lausekkeilla kuin edellä polynomin kertoimena oleva kokonaisluku a k tulkitaan edellä tehdyn sopimuksen mukaan kongruenssiluokaksi a k +4Z Z/4Z, niin P (X)Q(X) =X +. Nyt pätee P (X)Q(X) =P (X) =P (X) 1 mutta Q(X) 6= 1,jotenkertolaskun supistussääntö ei päde polynomirenkaassa (Z/4Z)[X]. Siis Proposition nolla (Z/4Z)[X] ei ole kokonaisalue. Itse asiassa polynomi X on nollan ka renkaassa (Z/4Z)[X]: (X)(X) =4X =0. Lisäksi pätee deg(p (X)) =, deg(q(x)) = 1 mutta nyt deg(p (X)Q(X)) = < 3=+1 1 =deg0=deg((x)(x)) < deg(x) =. Lemma 1.4. Olkoon K kommutatiivinen rengas, K 6= {0}. Tällöin kaikille P (X),Q(X) K[X]. deg(p (X)Q(X)) apple deg P (X)+degQ(X) Todistus. Olkoot P (X) = P n a kx k Q(X) = P m b kx k oletetaan, että a n 6=0, b m 6=0.TulopolynominP (X)Q(X) korkeimman asteen termi on a n b m X n+m, jos a n b m 6=0,muutenasteonalempi. Propositio 1.5. Jos Kon kokonaisalue, niin K[X] on kokonaisalue. Tällöin deg(p (X)Q(X)) = deg(p (X)) + deg(q(x)). Todistus. Lemman 1.4 merkinnöillä tulopolynomin korkeimman asteen termin kerroin on a n b m 6=0,silläK on kokonaisalue. 73

3 Polynomirengas ei ole koskaan kunta. Jos K on kokonaisalue, niin Proposition 1.5 mukaan ainoat polynomit, joilla on käänteisalkio kertolaskun suhteen ovat vakiopolynomit u, missäu K.Sensian,joskerroinrengaseiolekokonaisalue,niin vakiopolynomeilla a, missä a onnollanka renkaassa K, ei ole käänteisalkiota Propositioiden nolla. Tässä tapauksessa kuitenkin joillakin korkeamman asteen polynomeilla on käänteisalkiot. Esimerkki 1.6. Renkaassa (Z/4Z)[X] pätee (X +1)(X +1)=4X +4X +1=1. Koska merkitsemme renkaan (Z/qZ) alkiota käyttämällä sen kokonaislukuedustaa, on syytä olla huolellinen ollisuuden kanssa: "samalla lausekkeella annettujen polynomien ollisuus riippuu tarkasteltavasta polynomirenkaasta": Esimerkki 1.7. (a) (X 1) (X 1) (X +1) (X 1) kaikissa polynomirenkaissa R[X]: (X 1)(X +1)=X +(1 1)X 1=X 1. (b) (X +1) (X +1)renkaassa (Z/Z)[X], sillä1= 1 renkaassa Z/Z. (c) Polynomi (X+1) ei a polynomia (X +1) renkaassa C[X]:Jos(X+1) (X +1), niin on A, B C,joille(X +1)(AX +B) =X +1. Tällöin toisen nollannen asteen kertoimia tarkastelemalla havaitaan, että pitää olla A =1=B, muttaensimmäisen asteen termit eivät täsmää. Olemme käyttäneet kurssilla muutamia kerto kokonaislukujen koyhtälöä: Olkoot a, b Z b 6= 0. Tällöin on yksikäsitteiset q, j Z, joille a = qb + j 0 apple j< b. Tämä tulos on hyvin uskottava se todistetaan tarkasti lukuteorian alkeiskursseilla. Todistamme seuraavaksi vastaavan tuloksen polynomeille: Lause 1.8 (Jakoyhtälö). Olkoon K kommutatiivinen rengas, jossa on vähintään kaksi alkiota. Olkoot A(X), B(X) K[X] siten, että B(X) 6= 0 polynomin B(X) korkeimman asteen termin kerroin on yksikkö. Tällöin on yksikäsitteiset polynomit Q(X),J(X) K[X], joillepätee deg J(X) < deg B(X). A(X) =Q(X)B(X)+J(X) Todistus. Osoitetaan ensin, että on polynomit Q(X) J(X), jotkatoteuttavatväitteen yhtälön. Jos B(X) kaa polynomin A(X), ei ole mitään todistettavaa. Muuten olkoon S = {A(X) D(X)B(X) :D(X) K[X]}. Koska B(X) ei a polynomia A(X), niin0 / S, jotenjoukko deg S = {deg P (X) :P (X) S} on luonnollisten lukujen joukon epätyhjä osajoukko sillä on siis minimi m 0. Olkoon Q(X) K[X] polynomi, jolle pätee deg(a(x) Q(X)B(X)) = m.olkoon J(X) =A(X) Q(X)B(X) =a m X m + + a 0. Nyt polynomit Q(X) J(X) siis toteuttavat väitteen yhtälön. Osoitetaan sitten, että m<d=degb(x). Olkoonb d polynomin B(X) korkeimman asteen kerroin, joka on oletuksen mukaan yksikkö. Jos olisi m d, niin J(X) a m b 1 d Xm d B(X) =A(X) (Q(X)+a m b 1 d Xm d )B(X) S 74

