Johdatus matemaattiseen päättelyyn

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Johdatus matemaattiseen päättelyyn"

Transkriptio

1 Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015

2 1 Merkintöjä 2 Todistamisesta 2

3 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin keskeisimpiä käsitteitä ja harjoitellaan matemaattista päättelyä niitä käyttäen. Joukko koostuu alkioista ja jokaisesta alkiosta on pystyttävä sanomaan, kuuluuko se tiettyyn joukkoon. Merkintä Mitä tarkoittaa? x A x on joukon A alkio, ts. x kuuluu joukkoon A y / A y ei ole joukon A alkio, ts. y ei kuulu joukkoon A {x P (x)} niiden alkioiden joukko, joilla on ominaisuus P (x) tyhjä joukko eli joukko, joka ei sisällä yhtään alkiota 3.1 Esimerkkejä (1) 1 {1, 2}, 2 {1, 2}, 0 / {1, 2} (2) {n N 0 < n < 5} = {1, 2, 3, 4} (3) {0, 1} = {0, 0, 1} = {1, 0} (4) {1}, sillä 1 {1}. (5) { }, sillä on joukon { } alkio. 3.2 Määritelmä Joukko A on joukon B osajoukko, jos jokainen joukon A alkio on myös joukon B alkio, ts. jos x A, niin x B. Tällöin merkitään A B. Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Joukko A ei ole joukon B osajoukko, jos joukossa A on sellainen alkio, joka ei kuulu joukkoon B, ts. jos on olemassa sellainen a A, että a / B. Tällöin merkitään A B. 3.3 Esimerkkejä (1) {1, 2}, {1} {1, 2}, {2} {1, 2} ja {1, 2} {1, 2} (2) {3, 7, 11, 15} {n N n pariton} N (3) {2, 3, 4} {2, 4, 6}, sillä 3 {2, 3, 4}, mutta 3 / {2, 4, 6}. (4) {n N n < 3} = {0, 1, 2, 3, 4, 5, 6, 7, 8} 3

4 (5) Parittomien luonnollisten lukujen määritelmän perusteella ja huomautuksen??(3) perusteella (6) N Z Q R {n N n on pariton} = {2k + 1 k N}, {n N n on pariton} = {n N n 2 pariton}. (7) Koska N Z (esimerkiksi 1 Z, mutta 1 / N), niin N on joukon Z aito osajoukko. Vastaavasti Z on joukon Q aito osajoukko ( 1 2 Q, mutta 1 / Z) ja Q 2 on joukon R aito osajoukko ( 2 R, mutta 2 / Q). (8) Osoita, että {0, 1} = {x R x 2 = x}. Todistus. On osoitettava kaksi seikkaa: {0, 1} {x R x 2 = x} ja {x R x 2 = x} {0, 1}. Perustellaan 1. väite: koska 0 2 = 0 ja 1 2 = 1, niin {0, 1} {x R x 2 = x}, joten 1. väite on totta. Perustellaan vielä 2. väite: Jos x R on sellainen, että x 2 = x, niin 0 = x 2 x = x(x 1), mistä nähdään, että x = 0 tai x = 1. Siis 2. väite pätee. (9) Onko väite tosi? jos a A ja A B, niin a / B Ratkaisu. Väite ei ole totta, mikä nähdään, kun valitaan A = {0, 1}, B = {1, 2} ja a = 1. Tällöin a A ja A B, sillä 0 A, mutta 0 / B. Lisäksi a B. 3.4 Määritelmä Olkoot A, B X. (Tässä X on jokin perusjoukko, esimerkiksi R, Q, Z tai N.) Määritellään joukkojen A ja B yhdiste A B = {x X x A tai x B}, 4

