Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori
|
|
- Ilmari Nieminen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009
2 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia Aliryhmän sentralisaattori ja normalisaattori Konjugointi ryhmässä Perustuloksia 6 4 Sovellus symmetriseen ryhmään S 4 8 Viitteet 10 1
3 1 Johdanto Tässä aineessa esitetään aliryhmän sentralisaattorin ja normalisaattorin käsitteet ja konjugointi ryhmässä, sekä muutamia näihin liittyviä perustuloksia. Lisäksi käsitteitä selvennetään lukijalle esimerkin avulla. Aineen luvut 23 perustuvat teokseen [1]. Luku 4 on kirjoittajan omaa tuotantoa. Lukijan oletetaan tuntevan kurssin Algebran peruskurssi I ryhmäteoriaa koskevat asiat. Intuitiivisesti normalisaattorin avulla voidaan mitata kuinka normaali annettu ryhmän aliryhmä on. Äärellisen ryhmän tapauksessa mitä suurempi aliryhmän normalisaattori on, sitä normaalimpi aliryhmä on. Sentralisaattori sen sijaan mittaa aliryhmän kommutatiivisuutta koko ryhmän kanssa. Jos tutkittava ryhmä on Abelin ryhmä, niin käsitteet normalisaattori ja sentralisaattori eivät ole kiinnostavia, koska Abelin ryhmä on kommutatiivinen ja sen kaikki aliryhmät ovat normaaleja. Luvussa 2.1 esitetään aliryhmän sentralisaattorin ja normalisaattorin käsitteet ja osoitetaan niille muutama perusominaisuus. Luvussa 2.2 palautetaan mieleen Algebran peruskurssi I -kurssilla lyhyesti esitelty alkion konjugointi ryhmässä. Lisäksi jo tuttua käsitteistöä laajennetaan hieman ja esitellään alkion konjugoinnin kanssa analoginen osajoukon konjugointi. Luvussa 3 edeltäviä tietoja käytetään, ja todistetaan muutamia perustuloksia sentralisaattoreista ja normalisaattoreista. Viimeisessä luvussa tutkitaan sovelluksena symmetrisen ryhmän S 4 erään aliryhmän sentralisaattoria ja normalisaattoria. 2
4 2 Määritelmiä ja perusominaisuuksia Tämän aineen loppuun asti joukon G oletetaan olevan ryhmä. Ryhmäoperaatioista käytetään multiplikatiivista merkintätapaa ja ryhmän ykkösalkiota merkitään symbolilla Aliryhmän sentralisaattori ja normalisaattori Määritelmä 2.1. Olkoon S ryhmän G epätyhjä osajoukko. Joukkoa N G (S) = {x G x 1 Sx = S} = {x G Sx = xs} kutsutaan osajoukon S normalisaattoriksi ryhmässä G. Joukkoa C G (S) = {x G x 1 sx = s s S} = {x G sx = xs s S} kutsutaan osajoukon S sentralisaattoriksi ryhmässä G. Selvästi C G (S) N G (S). Molemmat joukot ovat aina epätyhjiä, sillä 1 C G (S). Mikäli sekaannuksen vaaraa ei ole, niin voidaan merkitä lyhyesti N G (S) = N(S) ja C G (S) = C(S). Jos S koostuu vain yhdestä alkiosta s, niin N G (S) = C G (S). Tällöin voidaan käyttää merkintöjä N G (s) ja C G (s). Muutamaa yksinkertaista huomiota varten palautetaan mieleen aliryhmäkriteeri. Lause 2.2 (Aliryhmäkriteeri). Olkoon G ryhmä, H G ja H. Tällöin H G, jos ja vain jos ab 1 H kaikilla a, b H. Todistus. Katso [2], lause Joukot N(S) ja C(S) ovat aina ryhmän G aliryhmiä. Osoitetaan tämä esimerkiksi joukolle N(S). Kuten edellä mainittiin, joukko N(S) on epätyhjä. Olkoon a, b N(S). Nyt ab 1 N(S), sillä ba 1 Sab 1 = bsb 1 = S, ja väite seuraa aliryhmäkriteeristä. Samoin voidaan osoittaa, että C(S) G. Koska joukot N(S) ja C(S) ovat ryhmän G aliryhmiä ja C(S) N(S), niin erityisesti on voimassa, että C(S) N(S). 3