4 deg J(X) a m b 1 d Xm d B(X) <m,muttatämäonmahdotonta,koskapolynomin J(X) aste on minimaalinen. Osoitetaan lopuksi polynomien Q(X) J(X) yksikäsitteisyys. Jos e Q(X) e J(X) ovat polynome, joille pätee niin A(X) = e Q(X)B(X)+ e J(X), (Q(X) e Q(X))B(X) = e J(X) J(X). Jos e Q(X) 6= Q(X), niinyhtälönvasemmanpuolenpolynominasteonvähintäänd. Kuitenkin, jos deg e J(X) <d,niin deg( e J(X) Siis e Q(X) =Q(X) e J(X) =J(X). J(X)) <d. Seuraus 1.9 (Jakoyhtälö). Olkoon K kunta. Olkoot A(X), B(X) K[X] siten, että B(X) 6= 0.Tällöin on yksikäsitteiset Q(X),J(X) R[X], joille deg J(X) < deg B(X). A(X) =Q(X)B(X)+J(X) Esimerkki Jakoyhtälö voidaan toteuttaa algoritmisesti kokulman avulla kuten kokonaisluvuillekin. Tällöin esimerkiksi polynomeille A(X) =X 3 +X X 1 B(X) =X renkaassa Z[X] kokulma antaa Toisin sanoen X +1 X X 3 +X X 1 X 3 ±4X X +3X 1 X ± 3X +1 X 3 + X X 1=(X +1)(X ) + 3X +1, joten Jakoyhtälön merkinnöillä Q(X) =X +1 J(X) =3X +1. Renkaassa (Z/3Z)[X] polynomeille A(X) B(X) pätee (13) X 3 + X X 1=(X +1)(X ) + 1 = (X +1)(X +1)+1. Jos B(X) =X +1,niin koyhtälö ei toimi renkaassa Z[X]: kokulmassa päädytään ongelmalliseen tilanteeseen X 3 + X X 1=X (X +1) X 1, josta ei voi tkaa. Tämä johtuu siitä, että Z ei ole yksikkö. Sen sian renkaassa (Z/3Z)[X] voidaan tkaa, koska Z/3Z on kunta. Nyt X 1=X +=(X +1)+1 päädytään yhtälöön (13). Renkaassa Q[X] koa voi myös tkaa, saadaan X 3 + X X 1=(X 1 )(X +1) 1. Määritelmä Olkoon K kommutatiivinen rengas. Polynomin nx P (X) = a k X k K[X] määräämä polynomifunktio on P : K! K, x 7! P n a kx k = P (x). 75.

5 Algebrassa tulee pitää erillään polynomin polynomifunktion käsitteet käyttää määritelmän 1.11 merkintätapo. Jokaisen kommutatiivisen renkaan K polynomirengas K[X] on ääretön mutta, jos K on äärellinen, niin funktioita joukolta K joukkoon K on ainoastaan äärellinen määrä. Propositio 1.1. Olkoon K kommutatiivinen rengas. Kuvaus, joka liittää K- kertoimiseen polynomiin P (X) polynomifunktion P : K! K, on rengashomomorfismi polynomirenkaasta K[X] funktiorenkaaseen F (K, K). Todistus. Harjoitustehtävä 157. Esimerkki Olkoot Q(X) =X,P(X) =X (Z/Z)[X]. Tällöin P (0) = 0=0 = Q(0), P (1) = 1 = 1 = Q(1), jotenpolynomitp (X) Q(X) vastaavat samaa polynomifunktiota. Nollasta poikkeava polynomi Q(X) P (X) =X X, määrää nollakuvauksen renkaalta Z/Z itselleen. Määritelmä Olkoon K kommutatiivinen rengas, olkoon P (X) K[X]. Alkio c K on polynomin P (X) juuri, josp (c) =0. Jakoyhtälö antaa seuraavan perustuloksen: Propositio Olkoon K kommutatiivinen rengas. Olkoon P (X) K[X], c K. TällöinP (c) =0,josvainjos(X c) P (X). Todistus. Oletetaan, että P (c) =0.JakoyhtälönmukaanonK-kertoimiset polynomit Q(X) J(X), joilledeg J(X) < 1 P (X) =Q(X)(X c)+j(x). Koska deg J<1, J(X) on vakiopolynomi, joten on b K, jollej(a) =b kaikilla a K. Erityisesti 0=P (c) =Q(c)(c c)+j(c) =b, joten b =0. Toisaalta, jos P (X) =(X c)q(x) jollain polynomilla Q(X) K[X], niin P (c) =(c c)q(c) =0. Propositio Olkoon K kokonaisalue. Olkoon P (X) K[X] polynomi, olkoot c 1,c,...,c k K polynomin P (X) k eri juurta. Tällöin on Q(X) K[X], jolle P (X) =(X c 1 )(X c ) (X c k )Q(X). Todistus. Harjoitustehtävä 155. Lause Olkoon K kokonaisalue olkoon n 1. Jos P (X) K[X] deg P (X) =n, niinpolynomillap (X) on korkeintaan n eri juurta. Todistus. Propositioiden mukaan, jos polynomilla P (X) on k eri juurta, niin deg(p (X)) k. Propositio Olkoon K ääretön kokonaisalue. Tällöin jokaista kokonaisalueen K polynomifunktiota vastaa yksikäsitteinen polynomi renkaassa K[X]. Todistus. Kuvaus, joka liittää polynomiin vastaavan polynomifunktion on on rengashomomorfismi, joten riittää osoittaa, että tämän homomorfismin ydin on {0}. Jos polynomia P (X) vastaa nollafunktio, niin sillä on äärettömän monta juurta. Lauseen 1.17 nolla ainoa tällainen polynomi on 0. Seuraus Olkoon K jokin kokonaisalueista Z, Q, R tai C. Kuvaus, joka liittää jokaiseen polynomiin P (X) K[X] vastaavan polynomifunktion P : K! K, on injektio. 76

6 Erityisesti Propositio.1 antaa kaikki toisen asteen kompleksikertoimisen polynomiyhtälön ratkaisut. Seuraus 1.0. Olkoot a 0,a 1 C. Yhtälön ratkaisut ovat z 1 = a 1 + s a1 z + a 1 z + a 0 =0 a 0 z = a 1 s a1 a 0. Todistus. Jos z 1 6= z,niinväiteseuraasuoraanlauseesta1.17.josz 1 = z = a 1, niin X +a 1 X +a 0 =(X z 1 ).Lauseen1.17mukaanpolynomillaX +a 1 X +a 0 voi olla korkeintaan yksi muu juuri. Kertolaskun supistussääntö pätee renkaassa C[X] Proposition 1.5 nolla, joten yhtälöstä (X z 1 ) = X + a 1 X + a 0 =(X z 1 )(X d) seuraa X z 1 = X c. Siisc = z 1. Määritelmä 1.1. Kunta K onalgebrallisesti suljettu,josjokaisella vakiosta poikkeavalla polynomilla P (X) K[X] on juuri. Seuraus 1.. Jos K algebrallisesti suljettu kunta, niin jokainen vakiosta poikkeava polynomi P (X) K[X] on ensimmäisen asteen polynomien tulo. Jos (X c) k kaa polynomin P (X) renkaassa R[X], niinc on polynomin P (X) k-kertainen juuri. Yleensä,kunlasketaanpolynominjuuria,k-kertaiset juuret huomioidaan laskussa k kertaa. Esimerkiksi 0 on polynomin X kaksinkertainen juuri, kertaluku huomioiden polynomilla X on siis kaksi juurta. Seuraus 1.3. Jos K algebrallisesti suljettu kunta, niin jokaisella nollasta poikkeavalla polynomilla P (X) K[X] on juurten kertaluku huomioiden deg P (X) juurta. Lukualueiden kompleksianalyysin kursseilla todistetaan seuraava tärkeä tulos: Lause 1.4 (Algebran peruslause). Kompleksilukujen kunta on algebrallisesti suljettu. Seuraus 1.5. Jokainen vakiosta poikkeava polynomi P (X) C[X] on ensimmäisen asteen polynomien tulo. Nollasta poikkeavalla polynomilla P (X) C[X] on juurten kertaluku huomioiden deg P (X) juurta. Usein polynomeilla on vähemmän juuria kuin niiden asteesta tuleva maksimimäärä. Esimerkiksi polynomilla X 3 + X R[X] on täsmälleen yksi juuri polynomilla X +1 R[X] ei ole juuria lainkaan. Harjoitustehtäviä. Tehtävä 149. Olkoon K kommutatiivinen rengas, jossa on ainakin kaksi alkiota. Osoita, että K(X) on kommutatiivinen rengas. Tehtävä 150. Olkoot P (X),Q(X) (Z/8Z)[X], P (X) =3+X +4X +X 3 Q(X) =4+4X +4X +4X 3 +4X 4. (1) Kerro Q(X) polynomilla P (X). () Jaa Q(X) polynomilla P (X). 77

7 Tehtävä 151. Jaa polynomi P (X) =X 3 +X +3X + polynomilla Q(X) =X +3X +1 (1) polynomirenkaassa Q[X] () polynomirenkaassa (Z/7Z)[X]. Tehtävä 15. Osoita, että F (X) =1 X on yksikkö renkaassa (Z/16Z)[X]. Tehtävä 153. Olkoon p alkuluku. Montako juurta polynomilla X p on? X (Z/pZ)[X] Tehtävä 154. Olkoon K kokonaisalue. Olkoot P (X),Q(X) K[X]. Osoita: Jos P (X) Q(X) Q(X) P (X), niinonu K,jolleP (X) =uq(x). Tehtävä 155. Olkoon K kokonaisalue. Olkoon P (X) K[X] polynomi, olkoot c 1,c,...,c k K polynomin P (X) juuria. Osoita, että on Q(X) K[X], jolle P (X) =(X c 1 )(X c ) (X c k )Q(X). 1 on äärettömän monta ratkaisua Ha- Tehtävä 156. Osoita, että yhtälöllä x = miltonin kvaternioiden vinossa kunnassa. Tehtävä 157. Olkoon K kommutatiivinen rengas. Osoita, että kuvaus, joka liittää polynomiin P (X) K[X] vastaavan polynomifunktion P F (K, K), onrengashomomorfismi. Tehtävä 158. Olkoon p alkuluku. Osoita, että 1+pZ 1+pZ ovat ainoat kunnan Z/pZ alkiot, jotka ovat omat käänteisalkionsa kertolaskun suhteen. Osoita, että Tehtävä 159. Osoita, että jos p on alkuluku. Tehtävä 160. Osoita, että jos q 6 ei ole alkuluku. ( + pz)(3 + pz) (p +pz) =1+pZ. (p 1)! 1 mod p, (q 1)! 0 mod q 15 Vihje: Kerroinrengas Z/16Z ei ole kokonaisalue. 153 Vihje: Käytä ryhmäteoriaa! 156 Vihje: Tarkastele kvaternioita, jotka ovat muotoa ai + bj + ck, a + b + c =1. 78

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä

jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä 4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin. 18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset

Lisätiedot

11. Jaollisuudesta. Lemma Oletetaan, että a, b R.

11. Jaollisuudesta. Lemma Oletetaan, että a, b R. 11. Jaollisuudesta Edellisen luvun esimerkissä tarvittiin tietoa erään polynomin jaottomuudesta. Tämä on hyvin tavallista kuntalaajennosten yhteydessä. Seuraavassa tarkastellaan hieman jaollisuuskäsitettä

Lisätiedot

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat

Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Esko Turunen Luku 7. Ideaalit ja tekijärenkaat Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Ideaalit ja tekijärenkaat Ryhmähomomorfismin φ : G G ydin on ryhmän G normaali aliryhmä. Rengashomomorfismi ψ :

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

1 Kertausta algebran kurssilta 1. 4 Kuntalaajennukset Kuntalaajennuksen aste Harppi-viivoitin-konstruktiot Hajoituskunnat 88

1 Kertausta algebran kurssilta 1. 4 Kuntalaajennukset Kuntalaajennuksen aste Harppi-viivoitin-konstruktiot Hajoituskunnat 88 Sisältö 1 Kertausta algebran kurssilta 1 2 Lisää polynomeista 10 3 Kertausta Q:n konstruktiosta; jakokunta 20 4 Kuntalaajennukset 27 5 Kuntalaajennuksen aste 49 6 Harppi-viivoitin-konstruktiot 64 7 Galois

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

MAT Algebra 1(s)

MAT Algebra 1(s) 8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen

Lisätiedot

Algebra 2. Syksy Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto

Algebra 2. Syksy Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Algebra 2 Syksy 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á ÂÓ ÒØÓ Ð Ö Ý ØĐ ÐĐÓØ 1. Koulualgebrasta algebraan Koulun matematiikan opetuksen suurimpia abstraktiohyppäyksiä on

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä 800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

Teemu Ojansivu Polynomien resultanteista

Teemu Ojansivu Polynomien resultanteista PRO GRADU -TUTKIELMA Teemu Ojansivu Polynomien resultanteista TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Helmikuu 2015 Tampereen yliopisto Matematiikan ja tilastotieteen laitos Ojansivu,

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

(a, 0) + (c, 0) = (a + c, 0)

(a, 0) + (c, 0) = (a + c, 0) . Kompleksiluvut Kompleksiluvut C saadaan varustamalla taso R komponenteittaisella yhteenlaskulla (Esimerkki.3 (b)) ja kertolaskulla, joka määritellään asettamalla Huomaa, että ja (a, b)(c, d) =(ac bd,

Lisätiedot

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu

k=0 saanto jokaisen kolmannen asteen polynomin. Tukipisteet on talloin valittu LIS AYKSI A kirjaan Reaalimuuttujan analyysi 1.6. Numeerinen integrointi: Gaussin kaavat Edella kasitellyt numeerisen integroinnin kaavat eli kvadratuurikaavat Riemannin summa, puolisuunnikassaanto ja

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden

Lisätiedot

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij. Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

Kvasiryhmistä ja niiden sovelluksista

Kvasiryhmistä ja niiden sovelluksista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Suvi Pasanen Kvasiryhmistä ja niiden sovelluksista Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2016 Tampereen yliopisto Informaatiotieteiden yksikkö PASANEN,

Lisätiedot

Nopea kertolasku, Karatsuban algoritmi

Nopea kertolasku, Karatsuban algoritmi Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa

Lisätiedot

Rollen lause polynomeille

Rollen lause polynomeille Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 94 KERTOMAT, BINOMIKERTOIMET Kertoma/Factorial Määritellään

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

13.3. Transkendenttisuudesta. 14. Juurikunnat Määritelmä ja olemassaolo.

13.3. Transkendenttisuudesta. 14. Juurikunnat Määritelmä ja olemassaolo. 13.3. Transkendenttisuudesta. Luvun todistamiseksi algebralliseksi riittää löytää polynomi, jonka juuri kyseinen luku on. Transkendenttisuuden todistaminen on sen sijaan työläämpää. Jotkut tapaukset ovat

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.

Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat. JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla

Lisätiedot

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20 Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y. ANALYYSIN TEORIA A Kaikki lauseet eivät ole muotoiltu samalla tavalla kuin luennolla. Ilmoita virheistä yms osoitteeseen mikko.kangasmaki@uta. (jos et ole varma, onko kyseessä virhe, niin ilmoita mieluummin).

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Algebran ja lukuteorian harjoitustehtävien ratkaisut

Algebran ja lukuteorian harjoitustehtävien ratkaisut Algebran ja lukuteorian harjoitustehtävien ratkaisut Versio 1.0 (27.1.2006 Turun yliopisto Lukuteoria 1. a Tarkistetaan ekvivalenssirelaation ehdot. on refleksiivinen, sillä identiteettikuvaus, id : C

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

d Z + 17 Viimeksi muutettu

d Z + 17 Viimeksi muutettu 5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)

Lisätiedot

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Sisältö 1 Luupeista 2 1.1 Luupit ja niiden kertolaskuryhmät................. 2 2 Transversaalit 5 3

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto

Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Lineaarialgebra 2 Kevät 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á Ë Ð Ö Ø Ú ØÓÖ Ø 1. Kerroinrenkaat 1.1. Määritelmä. Yhden laskutoimituksen rakenne(g, + on Abelin ryhmä, jos

Lisätiedot

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 2. Kompleksitason topologiaa Kompleksianalyysi on kompleksiarvoisten kompleksimuuttujien funktioiden teoriaa. Tällä kurssilla käsittelemme vain

Lisätiedot

Johdatus p-adisiin lukuihin

Johdatus p-adisiin lukuihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Anne Keskinen Johdatus p-adisiin lukuihin Matematiikan ja tilastotieteen laitos Matematiikka Maaliskuu 2010 Tampereen yliopisto Matematiikan ja tilastotieteen laitos

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a).

(ψ + ζ)φ(a) = ψφ(a) + ζφ(a) = (ψφ + ζφ)(a), φ(ψ + ζ)(a) = φ(ψ(a) + ζ(a)) = φψ(a) + φζ(a) = (φψ + φζ)(a). ALGEBRA 2007 15 Todistus. Mieti, miksi kuvaus on hyvin määritelty! Surjektiivisuus on selvää. Lisäksi φ(xkyk) = φ(xyk) = xyh = xhyh = φ(xk)φ(yk), joten kuvaus on homomorfismi. Jos y H, niin φ(yk) = yh

Lisätiedot

JAKSO 2 KANTA JA KOORDINAATIT

JAKSO 2 KANTA JA KOORDINAATIT JAKSO 2 KANTA JA KOORDINAATIT Kanta ja dimensio Tehtävä Esittele vektoriavaruuden kannan määritelmä vapauden ja virittämisen käsitteiden avulla ja anna vektoriavaruuden dimension määritelmä Esittele Lause

Lisätiedot

Trooppisen algebran peruslause

Trooppisen algebran peruslause TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jari Ahonen Trooppisen algebran peruslause Informaatiotieteiden yksikkö Matematiikka Helmikuu 2013 Tiivistelmä Tutkielmassa käsitellään yhden muuttujan trooppisia

Lisätiedot

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita?

Onko kuvaukset injektioita? Ovatko ne surjektioita? Bijektioita? Matematiikkaa kaikille, kesä 2017 Avoin yliopisto Luentojen 2,4 ja 6 tehtäviä Päivittyy kurssin aikana 1. Olkoon A = {0, 1, 2}, B = {1, 2, 3} ja C = {2, 3, 4}. Luettele joukkojen A B, A B, A B ja (A B)

Lisätiedot

1. Hiukan lineaarialgebraa

1. Hiukan lineaarialgebraa ÁÎ ÃÓ Ø ÐÓ ³Ò Ø ÓÖ 1. Hiukan lineaarialgebraa 1.1. Määritelmä. Olkoon K = (K, +, ) kunta (ns. kerroinkunta). Joukko V varustettuna yhteenlaskulla +:V V V ja skalaarikerronnalla :K V V on K- vektoriavaruus,

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

4 Abelin ryhmät. 4.1 Suorat tulot ja summat

4 Abelin ryhmät. 4.1 Suorat tulot ja summat 4 Abelin ryhmät Ensimmäisellä ryhmäteorian kurssilla käytiin läpi lähinnä syklisiä ryhmiä. Tällä kurssilla keskitymme epäkommutatiivisiin esimerkkeihin. On kuitenkin niin, että äärellisesti viritettyjen

Lisätiedot

Trooppista geometriaa

Trooppista geometriaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Joona Hirvonen Trooppista geometriaa Informaatiotieteiden yksikkö Matematiikka Toukokuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö HIRVONEN, JOONA: Trooppista

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot