Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.

Koko: px
Aloita esitys sivulta:

Download "Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin."

Transkriptio

1 18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin. Huomautus. Polynomien suurin yhteinen tekijä saadaan yksikäsitteiseksi kun vaaditaansenolevanpääpolynomi. Jatkosssa oletamme aina, että syt(f(x),g(x)) pääpolynomi. Nyt on helppo nähdä, että syt(f(x),g(x)) on polynomien f(x),g(x) yhteisistä tekijöistä se, joka on asteeltaan suurin ja jonka johtava kerroin = 1. Esimerkki Lasketaan polynomien x 12 + x 10 + x 8 + x 3 +1jax 8 + x 7 + x 5 + x 4 + x 2 +1 F 2 [x] suurin yhteinen tekijä. Eukleideen algoritmi: x 12 + x 10 + x 8 + x 3 +1=(x 8 + x 7 + x 5 + x 4 + x 2 + x +1)(x 4 + x 3 + x) + x 7 + x 5 + x 3 + x 2 + x +1 x 8 + x 7 + x 5 + x 4 + x 2 + x +1=(x 7 + x 5 + x 3 + x 2 + x +1)(x +1)+x 6 + x 2 + x x 7 + x 5 + x 3 + x 2 + x +1=(x 6 + x 2 + x)x + x 5 + x +1 x 6 + x 2 + x =(x 5 + x +1)x joten syt(x 12 + x 10 + x 8 + x 3 +1,x 8 + x 7 + x 5 + x 4 + x 2 +1)=x 5 + x +1. Lemma 2.2 (Eukleideen lemma). Olkoon p(x),f(x),g(x) K[x] ja p(x) jaoton. Jos p(x) f(x)g(x), niin p(x) f(x) tai p(x) g(x). Todistus. Lause 2.7. Lause 2.8. K[x] on UFD. Tarkemmin: jokainen polynomi f(x) K[x] \{0} voidaan esittää muodossa f(x) =up 1 (x)p 2 (x) p n (x), missä kukinpolynomip i (x) on jaoton pääpolynomi ja u K. polynomien p i (x) järjestystä vailleyksikäsitteinen. Tämä esityson Todistus. Olkoon f(x) 0 alinta positiivista astetta oleva polynomi, joka ei hajoa jaottomien alkioiden tuloksi. Nyt f(x) ei ole jaoton joten f(x) =a(x)b(x), missä deg a(x),b(x) n 1 (huomaa, että K on kunta). Koska a(x) jab(x) hajoavat jaottomien alkioiden tuloksi, niin samoin hajoaa f(x) japäädyimme ristiriitaan. Täten

2 ALGEBRA II 19 jokainen positivista astetta oleva polynomi hajoaa jaottomien alkioiden tuloksi. Koska jokainen jaoton polynomi p(x) = uq(x), missä q(x) on jaoton pääpolynomi, niin väitteen hajoitelma on olemassa kaikille positiivista astetta oleville polynomeille ja triviaalisti myös kaikille vakiopolynomeille. Yksikäsitteisyys: oletetaan, että up 1 (x)p 2 (x) p n (x) =f(x) =u q 1 (x)q 2 (x) q t (x), missä t n ja kukin q i (x) on jaoton. Nyt Eukleideen lemman nojalla p 1 q i jollakin i =1,...,t. Voidaan olettaa, että i =1. Täten q 1 = p 1, sillä q 1 on jaoton pääpolynomi ja p 1 on pääpolynomi. Täten up 2 (x) p n (x) =u q 2 (x) q t (x). Toistamalla eo. päättelyä saamme lopulta u = u q n+1 (x) q t (x). Täten n = t ja u = u R[x] on UFD jos R on UFD. Olkoon R mikä tahansa UFD ja K sen osamääräkunta. Näytetään ensin, että Eukleideen lemma pätee renkaassa R. Määritelmä 2.8.Alkiot a, b R ovat liitännäisiä jos a = ub, missä u R.Tällöin merkitään a b. Lemma 2.3. Olkoot a, b, c R ja syt(a, c) 1. Silloin pätee implikaatio: Jos c ab, niin c b. Todistus. Olkoot a = up 1 p i, b = u q 1 q j ja c = u r 1 r k alkioiden a, b, c hajoitelmat jaottomien alkioiden tuloksi. Koska c ab, niin uu p 1 p i q 1 q j = u r 1 r k v jollakin d R. Koska R on UFD, niin r 1 p i tai r 1 q j. Koska syt(a, c) 1, niin r 1 = u 1 q j, u 1 R. Voidaan olettaa, että j = 1. Samoin jatkamalla näemme, että r 2 = u 2 q 2,...,r k = u k q k.täten b = u q 1 q j = u vr 1 r 2 r k q k+1 q j =(u vq k+1 q j )c, missä v = u 1 u k,janäin ollen c b. Seuraus (Eukleideen lemma). Jos p R on jaoton ja p ab, niin p a tai p b.

3 20 ALGEBRA II Määritelmä 2.9.Polynomi f(x) R[x] onprimitivinen, jos jokin sen kertoimien suurin yhteinen tekijä on yksikkö. Lemma 2.4 (Gaussin lemma). Olkoot f(x),g(x) R[x] primitiivisiä. Silloin myös polynomi f(x)g(x) on primitiivinen. Todistus. Olkoot m =degf(x) jan =degg(x), jolloinf(x)g(x) = m+n i=0 b ix i, missä b i = i k=0 f jg j i. Olkoon c = syt(b 0,...,b n+m ) ja oletetaan ettei c ole yksikkö. Olkoon p c jaoton. Nyt p b 0 = f 0 g 0, joten Eukleideen lemman nojalla voidaan olettaa, että p f 0. Koska p b 1 = f 0 g 1 + f 1 g 0, niin p f 1 g 0 (Lause 2.5 (4)). Koska f on primitiivinen, niin nyt Eukleideen lemman nojalla p g 0.Koskap b 2 = f 0 g 2 +f 1 g 1 +f 2 g 0, niin p f 1 g 1 (Lause Lause 2.5 (4)). Nyt Eukleideen lemman nojalla p f 1 tai p g 1. Kummassakin tapauksessa päädymme ristiriitaan polynomien f(x) ja g(x) primitiivisyyden kanssa. Lause 2.9. Olkoot f(x),g(x) R[x] ja h(x) K[x]. Jos f(x) =h(x)g(x) ja g(x) on primitiivinen, niin h(x) R[x]. Todistus. Olkoon b polynomin h(x) kertoimien nimittäjien tulo. Nyt bf(x) =bh(x)g(x), missä bh(x) R[x]. Olkoon bh(x) = ar(x), missä r(x) R[x] on primitiivinen. Nyt f(x) = a b r(x)g(x). Olkoon d = syt(a, b) jaa = vd ja b = wd. Nyt f = v w (q 0 + q 1 x + + q m x m )= vq 0 w + + vg m w xm, missä polynomi g := g 0 +g 1 x+ +g m x m on Gaussin lemman nojalla primitiivinen. Koska f R[x], niin w vg i kaikilla i =0,...,m.Koskasyt(v, w) on yksikkö, niin w g i kaikilla i =0,...,m (Lemma 2.3). Nyt g:n primitiivisyyden nojalla w R ja näin ollen b a. Siispä h(x) R[x]. Seuraus. Olkoon f(x) R[x] \{0} ja oletetaan, että f(x) =p 1 (x)p 2 (x) p t (x), missä kukinp i (x) K[x]. Silloin on olemassa sellaiset alkiot a 1,...,a t K, ja primitiivipolynomit r 1 (x),...,r t (x) R[x], että (1) r i (x) =a i p i (x) kaikilla i =1,...t,

4 ALGEBRA II 21 (2) f(x) =ar 1 (x)r 2 (x) r t (x), jollakina R. Erityisesti, jos f(x) on jaoton renkaassa R[x], niin se on jaoton myös renkaassa K[x]. Todistus. Olkoon c i polynomin p i kertoimien nimittäjien tulo. Merkitään c = c 1 c t. Nyt cf = q 1 q t, missä q i = c i p i R[x]. Olkoon q i = d i r i, missä r i R[x] on primitiivinen. Nyt f = d c r 1 r t, missä d = d 1 d t. Koska Gaussin lemman nojalla r 1 r t on primitiivinen, niin Lauseen 2.9 nojalla d/c = a R. Lause Jos R on UFD, niin R[x] on UFD. Tarkemmin: jokainen polynomi f(x) R[x] \{0} voidaan esittää muodossa f(x) =ua 1 a 2 a s r 1 (x)r 2 (x) r t (x), missä kukina i R on jaoton, ja kukin r i (x) R[x] on jaoton vähintään astetta 1 oleva primitiivipolynomi. Tämä esitys on olennaisesti yksikäsitteinen. Todistus. Olkoon f = p 1 p t polynomin hajoitelma jaottomien alkioiden tuloksi renkaassa K[x]. Nyt Lauseen 2.9 Seurauksen nojalla f = ar 1 r t, missä a R ja kukin r i R[x] on primitiivinen. Koska jokainen r i on jaoton renkaassa K[x], niin näin on myös renkaassa R[x]. Kun nyt hajoitetaan vielä a jaottomien alkioiden tuloksi renkaassa R, a = ua 1 a s, niin saamme väitteen hajoitelman. Yksikäsitteisyys: Oletetaan että, polynomilla f(x) onmyös hajoitelma f(x) =u b 1 b k h 1 (x) h l (x) missä u R,kukinb i R on jaoton, ja kukin h i (x) R[x] on jaoton vähintään astetta 1 oleva primitiivipolynomi. Lauseen 2.9 Seurauksen nojalla kukin polynomi h i (x) jar j (x) on jaoton renkaassa K[x], ja koska K[x] onufd, niin l = t ja

5 22 ALGEBRA II h 1 (x) =u 1 r 1 (x),,h t (x) =u t r t (x), joillakin u i K.Koskar i (x) on primitiivinen kaikilla i = 1,...,t, niin Lauseen 2.9 nojalla u i R kaikilla i = 1,...,t. Nyt polynomien h i (x) primitiivisyyden nojalla u i R kaikilla i =1,...,t,jatäten renkaassa R on voimassa yhtäsuuruus ua 1 a t = u b 1 b k u 1 u t = u b 1 b k. Väite seuraa nyt Eukleideen lemmasta. Seuraus. Jos R on UFD, niin n:n muuttujan polynomirengas R[x 1,x 2,...,x n ] on UFD. Esimerkki Z[x], ja yleisemmin Z[x 1,...,x n ], on UFD. UFD olipa K mikä tahansa kunta. K[x 1,...,x n ]on 2.4. Jakojäännösrengas. Otetaan nyt käyttöön lukuteoriasta tuttu kongruenssimerkintä. Määritelmä Olkoon R kokonaisalue. Olkoon n R \{0}. Olkoota, b R. Polynomit a ja b ovat kongruentit modulo n, josn a b. Tällöin merkitään a b (n). Lause (1) Jos a b (n) ja c d (n), niin a + c b + d (n). (2) Jos a b (n) ja c d (n), niin ac bd (n). Todistus. Harjoitustehtävä. Lause Olkoon f(x) R[x] jonka johtava kerroin on yksikkö. Olkoot a(x),b(x) R[x]. Silloin a(x) b(x) (f(x)) polynomien a(x) ja b(x) jakojäännökset modulo f(x) ovat yhtäsuuret. Todistus. Harjoitustehtävä. Olkoon f(x) R[x] jonka johtava kerroin on yksikkö jamerkitään symbolilla R[x] mod f(x) kaikkien jakojäännösten modulo f(x) joukkoa ts. R[x] modf(x) ={a 0 +a 1 x+ +a n 1 x n 1 n =degf(x),a i R i =0,...,n 1}.

Polynomien suurin yhteinen tekijä ja kongruenssi

Polynomien suurin yhteinen tekijä ja kongruenssi Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................

Lisätiedot

11. Jaollisuudesta. Lemma Oletetaan, että a, b R.

11. Jaollisuudesta. Lemma Oletetaan, että a, b R. 11. Jaollisuudesta Edellisen luvun esimerkissä tarvittiin tietoa erään polynomin jaottomuudesta. Tämä on hyvin tavallista kuntalaajennosten yhteydessä. Seuraavassa tarkastellaan hieman jaollisuuskäsitettä

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,

R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l, 2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28

TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28 TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.

Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a. Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,

Lisätiedot

ja jäännösluokkien joukkoa

ja jäännösluokkien joukkoa 3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Diofantoksen yhtälön ratkaisut

Diofantoksen yhtälön ratkaisut Diofantoksen yhtälön ratkaisut Matias Mäkelä Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 2017 Sisältö Johdanto 2 1 Suurin yhteinen tekijä 2 2 Eukleideen algoritmi 4 3 Diofantoksen yhtälön

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

11. Jaollisuudesta. vuoksi tarkastellaan tässä yhteydessä vain kokonaisalueita.

11. Jaollisuudesta. vuoksi tarkastellaan tässä yhteydessä vain kokonaisalueita. 11. Jaollisuudesta Kuntalaajennosten yhteydessään käytetään usein apuna jaottomia polynomeja. Tarkastellaan seuraavaksi hieman jaollisuuskäsitettä yleensä ja todistetaan joitain kriteerejä erityisesti

Lisätiedot

d Z + 17 Viimeksi muutettu

d Z + 17 Viimeksi muutettu 5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)

Lisätiedot

Toispuoleiset raja-arvot

Toispuoleiset raja-arvot Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 8038A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 016 Sisältö 1 Irrationaaliluvuista Antiikin lukuja 6.1 Kolmio- neliö- ja tetraedriluvut...................

Lisätiedot

ALGEBRA. Tauno Metsänkylä. K f. id K

ALGEBRA. Tauno Metsänkylä. K f. id K ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III

802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III 802328A LUKUTEORIAN PERUSTEET OSA III BASICS OF NUMBER THEORY PART III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 77 Irrationaaliluvuista Määritelmä 1 Luku α C \ Q on

Lisätiedot

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II 802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 94 KERTOMAT, BINOMIKERTOIMET Kertoma/Factorial Määritellään

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Miten osoitetaan joukot samoiksi?

Miten osoitetaan joukot samoiksi? Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

ei ole muita välikuntia.

ei ole muita välikuntia. ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten

Lisätiedot

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä 800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,

Lisätiedot

Lukuteorian kertausta

Lukuteorian kertausta Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +

Lisätiedot

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit

Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen

Lisätiedot

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

a ord 13 (a)

a ord 13 (a) JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod

Lisätiedot

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];

2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x]; 802656S ALGEBRALLISET LUVUT Harjoituksia 2017 1. Näytä, että (a) (b) (c) (d) (e) 2 1/2, 3 1/2, 2 1/3 ; 2 1/2 + 3 1/2 ; 2 1/3 + 3 1/2 ; e iπ/m, m Z \ {0}; sin(π/m), cos(π/m), tan(π/m), m Z \ {0}; ovat algebrallisia

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita

802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita 802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5 BCH-, RS- ja Goppa-koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 15 5.1 BCH-koodien määrittely Olkoon jälleen F = F q, syt(n,

Lisätiedot

802656S ALGEBRALLISET LUVUT OSA I ALGEBRAIC NUMBERS PART I

802656S ALGEBRALLISET LUVUT OSA I ALGEBRAIC NUMBERS PART I 802656S ALGEBRALLISET LUVUT OSA I ALGEBRAIC NUMBERS PART I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 802656S ALGEBRALLISET YLIOPISTO LUVUT

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)

Lisätiedot

ALKULUKUJA JA MELKEIN ALKULUKUJA

ALKULUKUJA JA MELKEIN ALKULUKUJA ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja

Lisätiedot

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 05 Harjoitus 6 Ratkaisut palautettava viimeistään tiistaina.6.05 klo 6.5. Huom! Luennot ovat salissa CK maanantaista 5.6. lähtien. Kurssikoe on

Lisätiedot

Äärelliset kunnat ja polynomien jako alkutekijöihin

Äärelliset kunnat ja polynomien jako alkutekijöihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Kananoja Äärelliset kunnat ja polynomien jako alkutekijöihin Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2007 Tampereen yliopisto

Lisätiedot

ALGEBRALLISET LUVUT S. Tapani Matala-aho

ALGEBRALLISET LUVUT S. Tapani Matala-aho ALGEBRALLISET LUVUT 802656S Tapani Matala-aho 24. huhtikuuta 2014 Sisältö 1 Johdanto 4 1.1 Algebralliset luvut........................ 5 2 Perusteita 6 3 Renkaat ja kunnat 7 3.1 Kokonaisalue, Integral

Lisätiedot

LUKUTEORIA johdantoa

LUKUTEORIA johdantoa LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,

Lisätiedot

Primitiiviset juuret: teoriaa ja sovelluksia

Primitiiviset juuret: teoriaa ja sovelluksia TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,

Lisätiedot

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä? ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT 208 4 Funktion raja-arvo 4 Määritelmä Funktion raja-arvon määritelmän ehdosta ε > 0: δ > 0: fx) A < ε aina, kun 0 < x a < δ, saadaan kvanttorien järjestystä vaihtamalla

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

802320A LINEAARIALGEBRA OSA I

802320A LINEAARIALGEBRA OSA I 802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä

Lisätiedot

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa

Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään

Lisätiedot

14. Juurikunnat Määritelmä ja olemassaolo.

14. Juurikunnat Määritelmä ja olemassaolo. 14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.

Lisätiedot

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun

Lisätiedot

802645S LUKUTEORIA A (5op) Tapani Matala-aho

802645S LUKUTEORIA A (5op) Tapani Matala-aho 802645S LUKUTEORIA A (5op) Tapani Matala-aho 27. helmikuuta 2013 Sisältö 1 Johdanto 3 2 Merkintöjä 4 3 Valittuja jaollisuuden tuloksia 5 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat 10 7

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO

LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO Matemaatikot eivät ole tyytyväisiä tietäessään asioita neljästä miljoonasta tai neljästä miljardista kokonaisluvusta. He haluavat tietää asioita jokaisesta äärettömän

Lisätiedot

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen

Lisätiedot

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat 0-10

pdfmark=/pages, Raw=/Rotate 90 1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat 0-10 pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 Johdanto 0-4 1.1 Algebralliset luvut............... 0-6 2 Perusteita 0-8 3 Renkaat ja kunnat 0-10 3.1 Kokonaisalue, Integral Domain......... 0-12 3.2 Kunta, Field..................

Lisätiedot

Reedin ja Solomonin koodit Katariina Huttunen

Reedin ja Solomonin koodit Katariina Huttunen Pro Gradu Reedin ja Solomonin koodit Katariina Huttunen Jyväskylän yliopisto Matematiikan laitos Lokakuu 2016 Tiivistelmä Huttunen Katariina, Reedin ja Solomonin koodit, matematiikan pro gradututkielma,

Lisätiedot

Teemu Ojansivu Polynomien resultanteista

Teemu Ojansivu Polynomien resultanteista PRO GRADU -TUTKIELMA Teemu Ojansivu Polynomien resultanteista TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Helmikuu 2015 Tampereen yliopisto Matematiikan ja tilastotieteen laitos Ojansivu,

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on 0. Kertausta ja täydennystä Kurssille Äärelliset kunnat tarvittavat esitiedot löytyvät Algebran kurssista [Alg]. Hyödyksi voivat myös olla (vaikka eivät välttämättömiä) Lukuteorian alkeet [LTA] ja Salakirjoitukset

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin

Lisätiedot

802645S LUKUTEORIA A (5op) Tapani Matala-aho

802645S LUKUTEORIA A (5op) Tapani Matala-aho 802645S LUKUTEORIA A (5op) Tapani Matala-aho 25. lokakuuta 2015 Sisältö 1 Johdanto 3 2 Valittuja kaavoja 4 3 Valittuja jaollisuuden tuloksia 4 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2018 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen

MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.

Lisätiedot

pdfmark=/pages, Raw=/Rotate 90 3 Valittuja jaollisuuden tuloksia Renkaan yksikköryhmä Eräs kongruenssiryhmä 0-17

pdfmark=/pages, Raw=/Rotate 90 3 Valittuja jaollisuuden tuloksia Renkaan yksikköryhmä Eräs kongruenssiryhmä 0-17 pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 Johdanto 0-3 2 Valittuja kaavoja 0-5 3 Valittuja jaollisuuden tuloksia 0-7 4 Renkaan yksikköryhmä 0-9 5 Eulerin funktio 0-11 6 Euler-Fermat 0-16 7 Eräs kongruenssiryhmä

Lisätiedot

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141 Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.

Lisätiedot

Ennakkotehtävän ratkaisu

Ennakkotehtävän ratkaisu Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb

Lisätiedot

1. Jakokunta. b + c d

1. Jakokunta. b + c d ÁÁÁ ÃÙÒØ Ø ÓÖ 1. Jakokunta Kunnan alirenkaat ovat aina kokonaisalueita. Tämä herättää luonnollisen kysymyksen, karakterisoiko tämä ominaisuus kokonaisalueet eli onko jokainen kokonaisalue jonkin kunnan

Lisätiedot

2017 = = = = = = 26 1

2017 = = = = = = 26 1 JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 2, MALLIRATKAISUT Tehtävä 1. Sovella Eukleiden algoritmia ja (i) etsi s.y.t(2017, 753) (ii) etsi kaikki kokonaislukuratkaisut yhtälölle 405x + 141y = 12. Ratkaisu

Lisätiedot

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2 Tekijä Pitkä matematiikka 11 0..017 170 a) Koska 8 = 4 7, luku 8 on jaollinen luvulla 4. b) Koska 104 = 4 6, luku 104 on jaollinen luvulla 4. c) Koska 4 0 = 80 < 8 ja 4 1 = 84 > 8, luku 8 ei ole jaollinen

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain

Lisätiedot

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

1 Kertaus. Lineaarinen optimointitehtävä on muotoa: 1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

6. Toisen ja korkeamman kertaluvun lineaariset

6. Toisen ja korkeamman kertaluvun lineaariset SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 51 6. Toisen ja korkeamman kertaluvun lineaariset differentiaaliyhtälöt Määritelmä 6.1. Olkoon I R avoin väli. Olkoot p i : I R, i = 0, 1, 2,..., n, ja q : I R jatkuvia

Lisätiedot

802656S ALGEBRALLISET LUVUT ALGEBRAIC NUMBERS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO

802656S ALGEBRALLISET LUVUT ALGEBRAIC NUMBERS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 802656S ALGEBRALLISET LUVUT ALGEBRAIC NUMBERS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Sisältö 1 ABSTRACT 4 2 INTRODUCTION/JOHDANTO 4 2.1 Kurssikuvaus.............................

Lisätiedot

1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat Kokonaisalue, Integral Domain...

1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat Kokonaisalue, Integral Domain... Sisältö 1 Johdanto 0-4 1.1 Algebralliset luvut............... 0-6 2 Perusteita 0-9 3 Renkaat ja kunnat 0-11 3.1 Kokonaisalue, Integral Domain......... 0-12 3.2 Kunta, Field.................. 0-13 4 Jaollisuus

Lisätiedot

2 ALGEBRA I. Sisällysluettelo

2 ALGEBRA I. Sisällysluettelo ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

1 Johdanto Algebralliset luvut Perusteita 5. 3 Renkaat ja kunnat Kokonaisalue, Integral Domain Kunta, Field...

1 Johdanto Algebralliset luvut Perusteita 5. 3 Renkaat ja kunnat Kokonaisalue, Integral Domain Kunta, Field... Sisältö 1 Johdanto 3 1.1 Algebralliset luvut.......................... 4 2 Perusteita 5 3 Renkaat ja kunnat 6 3.1 Kokonaisalue, Integral Domain................... 7 3.2 Kunta, Field.............................

Lisätiedot

(2n 1) = n 2

(2n 1) = n 2 3.5 Induktiotodistus Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa väite P (n) on totta kaikille n =0, 1, 2,... Tässä väite P (n) riippuu n:n arvosta. Todistuksessa

Lisätiedot

LUKUTEORIA I. Tapani Matala-aho

LUKUTEORIA I. Tapani Matala-aho LUKUTEORIA I Tapani Matala-aho 19. helmikuuta 2009 Sisältö 1 Johdanto 5 2 Merkintöjä 6 2.1 Lukujoukot.............................. 6 2.2 Porrasfunktiot............................. 8 3 Kokonaislukurengas

Lisätiedot