5 Muistetaan, että aliryhmä S G on normaali, jos x 1 Sx = S kaikilla x G. Täten jos S G, niin S N(S). Erityisesti S G, jos ja vain jos N(S) = G. Edelleen aliryhmän S normalisaattori on suurin ryhmän G aliryhmä, jossa S on normaali. 2.2 Konjugointi ryhmässä Palautetaan mieleen alkion konjugointi ryhmässä kurssilta Algebran peruskurssi I. Määritelmä 2.3. Olkoon alkio x G ja joukko S G. Joukkoa x 1 Sx kutsutaan joukon S konjugaattijoukoksi alkion x suhteen. Yhden alkion s G tapauksessa alkiota x 1 sx kutsutaan alkion s konjugaattialkioksi alkion x suhteen. Mikäli ei ole sekaannuksen vaaraa, voidaan konjugaattialkiota tai -joukkoa kutsua pelkästään konjugaatiksi. Jos K G, niin konjugaattijoukkoja tai -alkioita aliryhmän K alkioiden suhteen kutsutaan K-konjugaateiksi. Määritelmä 2.4. Olkoon K ryhmän G aliryhmä. (i) Määritellään relaatio ryhmässä G asettamalla a b, jos alkio a on alkion b K-konjugaatti. (ii) Määritellään relaatio ryhmän G potenssijoukossa asettamalla A B, jos joukko A on joukon B K-konjugaatti. Lause 2.5. Määritelmän 2.4 kohtien (i) ja (ii) relaatiot ovat ekvivalenssirelaatioita. Todistus. Todistetaan, että kohdan (ii) relaatio on ekvivalenssirelaatio. Toinen väite todistettaisiin samaan tapaan. 1 Tiedetään, että 1 K. Koska 1 1 A 1 = A, niin A A. 2 Oletetaan, että A B, eli että k 1 Bk = A jollakin k K. Tästä seuraa, että kak 1 = B, eli että B A, sillä k 1 K. 4
6 3 Oletetaan, että A B ja B C. Siis A = k 1 Bk ja B = l 1 Cl joillakin k, l K. Tästä seuraa, että A = k 1 l 1 Clk = (lk) 1 Clk eli A C, sillä lk K. Määritelmä 2.6. Määritelmän 2.4 kohdan (i) relaation ekvivalenssiluokkia kutsutaan K-konjugaattien alkioiden luokiksi tai asiayhteyden ollessa selvä lyhyesti konjugaattiluokiksi. Kohdan (ii) relaation ekvivalenssiluokkia kutsutaan K-konjugaattien joukkojen luokiksi. 5
7 3 Perustuloksia Lause 3.1. Olkoon K ryhmän G aliryhmä ja S ryhmän G epätyhjä osajoukko. Tällöin ekvivalenssiluokassa, joka muodostuu osajoukon S K- konjugaateista, on [K : K N G (S)] alkiota. Todistus. Olkoon x, y K. Nyt x 1 Sx = y 1 Sy, jos ja vain jos Sxy 1 = xy 1 S. Jälkimmäinen yhtälö puolestaan on ekvivalentti sen kanssa, että xy 1 K N G (S). Tämä on taas ekvivalenttia sen kanssa, että x kuuluu oikeaan sivuluokkaan (K N G (S))y, mikä puolestaan on ekvivalenttia sen kanssa, että oikeat sivuluokat (K N G (S))x ja (K N G (S))y ovat samoja. Kaiken kaikkiaan siis x 1 Sx = y 1 Sy, jos ja vain jos (K N G (S))x = (K N G (S))y. Täten kuvaus x 1 Sx (K N G (S))x joukon S K-konjugaattien luokalta kaikille aliryhmän K N G (S) oikeille sivuluokille ryhmässä K on hyvinmääritelty ja bijektio. Oikeita sivuluokkia on [K : K N G (S)] kappaletta, josta väite seuraa. Seuraus 3.2. Jos S G on epätyhjä, niin erillisiä osajoukkoja, jotka ovat joukon S (G-)konjugaatteja, on [G : N(S)] kappaletta. Seuraus 3.3. Jos s G, niin alkion s (G-)konjugaattiluokassa on [G : N(s)] = [G : C(s)] alkiota. Seuraus 3.4. Jos G on äärellinen ja K G, niin minkä tahansa ryhmän G K-konjugaattien joukkojen luokan kardinaliteetti jakaa ryhmän G kertaluvun #G. Vastaavasti minkä tahansa ryhmän G alkion (K-)konjugaattiluokan kardinaliteetti jakaa ryhmän G kertaluvun. Todistus. Todistetaan ensimmäinen väite, jälkimmäinen todistettaisiin vastaavasti. Koska K N G (S) on ryhmän G aliryhmä, niin Lagrangen lauseen mukaan #(K N G (S)) #G. Määritelmä 3.5. Ryhmän G keskus Z(G) = {x G ax = xa a G} on kaikkien niiden ryhmän G alkoiden joukko, jotka kommutoivat jokaisen ryhmän G alkion kanssa. 6
8 Sentralisaattorin määritelmästä nähdään, että Z(G) = C G (G). Lisäksi määritelmistä havaitaan, että ryhmän G alkio s kuuluu keskukseen, jos ja vain jos C(s) = G. Näin ollen sentralisaattori intuitiivisesti mittaa alkion (tai osajoukon) kuulumista ryhmän keskukseen. Seuraus 3.6. Olkoon G äärellinen ja A ryhmän G kaikkien konjugaattiluokkien edustajisto. Tällöin #G = [G : C(a)] + #Z(G). a A\Z(G) Todistus. Konjugaattiluokat muodostavat ryhmän G partition. Olkoon a A \ Z(G). Seurauksen 3.3 mukaan jokaiseen konjugaattiluokkaan kuuluu [G : C(a)] alkiota. Toisaalta jos a Z(G), niin alkion a konjugaattiluokka koostuu vain yhdestä alkiosta. Keskuksen kertaluku #Z(G) erotettiin summalausekkeesta siksi, että ryhmäteoriassa on usein hyödyllistä tutkia ryhmän keskusta. 7
9 4 Sovellus symmetriseen ryhmään S 4 Laskutaakan vähentämiseksi todistetaan ensin seuraava lemma. Lemma 4.1. Olkoon n 4, S n symmetrinen ryhmä ja S = {s 1, s 2,..., s k } S n epätyhjä joukko, jonka jokaisella alkiolla on tarkalleen yksi yhteinen kiintopiste a. Tällöin sellaiset ryhmän S n alkiot, joiden kiintopiste a ei ole, eivät kuulu joukon S normalisaattoriin N Sn (S) tai sentralisaattoriin C Sn (S). Todistus. Olkoon x S n \S alkio, jonka kiintopiste a ei ole. Koska C Sn (S) N Sn (S), niin riittää osoittaa, että x N Sn (S) eli, että Sx xs. Jos Sx = xs, niin yhtälö s 1 x = xs t on voimassa jollakin indeksillä 1 t k. Merkitään p = x(a). Siis p a. Joukon S alkiot kuvaavat alkion p {1, 2,..., n} \ {a} joukkoon {1, 2,..., n} \ {a, p}. Nyt s 1 x(a) = s 1 (p) {1, 2,..., n} \ {a, p}. Tutkimalla alkion a kuvautumista yhtälön oikealla puolella, havaitaan kuitenkin, että xs t (a) = x(a) = p. Koska siis s 1 x(a) xs t (a) millä tahansa indeksillä t, ovat myös kuvaukset s 1 x ja xs t erisuuret kaikilla indekseillä t. Seuraa siis ristiriita, joten Sx xs. Esimerkki 4.2. Tarkastellaan symmetristä ryhmää S 4 = {id, (12), (13), (14), (23), (24), (34), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23), (1234), (1243), (1324), (1342), (1423), (1432)}. Helposti nähdään, että joukko S = {id, (123), (132)} on ryhmän S 4 aliryhmä. Etsitään aliryhmän S normalisaattori ja sentralisaattori ryhmässä S 4. Soveltamalla lemmaa 4.1 nähdään, että normalisaattoriin eivät kuulu sellaiset alkiot, joiden kiintopiste 4 ei ole. Lemmaa voidaan soveltaa vaikka identiteettikuvauksella onkin enemmäin kuin yksi kiintopiste identiteettikuvauksen lisääminen joukkoon ei vaikuta sen normalisaattoriin. Tarkistettavaksi jää vielä, kuuluvatko alkiot (12), (13) tai (23) aliryhmän S normalisaattoriin. Laskemalla nähdään, että mainitut alkiot todella kuuluvat 8
10 normalisaattoriin, mutta sentralisaattoriin ne eivät kuulu. Siis N S4 (S) = {id, (12), (13), (23), (123), (132)} ja C S4 (S) = {id, (123), (132)}. Huomautus 4.3. Yllä ryhmän S 4 alkiot lueteltiin (S 4 -)konjugaattiluokittain, yksi luokka per rivi. Jokaisen konjugaattiluokan kardinaliteetti todellakin jakaa ryhmän kertaluvun 24, kuten seurauksen 3.4 mukaan pitääkin. 9
11 Viitteet [1] Goldhaber J., Ehrlich G.: Algebra, Collier-Macmillan Canada, Toronto, [2] Koppinen M.: Algebran peruskurssi I, luentomoniste, Turun yliopisto,
on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
LisätiedotHN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
LisätiedotEräitä ratkeavuustarkasteluja
Eräitä ratkeavuustarkasteluja Pro gradu-tutkielma Milla Jantunen 2124227 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö 1 Ryhmät ja aliryhmät 3 1.1 Ryhmä...............................
LisätiedotCauchyn ja Sylowin lauseista
Cauchyn ja Sylowin lauseista Pro gradu-tutkielma Jukka Kuru Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Peruskäsitteet 4 1.1 Funktion käsitteitä........................ 4
LisätiedotTransversaalit ja hajoamisaliryhmät
Transversaalit ja hajoamisaliryhmät Graduseminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Motivointi Esimerkki 1 (Ryhmäteorian kurssin harjoitustehtävä). Jos G on ryhmä,
LisätiedotTIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta
Oulun yliopisto TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Maisterintutkinnon kypsyysnäyte Laitos: Matemaattisten tieteiden laitos Tekijä (Sukunimi ja etunimet) Isopahkala
LisätiedotRatkeavista ryhmistä: teoriaa ja esimerkkejä
Ratkeavista ryhmistä: teoriaa ja esimerkkejä Pro Gradu-tutkielma Lauri Kangas 2192712 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2015 Sisältö 1 Perusteita 3 1.1 Ryhmät ja aliryhmät.......................
LisätiedotAlgebra I, Harjoitus 6, , Ratkaisut
Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b
LisätiedotKuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
LisätiedotLuonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
LisätiedotValitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.
Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä
LisätiedotLuupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014
Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Perusteita 3 1.1 Kuvauksista............................ 3 1.2 Relaatioista............................
LisätiedotLiite 2. Ryhmien ja kuntien perusteet
Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja
Lisätiedot3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2
3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 Olen valinnut kunkin luvun teemaksi yhden ryhmän. Ensimmäisen luvun teema on pienin epätriviaali ryhmä, eli ryhmä, jossa on kaksi alkiota. Merkitsen
Lisätiedot6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
LisätiedotRamseyn lauseen ensimmäinen sovellus
Ramseyn lauseen ensimmäinen sovellus Jarkko Peltomäki 30. huhtikuuta 2012 Tässä esseessä esitetään Frank Ramseyn vuonna 1929 esittämä tulos logiikassa, jonka todistamiseksi hän osoitti myöhemmin tärkeäksi
LisätiedotMikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin
LisätiedotÄärellisesti generoitujen Abelin ryhmien peruslause
Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.
Lisätiedot1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää
Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,
LisätiedotSylowin lauseet äärellisten ryhmien luokittelussa
Sylowin lauseet äärellisten ryhmien luokittelussa Jenna Johansson 21. marraskuuta 2018 Pro gradu -tutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Syksy 2018 Merkintöjä: N Luonnollisten
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla
Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta
LisätiedotRelaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.
Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.
LisätiedotMAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen
Lisätiedotπ πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.
Rhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 4, ratkaisuehdotus (5 sivua) 26.11.2012 Tehtävä 1. Etsi neliön smmetriarhmän D 8 kaikki alirhmät. Mitkä niistä ovat normaaleja? Ratkaisu. Rhmää D 8
LisätiedotTensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0
Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus
Lisätiedot4. Ryhmien sisäinen rakenne
4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.
LisätiedotEsko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
LisätiedotRyhmäteoriaa. 2. Ryhmän toiminta
Ryhmäteoriaa 2. Ryhmän toiminta Permutaatiot kuvaavat jonkin perusjoukon alkioita toisikseen. Eräät permutaatiot jättävät joitain alkioita paikalleen, toiset liikuttavat kaikkia joukon alkioita. Kaikki
LisätiedotEsko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
LisätiedotJarkko Peltomäki. Järjestetyt joukot ja hilat
Jarkko Peltomäki Järjestetyt joukot ja hilat Luonnontieteiden kandidaatin tutkielma Turun yliopisto Syyskuu 2010 Sisältö 1 Johdanto 2 2 Järjestetty joukko 3 2.1 Määritelmiä ja perusominaisuuksia...............
Lisätiedotg : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.
ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot
LisätiedotLaitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014
Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn
Lisätiedotjonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä
LisätiedotLineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016
Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang 2187044 Matematiikan yksikkö Oulun yliopisto 2016 Sisältö Johdanto 2 1 Esitietoja 3 1.1 Ryhmät.............................. 3 1.1.1 Ryhmä ja aliryhmä....................
LisätiedotSyklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016
Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Sisältö Johdanto 2 1 Ryhmäteoriaa 4 1.1 Ryhmän määritelmä....................... 4 1.2 Kertaluku.............................
Lisätiedot[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko
3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin
LisätiedotX R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista
Matematiikan johdantokurssi, syksy 06 Harjoitus, ratkaisuista. Olkoon perusjoukkona X := {,,,, } ja := {(, ), (, ), (, ), (, )}. Muodosta yhdistetyt (potenssi)relaatiot,,,. Entä mitä on yleisesti n, kun
LisätiedotH = H(12) = {id, (12)},
7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen
LisätiedotAlgebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
LisätiedotDihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
LisätiedotJohdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
LisätiedotMAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
Lisätiedot(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.
11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ
LisätiedotMiten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
LisätiedotSymmetrisistä ryhmistä symmetriaryhmiin
Symmetrisistä ryhmistä symmetriaryhmiin 16. marraskuuta 2006 1 Symmetrisistä ryhmistä... Bijektiivistä kuvausta {1,..., n} {1,..., n} kutsutaan n-permutaatioksi. Merkitään n-permutaatioden joukkoa S n.
LisätiedotRenkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit
Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen
LisätiedotMatematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
LisätiedotAlternoivien ryhmien ominaisuuksista
Alternoivien ryhmien ominaisuuksista Pro gradu -tutkielma Anssi Aska 2257068 Matemaattisten tieteiden laitos Oulun yliopisto 2017 Sisältö 1 Johdanto 2 2 Peruskäsitteitä 3 2.1 Ryhmä ja aliryhmä........................
LisätiedotHieman joukko-oppia. A X(A a A b A a b).
Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei
LisätiedotRyhmän P SL(2, K) yksinkertaisuus
Ryhmän P SL(2, K) yksinkertaisuus Pro gradu -tutkielma Antti Eronen 2187183 Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Peruskäsitteitä ja tarpeellisia lauseita 3 11
LisätiedotAlgebra II. Syksy 2004 Pentti Haukkanen
Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista
LisätiedotJohdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
LisätiedotEkvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa
Määritelmä 1 Olkoot x ja y joukon A alkioita. Jos R on jokin ominaisuus/ehto, joka määritellään yksikäsitteisesti joukon A kaikkien alkioiden välille siten, että se joko toteutuu tai ei toteudu alkioiden
Lisätiedot802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä
802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian
LisätiedotTekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.
3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää
LisätiedotAlgebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia
Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,
LisätiedotJohdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20
Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen
Lisätiedot= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
LisätiedotAlgebra kl Tapani Kuusalo
Algebra kl. 2010 Tapani Kuusalo Sisältö Luku 1. Luonnolliset luvut 1 Luku 2. Laskutoimitukset 4 1. Laskutoimitusten yleiset ominaisuudet 4 2. Neutraali- ja käänteisalkiot 6 3. Indusoidut laskutoimitukset,
Lisätiedotk=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0
1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota
LisätiedotAlgebra I, harjoitus 8,
Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen
LisätiedotKvasiryhmistä ja niiden sovelluksista
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Suvi Pasanen Kvasiryhmistä ja niiden sovelluksista Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2016 Tampereen yliopisto Informaatiotieteiden yksikkö PASANEN,
Lisätiedot8 Joukoista. 8.1 Määritelmiä
1 8 Joukoista Joukko on alkoidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukkooppi aksiomaattisesti. Näin ei tässä tehdä
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku
Lisätiedot(xa) = (x) (a) = (x)0 = 0
11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin
Lisätiedota b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
LisätiedotAlgebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
Lisätiedot15. Laajennosten väliset homomorfismit
15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit niin sanotut automorfismit auttavat vastaavasti
LisätiedotRAKKAUS MATEMAATTISENA RELAATIONA
RAKKAUS MATEMAATTISENA RELAATIONA HEIKKI PITKÄNEN 1. Johdanto Määritelmä 1. Olkoon I ihmisten joukko ja a, b I. Määritellään relaatio : a b a rakastaa b:tä. Huomautus 2. Määritelmässä esiintyvälle käsitteelle
LisätiedotHELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI. Matematiikan ja tilastotieteen laitos. Matemaattis-luonnontieteellinen
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Matti
Lisätiedot802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä
802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................
LisätiedotLUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että
LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,
LisätiedotEsimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.
Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4
LisätiedotSylowin lauseet äärellisten ryhmien teoriassa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Aleksi Heiskanen Sylowin lauseet äärellisten ryhmien teoriassa Luonnontieteiden tiedekunta Matematiikka Marraskuu 2017 Tampereen yliopisto Luonnontieteiden tiedekunta
Lisätiedot802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen
802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................
Lisätiedota 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.
Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a
LisätiedotKäänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
LisätiedotInsinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
LisätiedotFrobeniuksen lauseesta ja sen yleistyksistä
Frobeniuksen lauseesta ja sen yleistyksistä Pro Gradu-tutkielma Mikko Korhonen Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö 1 Johdanto 2 2 Määritelmiä ja perustuloksia 4 2.1 Lukuteoriaa............................
Lisätiedot1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
LisätiedotLUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia
LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien
Lisätiedota) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon
Matematiikan johdantokurssi, syksy 08 Harjoitus 3, ratkaisuista. Kokonaisluvut määriteltiin luonnollisten lukujen avulla ekvivalenssiluokkina [a, b], jotka määrää (jo demoissa ekvivalenssirelaatioksi osoitettu)
Lisätiedot811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio
LisätiedotMS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
LisätiedotFermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma
Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut
Lisätiedot802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013
802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät
Lisätiedotkoska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan
4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta
LisätiedotShorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
LisätiedotRatkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).
Matematiikan laitos Johdatus Diskreettiin Matematiikaan Harjoitus 1 03.11.2010 Ratkaisuehdotuksia Aleksandr Nuija 1. Tarkastellaan joukkoja A = {1,3,4}, B = {2,3,7,9} ja C = {2, 5, 7}. Määritä joukot (a)
LisätiedotÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG
ÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG PRO GRADU HELSINGIN YLIOPISTON MATEMATIIKAN LAITOS TOUKOKUU 2008 SISÄLTÖ 1. Merkinnöistä ja määritelmistä 2 2. Johdanto 3 3. Ryhmäteoriaa 5 3.1.
Lisätiedot802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
LisätiedotVieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.
Aloitus Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne. Mitkä seuraavista väitteistä ovat tosia? A. 6 3 N B. 5 Z
Lisätiedot(2n 1) = n 2
3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa
LisätiedotDiskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista
Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista 1. Olkoot (E, ) ja (F, ) epätyhjiä järjestettyjä joukkoja. Määritellään joukossa E F relaatio L seuraavasti: [ (x, y)l(x, y ) ] [ (x < x )
LisätiedotÄärellisistä ryhmistä, transversaaleista ja luupeista
Äärellisistä ryhmistä, transversaaleista ja luupeista Pro Gradu - tutkielma Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Oulun yliopisto Tiedekunta/osasto/laitos Matemaattisten tieteiden
LisätiedotMääritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
LisätiedotJohdatus diskreettiin matematiikkaan Harjoitus 1,
Johdatus diskreettiin matematiikkaan Harjoitus 1, 15.9.2014 1. Hahmottele tasossa seuraavat relaatiot: a) R 1 = {(x, y) R 2 : x y 2 } b) R 2 = {(x, y) R 2 : y x Z} c) R 3 = {(x, y) R 2 : y > 0 and x 2
Lisätiedot802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
Lisätiedot