5 leikkaus A B = {x X x A ja x B}, erotus A\B = {x X x A ja x / B} ja komplementti A C = X \ A = {x X x / A}. 3.5 Esimerkkejä (1) Olkoot A = {0, 2, 4, 6} ja B = {0, 1, 2, 3}. Tällöin A B = {0, 1, 2, 3, 4, 6}, A B = {0, 2}, A \ B = {4, 6} ja (A B) (A \ B) = {0, 2} {4, 6} = {0, 2, 4, 6} = A. (2) Olkoot A = {0, 1, a, b}, B = {1, 2, a} ja C = {2, 3, c}. Tällöin A B = {0, 1, 2, a, b}, A B = {1, a}, A\B = {0, b}, B\A = {2}, A C =, B C = {2} A (B C) = A {2} = ja (A B) (A C) = {0, 1, 2, a, b} {0, 1, 2, 3, a, b, c} = {0, 1, 2, a, b}. (3) Olkoot A = {n N n on jaollinen 6:lla}, B = {n N n on jaollinen 3:lla} ja C = {n N n on jaollinen 2:lla}. Tällöin ja esimerkin?? (2) perusteella B C = {n N n on jaollinen 2:lla tai 3:lla} B C = {n N n on jaollinen 2:lla ja 3:lla} = A. Määritellään seuraavaksi joukon R avoimet, suljetut ja puoliavoimet välit. 5

6 3.6 Määritelmä Olkoot a, b R sellaisia, että a < b. Määritellään ]a, b[ = {x R a < x < b} [a, b] = {x R a x b} ]a, b] = {x R a < x b} [a, b[ = {x R a x < b} (avoin väli) (suljettu väli) (puoliavoin väli) (puoliavoin väli). Lisäksi ]a, [ = {x R x > a} [a, [ = {x R x a} ], a[ = {x R x < a} ], a] = {x R x a}. Tässä on äärettömän symboli. 3.7 Esimerkkejä (1) Olkoot A = [0, 1], B = [1, 2] ja C = ] 1 2, 3 2[. Nyt A B = {x R 0 x 1 tai 1 x 2} = [0, 2], A B = {x R 0 x 1 ja 1 x 2} = {1}, A C = {x R 0 x 1 tai 1 2 < x < 3 2 } = [ 0, 3 2[, A C = {x R 0 x 1 ja 1 2 < x < 3 2 } = ] 1 2, 1], B C = {x R 1 x 2 tai 1 2 < x < 3 2 } = ] 1 2, 2] B C = {x R 1 x 2 ja 1 2 < x < 3 2 } = [ 1, 3 2[, A\B = {x R 0 x 1 ja (x < 1 tai x > 2)} = [0, 1[, A\C = {x R 0 x 1 ja (x 1 2 tai x 3 2 )} = [ 0, 1 2] ja B\C = {x R 1 x 2 ja (x 1 2 tai x 3 2 )} = [ 3 2, 2]. (2) Olkoot A = [ 2, 2[ ja B = [1, [. Tällöin A B = {x R 2 x < 2 tai x 1} = [ 2, [ A B = {x R 2 x < 2 ja x 1} = [1, 2[, R \ A = {x R x < 2 tai x 2} =], 2[ [2, [, R \ B = {x R x < 1} =], 1[, A \ B = { 2 x < 2 x < 1} = [ 2, 1[ ja B \ A = {x 1 x < 2 tai x 2} = [2, [. 6

7 Määritellään seuraavaksi joukkojen äärelliset ja numeroituvat yhdisteet ja leikkaukset. 3.8 Määritelmä Joukkojen A 1, A 2,..., A k äärellinen yhdiste on k A i = A 1 A 2... A k = {x x A 1 tai x A 2 tai... tai x A k } i=1 = {x x A i jollakin i = 1,..., k} ja äärellinen leikkaus on k A i = A 1 A 2... A k = {x x A 1 ja x A 2 ja... ja x A k } i=1 = {x x A i kaikilla i = 1,..., k}. Joukkojen A 1, A 2,... numeroituva yhdiste on A i = {x x A i jollakin i = 1, 2,...} i=1 ja numeroituva leikkaus on 3.9 Esimerkkejä A i = {x x A i kaikilla i = 1, 2,...}. i=1 (1) Tarkastellaan joukkoja A = ] 1, 0[, B = ]0, 1], C = [ 1 2, 2] ja D = {0, 3}. Mitä ovat A B, A B D, B C D, A B C D ja B C D? Ratkaisu: Määritelmien perusteella saadaan A B = {x R 1 < x < 0 tai 0 < x 1} = ] 1, 1] \{0}, A B D = {x R 1 < x < 0 tai 0 < x 1 tai x = 0 tai x = 3} = ] 1, 1] {3}, B C D = {x R 0 < x 1 tai 1 x 2 tai x = 0 tai x = 3} = [0, 2] {3}, 2 A B C D = ja B C D =. 7

8 (2) Kaikilla k N määritellään A k = [k, k + 1[. Mitä ovat 5 A k, 10 A k, 10 A k ja A k? k=5 Ratkaisu: Määritelmien perusteella 5 A k = A 1 A 2 A 3 A 4 A 5 = [1, 2[ [2, 3[ [3, 4[ [4, 5[ [5, 6[= [1, 6[, k=5 A k = A 1 A 2... A 10 = [1, 2[ [2, 3[... [10, 11[= [1, 11[, A k = A 5 A 6... A 10 = [5, 6[ [6, 7[... [10, 11[= [5, 11[ A k = {x R x A k jollakin k = 1, 2,...} = [1, [. (3) Kaikilla k = 1, 2,... määritellään A k = [0, 1 [. Mitä ovat k ja 5 A k, 10 A k, 10 A k ja A k? k=5 Ratkaisu: Määritelmien perusteella 5 A k = A 1 A 2 A 3 A 4 A 5 = [0, 1[ [0, 1[ [0, 1[ [0, 1[ [0, 1[= [0, 1[, k=5 A k = A 1 A 2... A 10 = [0, 1[ [0, [... [0, [= [0, [, A k = A 5 A 6... A 10 = [0, 1[ [0, [... [0, [= [0, [ ja A k = {x R x A k kaikilla k = 1, 2,...} = {0}. Perustellaan viimeinen yhtäsuuruus, ts. todistetaan, että A k = {0} (ks. 2.12). 8

9 On siis osoitettava, että {0} A k ja A k {0}. Koska 0 [0, 1 k [ kaikilla k = 1, 2,..., niin {0} A k. Osoitetaan vielä, että A k {0}. Oletus: x A k, ts. x A k kaikilla k = 1, 2,.... Väite: x = 0. Antiteesi: x 0. Koska x A 1 ja x 0, niin 0 < x < 1. Valitaan niin suuri i = 1, 2,..., että i > 1 x. Tällöin 1 < x, joten x / A i i. Tämä on ristiriita, sillä oletuksen mukaan x A i. Näin ollen antiteesi ei ole tosi, ja siten väite pätee Määritelmä Joukkojen A ja B tulojoukko eli karteesinen tulo on A B = {(a, b) a A, b B}. Huomaa, että (a, b) = (c, d) a = c ja b = d Esimerkkejä (1) Jos A = {a, b, c} ja B = {0, a}, niin A B = {(a, 0), (a, a), (b, 0), (b, a), (c, 0), (c, a)}. (2) Olkoot A = {1}, B = {2, 3}, C = {1, 2} ja D = {3}. Mitä ovat A (B C), (A B) (A C), A (B \ C), (A B) \ (A C), (A B) (C D) ja (A C) (B D)? Ratkaisu. Määritelmistä saadaan A (B C) = {1} {1, 2, 3} = {(1, 1), (1, 2), (1, 3)} (A B) (A C) = {(1, 2), (1, 3)} {(1, 1), (1, 2)} = {(1, 1), (1, 2), (1, 3)} A (B \ C) = {1} {3} = {(1, 3)} (A B) \ (A C) = {(1, 2), (1, 3)} \ {(1, 1), (1, 2)} = {(1, 3)} (A B) (C D) = {(1, 2), (1, 3)} {(1, 3), (2, 3)} = {(1, 2), (1, 3), (2, 3)} (A C) (B D) = {1, 2} {2, 3} = {(1, 2), (1, 3), (2, 2), (2, 3)}. 9

10 (3) Euklidinen avaruus R n : R 2 = R R = {(x, y) x R ja y R} (xy-taso) R 3 = R R R = {(x, y, z) x R, y R ja z R} R n = R R... R }{{} n-kpl (n-ulotteinen euklidinen avaruus). (xyz-avaruus) (4) Jos A = [ 1, 1[, B = ]0, 1[ ja C = [1, [, niin A B = [ 1, 1[ ]0, 1[ = {(x, y) R 2 1 x < 1 ja 0 < y < 1} A C = [ 1, 1[ [1, [ = {(x, y) R 2 1 x < 1 ja y 1} C A = [1, [ [ 1, 1[ = {(x, y) R 2 x 1 ja 1 y < 1} Miten joukot osoitetaan samoiksi? Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts. jos x A, niin x B, (ii) osoitetaan, että B A, ts. jos x B, niin x A Esimerkkejä (1) Olkoot A = {x R x 2 5x + 6 = 0} ja B = {n N 3 < n 2 < 10}. Osoita, että A = B. Todistus. On osoitettava, että A B ja B A. (i) Väite 1: A B, ts. jos x A, niin x B. Todistus. Olkoon x A. Tällöin x R ja x 2 5x + 6 = 0. Ratkaistaan toisen asteen yhtälö jakamalla polynomi x 2 5x + 6 tekijöihin: 0 = x 2 5x + 6 = (x 2)(x 3). Tästä nähdään, että x = 2 tai x = 3. Koska 2 N ja 3 < 2 2 < 10, niin 2 B. Koska 3 N ja 3 < 3 2 < 10, niin 3 B. Siis A B. (ii) Väite 2: B A, ts. jos x B, niin x A. Todistus. Olkoon n B, ts. n N ja 3 < n 2 < 10. Tällöin n = 2 tai n = 3. Sijoittamalla 2 x:n paikalle lausekkeeseen x 2 5x + 6 saadaan = = 0. 10

11 Siis 2 A. Sijoittamalla 3 muuttujan x paikalle lausekkeeseen x 2 5x+6 saadaan Siis 3 A. Näin ollen B A. Kohdista (i) ja (ii) seuraa, että A = B = = 0. (2) Osoita, että A (B C) = (A B) (A C). Todistus. (i) Väite 1: A (B C) (A B) (A C), ts. jos x A (B C), niin x (A B) (A C). Todistus. Oletetaan, että x A (B C). Tällöin x A tai x B C. Käsitellään nämä tapaukset erikseen. Jos x A, niin x A B ja x A C yhdisteen määritelmän nojalla. Siis x (A B) (A C). Jos x B C, niin x B ja x C leikkauksen määritelmän perusteella. Edelleen yhdisteen määritelmän nojalla x A B ja x A C. Siis x (A B) (A C). Koska molemmissa tapauksissa x (A B) (A C), niin väite 1 on totta. (ii) Väite 2: (A B) (A C) A (B C), ts. jos x (A B) (A C), niin x A (B C). Todistus. Oletetaan, että x (A B) (A C). Tällöin x A B ja x A C. Jos x A, niin yhdisteen määritelmän nojalla x A (B C). Jos taas x / A, niin koska x A B ja x A C, on x molempien joukkojen B ja C alkio. Näin ollen x B C, mistä seuraa, että x A (B C). Siis väite 2 on totta. Kohdista (i) ja (ii) seuraa, että A (B C) = (A B) (A C). (3) Osoita, että (A B) C = A C B C. Todistus. (i) Väite 1: (A B) C A C B C, ts. jos x (A B) C, niin x A C B C. Todistus. Oletetaan, että x (A B) C, ts. x / A B. Perustellaan, että tästä seuraa, että x / A ja x / B. Antiteesi: x A tai x B. Tällöin x A B, mikä on ristiriita, sillä oletuksen perusteella x / A B. Siis antiteesi on väärä. Näin ollen x / A ja x / B, ts. x A C ja x B C. Siis x A C B C. Väite 1 on siis totta. 11

12 (ii) Väite 2: A C B C (A B) C, ts. jos x A C B C, niin x (A B) C. Todistus. Oletetaan, että x A C B C, ts. x / A ja x / B. Perustellaan, että tästä seuraa, että x / A B. Antiteesi: x A B. Tällöin x A tai x B, mikä on ristiriita, sillä oletuksen mukaan x / A ja x / B. Siis antiteesi on väärä. Näin ollen x / A B, ts. x (A B) C, ja väite 2 on osoitettu todeksi. Kohdista (i) ja (ii) seuraa, että (A B) C = A C B C. (4) Osoita, että A (B C) = (A B) (A C). Todistus. (i) Väite 1: A (B C) (A B) (A C), ts. jos (x, y) A (B C), niin (x, y) (A B) (A C). Todistus. Oletetaan, että (x, y) A (B C), ts. x A ja y B C. Jos y B, niin (x, y) A B. Jos taas y C, niin (x, y) A C. Näin ollen (x, y) (A B) (A C), joten väite 1 on totta. Väite 2: (A B) (A C) A (B C), ts. jos (x, y) (A B) (A C), niin (x, y) A (B C). Todistus. Oletetaan, että (x, y) (A B) (A C), ts. (x, y) A B tai (x, y) A C. Jos (x, y) A B, niin x A ja y B, joten (x, y) A (B C). Jos taas (x, y) A C, niin x A ja y C, joten (x, y) A (B C). Näin ollen väite 2 on totta. Kohdista (i) ja (ii) seuraa, että A (B C) = (A B) (A C).. Harjoitellaan vielä todistamista joukko-opin käsitteitä käyttäen Esimerkki Osoita, että A B A, jos ja vain jos B A. Todistus. Väite koostuu kahdesta väitelauseesta. Todistetaan ne erikseen. Oletus 1: A B A. Väite 1: B A, ts. jos x B, niin x A. 12

13 Todistus. Olkoon x B. Tällöin x A B, joten oletuksen 1 perusteella x A. Siis väite 1 on totta. Oletus 2: B A. Väite 2: A B A, ts. jos x A B, niin x A. Todistus. Olkoon x A B, ts. x A tai x B. Jos x A, niin väite 2 on totta. Jos taas x B, niin oletuksen 2 perusteella x A. Siis väite 2 on totta. Kohdista ja seuraa, että A B A, jos ja vain jos B A. 13

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

Johdatus matemaattiseen päättelyyn (5 op)

Johdatus matemaattiseen päättelyyn (5 op) Johdatus matemaattiseen päättelyyn (5 op) Tero Vedenjuoksu Oulun yliopisto Matemaattisten tieteiden laitos 2014 Johdatus matemaattiseen päättelyyn 2014 Yhteystiedot: Tero Vedenjuoksu tero.vedenjuoksu@oulu.fi

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 3 Joukko-oppia 4 Funktioista Funktio eli kuvaus on matematiikan

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 01 Tero Vedenjuoksu Sisältö 1 Johdanto 3 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2014 Tero Vedenjuoksu Sisältö 1 Johdanto 3 2 Esitietoja ja merkintöjä 4 3 Todistamisesta 5 3.1 Suora todistus.............................

Lisätiedot

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta). Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)

Lisätiedot

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Valitse seuraaville säännöille mahdollisimman laajat lähtöjoukot ja sopivat maalijoukot niin, että syntyy kahden muuttujan funktiot (ks. monisteen

Lisätiedot

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko? HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 1 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät luentokalvoihin 1 14. Erityisesti esimerkistä 4 ja esimerkin

Lisätiedot

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8 Tuntitehtävät 1-2 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 5- loppuviikon harjoituksissa. Kotitehtävät 3-4 tarkastetaan loppuviikon

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 1: Joukot 4.1 Joukot Matemaattisesti joukko on mikä tahansa hyvin määritelty kokoelma objekteja, joita kutsutaan joukon alkioiksi

Lisätiedot

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. (14.3-18.3) Jeremias Berg 1. Luettele kaikki seuraavien joukkojen alkiot: (a) {x Z : x 3} (b) {x N : x > 12 x < 7} (c) {x N : 1 x 7} Ratkaisu:

Lisätiedot

1 Perusasioita joukoista

1 Perusasioita joukoista 1 Perusasioita joukoista 1.1 Merkintöjä Joukko voidaan määritellä luettelemalla siihen kuuluvat alkiot. Esimerkiksi voidaan merkitä = { 2, 1, 0, 1, 2}. Tästä merkinnästä nähdään, mitkä luvut ovat joukon

Lisätiedot

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton. 3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä

Lisätiedot

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Kaarenpituus. Olkoon r: [a, b] R

Lisätiedot

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z

Lisätiedot

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B. HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

Johdatus yliopistomatematiikkaan. JYM, Syksy /197 Johdatus yliopistomatematiikkaan JYM, Syksy 2014 1/197 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen. Joukko-oppia Matematiikan mestariluokka, syksy 2010 Harjoitus 1, vastaukset 20.2.2010 1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi asettele

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /

Lisätiedot

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus

Lisätiedot

4 Matemaattinen induktio

4 Matemaattinen induktio 4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 15. syyskuuta 2015 Alkulause Much more important than specific mathematical results are the habits of mind used by the people who create those results. Cuoco, Goldenberg

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195 Johdatus yliopistomatematiikkaan JYM, Syksy2015 1/195 Joukko ja alkio Määritelmä Joukko tarkoittaa kokoelmaa olioita, joita sanotaan joukon alkioiksi. Lisäksi vaaditaan, että jokaisesta oliosta on voitava

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

1 sup- ja inf-esimerkkejä

1 sup- ja inf-esimerkkejä Alla olevat kohdat (erityisesti todistukset) ovat lähinnä oheislukemista reaaliluvuista, mutta joihinkin niistä palataan myöhemmin kurssilla. 1 sup- ja inf-esimerkkejä Nollakohdan olemassaolo. Kaikki tuntevat

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 8 Mikko Salo 13.9.2017 Sisältö 1. Kertausta Kurssin suorittaminen Kurssi suoritetaan lopputentillä (20.9. tai 4.10.). Arvostelu hyväksytty/hylätty. Tentissä on aikaa 4 h,

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 2 Matematiikan tukikurssi kurssikerta 1 Relaatioista Oletetaan kaksi alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon mahdollisesti ne kuuluvat eri joukkoihin; merkitään a A ja b B. Voidaan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 Määrittelyjoukoista Tarkastellaan funktiota, jonka määrittelevä yhtälö on f(x) = x. Jos funktion lähtöjoukoksi määrittelee vaikkapa suljetun välin [0, 1], on funktio

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen! Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja

Lisätiedot

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu. Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos

Lisätiedot

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1 Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 4 Ratkaisuehdotuksia 4-810 1 Osoita induktiolla, että luku 15 jakaa luvun 4 n 1 aina, kun n Z + Todistus Tarkastellaan ensin väitettä

Lisätiedot

67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista

67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista Matematiikan johdantokurssi, syksy 0 Harjoitus, ratkaisuista. Esitä seuraavat joukot luettelemalla niiden alkiot: a) := { y y = ( ) n n+ n+, n N } b) := { n Z n = k, k Z } c) := { sin( nπ ) n N } Ratkaisut.

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan

Lisätiedot

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi, kurssikerta 1 Matematiikan tukikurssi, kurssikerta 1 1 Joukko-oppia Matematiikassa joukko on mikä tahansa kokoelma objekteja. Esimerkiksi joukkoa A, jonka jäseniä ovat numerot 1, 2 ja 5 merkitään A = {1, 2, 5}. Joukon

Lisätiedot

4.3. Matemaattinen induktio

4.3. Matemaattinen induktio 4.3. Matemaattinen induktio Matemaattinen induktio: Deduktion laji Soveltuu, kun ominaisuus on osoitettava olevan voimassa luonnollisilla luvuilla. Suppea muoto P(n) : Ominaisuus, joka joka riippuu luvusta

Lisätiedot

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Funktiot Tässä luvussa käsitellään reaaliakselin osajoukoissa määriteltyjä funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina. Avoin väli: ]a, b[ tai ]a, [ tai ],

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, Topologia Syksy 2010 Harjoitus 4 (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N, i=1 A i = R 1, ja f : R 1 R 1 ei ole jatkuva. Lause

Lisätiedot

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys. Ei-säännöllisiä kieliä [Sipser luku 1.4] Osoitamme, että joitain kieliä ei voi tunnistaa äärellisellä automaatilla. Tulos ei sinänsä ole erityisen yllättävä, koska äärellinen automaatti on äärimmäisen

Lisätiedot

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg) Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus 4 9.4.-23.4.200 Malliratkaisut (Sauli Lindberg). Näytä, että Lusinin lauseessa voidaan luopua oletuksesta m(a)

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi

Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä Sekalaiset tehtävät, 11. syyskuuta 005, sivu 1 / 13 Tehtäviä Tehtävä 1. Johda toiseen asteen yhtälön ax + bx + c = 0, a 0 ratkaisukaava. Tehtävä. Määrittele joukon A R pienin yläraja sup A ja suurin alaraja

Lisätiedot

Reaalilukuvälit, leikkaus ja unioni (1/2)

Reaalilukuvälit, leikkaus ja unioni (1/2) Luvut Luonnolliset luvut N = {0, 1, 2, 3,... } Kokonaisluvut Z = {..., 2, 1, 0, 1, 2,... } Rationaaliluvut (jaksolliset desimaaliluvut) Q = {m/n m, n Z, n 0} Irrationaaliluvut eli jaksottomat desimaaliluvut

Lisätiedot

Joukot metrisissä avaruuksissa

Joukot metrisissä avaruuksissa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Saara Lahtinen Joukot metrisissä avaruuksissa Informaatiotieteiden yksikkö Matematiikka Elokuu 2013 Sisältö 1 Johdanto 1 2 Metriset avaruudet 1 2.1 Tarvittavia

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi, kurssikerta 3 Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Vastauksia. Topologia Syksy 2010 Harjoitus 1

Vastauksia. Topologia Syksy 2010 Harjoitus 1 Topologia Syksy 2010 Harjoitus 1 (1) Olkoon X joukko ja (T j ) j J perhe X:n topologioita. Osoita, että T = {T j : j J} on X:n topologia. (2) Todista: Välit [a, b) muodostavat R 1 :n erään topologian kannan.

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

JOHDATUS MATEMATIIKKAAN. Petri Juutinen

JOHDATUS MATEMATIIKKAAN. Petri Juutinen JOHDATUS MATEMATIIKKAAN Petri Juutinen 7. toukokuuta 04 Sisältö Joukko-oppia 4. Joukko-opin peruskäsitteitä ja merkintöjä........... 4 Todistamisen ja matemaattisen päättelyn alkeita 3. Alkupala..............................

Lisätiedot

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus

Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus Topologia I Harjoitus 6, kevät 2010 Ratkaisuehdotus 1. (5:7) Olkoon E normiavaruus, I = [0, 1] ja f, g : I E jatkuvia. Osoita, että yhtälön h(s, t) = (1 t)f(s) + tg(s) määrittelemä kuvaus h : I 2 E on

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.

Lisätiedot

Predikaattilogiikan malli-teoreettinen semantiikka

Predikaattilogiikan malli-teoreettinen semantiikka Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia

Lisätiedot

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38 Tuntitehtävät 11-12 lasketaan alkuviikon harjoituksissa ja tuntitehtävät 15-16 loppuviikon harjoituksissa. Kotitehtävät 13-14 tarkastetaan loppuviikon

Lisätiedot

1 Peruslaskuvalmiudet

1 Peruslaskuvalmiudet 1 Peruslaskuvalmiudet 11 Lukujoukot N {1,, 3, 4,} on luonnollisten lukujen joukko (0 mukana, jos tarvitaan), Z {, 3,, 1, 0, 1,, 3,} on kokonaislukujen joukko, Q m n : m, n Z, n 0 on rationaalilukujen joukko,

Lisätiedot

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.

Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

7. Tasaisen rajoituksen periaate

7. Tasaisen rajoituksen periaate 18 FUNKTIONAALIANALYYSIN PERUSKURSSI 7. Tasaisen rajoituksen periaate Täydellisyydestä puristetaan maksimaalinen hyöty seuraavan Bairen lauseen avulla. Bairen lause on keskeinen todistettaessa kahta funktionaalianalyysin

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Ominaisvektoreiden lineaarinen riippumattomuus

Ominaisvektoreiden lineaarinen riippumattomuus Ominaisvektoreiden lineaarinen riippumattomuus Lause 17 Oletetaan, että A on n n -matriisi. Oletetaan, että λ 1,..., λ m ovat matriisin A eri ominaisarvoja, ja oletetaan, että v 1,..., v m ovat jotkin

Lisätiedot

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä. ja Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja

Lisätiedot

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

Lukion matematiikkakilpailun alkukilpailu 2015

Lukion matematiikkakilpailun alkukilpailu 2015 Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I MS-A040 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I G. Gripenberg Aalto-yliopisto. maaliskuuta 05 G. Gripenberg (Aalto-yliopisto) MS-A040 Diskreetin matematiikan perusteet Esimerkkejä. ym.,

Lisätiedot

7 Vapaus. 7.1 Vapauden määritelmä

7 Vapaus. 7.1 Vapauden määritelmä 7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan

Lisätiedot

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0. Vapaus Määritelmä Oletetaan, että v 1, v 2,..., v k R n, missä n {1, 2,... }. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee: jos c 1 v 1 + c 2 v 2 +

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot