Matematiikan mestariluokka, syksy

Koko: px
Aloita esitys sivulta:

Download "Matematiikan mestariluokka, syksy 2009 7"

Transkriptio

1 Matematiikan mestariluokka, syksy Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty luku. Esimerkki. Luvut 2, 3, 5, 7, 11 ja 13 ovat alkulukuja ja 4, 6, 8, 9, ja 12 ovat yhdistettyjä lukuja. Luku 1 ei ole alkuluku eikä yhdistetty luku. Lause 2.2 Jos p on alkuluku ja p ab, niin p a tai p b. Todistus. Oletetaan, että p on alkuluku ja p ab. Jos nyt p a, niin väite on tosi, eikä ole mitään todistettavaa. Oletetaan siis, että p a. Koska p on alkuluku, niin syt(p, a) = 1. Eukleideen lemman nojalla on p b. Seuraavan lauseen todistuksessa käytetään ns. matemaattista induktiota. Tätä menetelmää opiskellaan tarkemmin keväällä Induktiotodistuksen periaate on seuraava. Pyritään todistamaan, että luonnollisiin lukuihin liittyvä väite P (n) on tosi kaikilla n N. Tämä pitää paikkansa, jos seuraavat ehdot toteutuvat: 1) P (1) on tosi. 2) Jos P (k) on tosi, niin myös P (k + 1) on tosi. Ehdon 2 oletusta P (k) on tosi sanotaan induktio-oletukseksi. Induktiotodistus voi alkaa luvun n = 1 sijasta mistä luvusta n 1 hyvänsä. Lisäksi induktio-oletus voidaan tarvittaessa korvata ehdolla P (n) on tosi kaikilla n = 1,..., k. Ehdossa 2 voidaan myös yhtä hyvin olettaa P (n) todeksi arvoilla n = 1,..., k 1 ja sen jälkeen todistaa P (k) todeksi. Lause 2.3 Jokainen luku a 2 on alkulukujen tulo. Todistus. Todistetaan väite induktiolla. 1) Luku 2 on alkuluku, joten väite pätee luvulle a = 2. 2) Oletetaan nyt, että väite pätee kaikille luvuille 2,..., k 1. Tarkastellaan lukua a = k. Jos k on alkuluku, niin väite pätee. Jos taas k on yhdistetty luku, niin k = bc, missä 1 < b < k ja 1 < c < k. Induktio-oletuksen mukaan b ja c ovat alkulukujen tuloja, joten myös k = bc on alkulukujen tulo. Lause 2.4 Alkulukuja on ääretön määrä. Todistus. Tehdään vastaoletus, että alkulukuja on vain äärellinen määrä. Olkoot ne p 1, p 2,..., p n. Tarkastellaan lukua a = p 1 p 2 p n + 1. Edellisen lauseen mukaan luvulla a on tekijänä jokin alkuluvuista p i, joten a = kp i. Koska 1 = a p 1 p n = kp i p 1 p n, niin Lauseen 1.2 mukaan p i 1, mikä on ristiriita. Alkulukujen määrä ei siis voi olla äärellinen.

2 Matematiikan mestariluokka, syksy Sen selvittäminen, onko annettu luku alkuluku vai ei, on yleisesti varsin hankalaa. Pienillä luvuilla voidaan menetellä seuraavasti: Yksinkertainen alkulukutesti. Tarkastetaan luvun a jaollisuus kaikilla alkuluvuilla p, joille p a. Jos a ei ole jaollinen millään näistä alkuluvuista, niin a itse on alkuluku. Menetelmä todella kertoo, onko a alkuluku. Nimittäin, jos a = bc, missä b > a ja c > a, niin bc > a a = a, mikä on ristiriita. Tämä testi antaa lisäksi menetelmän, jolla löydetään kaikki lukua a pienemmmät alkuluvut: Eratostheneen seula. Olkoon a > 2. Kirjoitetaan luetteloon kaikki luvut 2, 3,..., a. Luku 2 on alkuluku, joten pyyhitään luettelosta pois kaikki 2:lla jaolliset luvut. Luku 3 on alkuluku, joten pyyhitään luettelosta pois kaikki 3:lla jaolliset luvut. Näin jatketaan suurimpaan alkulukuun p asti, jolle p a. Yksinkertaisen alkulukutestin perusteella kaikki luetteloon jäävät luvut ovat alkulukuja. Esimerkki. Etsitään taulukosta kaikki lukua 100 pienemmät alkuluvut Tehtäviä 17 Todista, että jokainen alkuluku p > 3 on muotoa 6k + 1 tai 6k 1 jollakin k N. Onko jokainen muotoa 6k + 1 tai 6k 1 oleva luku alkuluku? 18 Olkoon p > 3 alkuluku. Osoita, että p on yhdistetty luku. 19 Mersennen alkuluku on muotoa 2 n 1 oleva alkuluku, n N. Etsi viisi Mersennen alkulukua. 20 Merkitään alkulukuja p 1 = 2, p 2 = 3, p 3 = 5,.... Tutki ovatko kaikki muotoa a = p 1 p 2 p n + 1 olevat luvut alkulukuja. (Vrt. Lauseen 2.4 todistus.) 21 Todista Lause 2.4 vaihtoehtoisella tavalla: Oleta, että on olemassa suurin alkuluku p. Tutki sen jälkeen luvun a = p! + 1 jaollisuutta luvuilla 2, 3, 4,..., p. 22 Etsi (jos mahdollista) a) viisi, b) kuusi, c) seitsemän peräkkäistä kahden alkuluvun välissä olevaa yhdistettyä lukua.

3 Matematiikan mestariluokka, syksy Aritmetiikan peruslause Todistetaan aritmetiikan peruslause, joka sanoo, että jokainen kokonaisluku a 2 voidaan esittää yksikäsitteisesti alkulukujen tulona. Valmistellaan lausetta esittämällä kaksi apulausetta, joista ensimmäinen yleistää Lauseen 2.2. Apulause 2.5 Jos p on alkuluku ja p a 1 a 2 a n, niin p a i jollakin i = 1,..., n. Todistus. Jos p a 1, niin väite pätee. Jos p a 1, niin Lauseen 2.2 perusteella p a 2 a n. Jos p a 2, niin väite pätee. Jos taas p a 2, niin edelleen Lauseen 2.2 perusteella p a 3 a n. Näin jatkamalla saadaan väite. Apulause 2.6 Jos p, p 1, p 2,..., p n ovat alkulukuja ja p p 1 p 2 p n, niin p = p i jollakin i = 1,..., n. Todistus. Edellisen apulauseen nojalla p p i, jollakin i = 1,..., n. Koska alkuluvun p i ainoat positiiviset tekijät ovat 1 ja p i, niin p = p i. Lause 2.7 (Aritmetiikan peruslause) Jokainen kokonaisluku a 2 voidaan esittää alkulukujen tulona ja tämä tulo on yksikäsitteinen tekijöiden järjestystä lukuunottamatta. Todistus. Todistetaan väite induktiolla luvun a suhteen. 1) Jos a = 2, niin väite pätee. 2) Oletetaan, että jokaisella lukua k pienemmällä luvulla on yksikäsitteinen esitys alkulukujen tulona. Todistetaan ensin, että myös a = k on alkulukujen tulo. Jos k on alkuluku, niin väite pätee. Oletetaan siis, että k on yhdistetty luku, eli k = bc. Nyt b < k ja c < k, joten niillä on esitykset alkulukujen tuloina. Siis luvulla k on esitys alkulukujen tulona. Osoitetaan vielä yksikäsitteisyys. Sitä varten oletetaan, että k = p 1 p 2 p s ja k = q 1 q 2 q t, missä p 1,..., p s ja q 1,..., q t ovat alkulukuja. Koska p 1 k, niin p 1 q 1 q 2 q s, joten Apulauseen 2.6 mukaan p 1 = q i jollakin i = 1,..., t. Muutetaan lukujen q 1,..., q t numerointia niin, että p 1 = q 1. Tällöin k p 1 = p 2 p 3 p s = q 2 q 3 q t. Jos s 2 tai t 2, niin 1 < k p 1 < k. Induktio-oletuksen mukaan luvun k p 1 esitys alkulukujen tulona on yksikäsitteinen, joten s = t, ja siis myös luvun k esitys alkulukujen tulona on yksikäsitteinen.

4 Matematiikan mestariluokka, syksy Aritmetiikan peruslause on erittäin käyttökelpoinen työväline monissa sellaisissa tehtävissä, jotka käsittelevät luvun tekijöitä. Päättelyissä käytetään usein hyväksi arimetiikan peruslauseesta saatavaa luvun kanonista alkutekijäesitystä. Jatkossa tässä kappaleessa tarkastellaan pelkästään positiivisia kokonaislukuja. Luvun a 2 kanoninen alkutekijäesitys on muotoa a = p a 1 1 p a 2 2 p an n, missä p 1, p 2,..., p n ovat luvun a alkutekijät, p 1 < p 2 < < p n ja a i > 0 kaikilla i = 1,..., n. Kanonista alkutekijäesitystä sanotaan myös kanoniseksi esitykseksi. Huomautus. Joskus merkinnässä a = p a 1 1 p a 2 2 p an n on tarkoituksenmukaista hyväksyä, että a i = 0 joillakin indekseillä i. Esimerkki. Jos a = p a 1 n ja b = p b 1 n, niin potenssin laskusäännöillä saadaan ab = p a 1+b 1 +bn n. Lause 2.8 Olkoon a = p a 1 n. Tällöin b a, jos ja vain jos b = p b 1 n, missä 0 b i a i kaikilla i = 1,..., n. Todistus. Olkoon b = p b 1 n, missä 0 b i a i. Merkitään c = p c 1 n, missä c i = a i b i. Tällöin bc = p b 1+c 1 +cn n = p a 1 n = a, joten b a. Olkoon kääntäen b a. Jos nyt p on alkuluku ja p b, niin p a, joten Apulauseen 2.6 mukaan p = p i, jollakin i = 1,..., n. Siis jokainen b:n alkutekijä on myös a:n alkutekijä. Lisäksi jokainen b:n tekijä on a:n tekijä. Siis b = p b 1 n, missä 0 b i a i. Lause 2.9 Olkoot a = p a 1 n ja b = p b 1 n. Tällöin missä c i = min{a i, b i }, i = 1,..., n. syt(a, b) = p c 1 n, Todistus. Jos c = p c 1 n, missä c i = min{a i, b i }, niin c i a i ja c i b i, joten edellisen lauseen mukaan c a ja c b. Oletetaan, että d a ja d b. Tällöin edellisen lauseen mukaan d = p d 1 n, missä d i a i ja d i b i kaikilla i = 1,..., n. Siis d i min{a i, b i }, eli d i c i. Edellisen lauseen perusteella d c, joten d c. Yhdistämällä päättelyt saadaan, että c = syt(a, b). Määritelmä 2.10 Lukujen a ja b pienin yhteinen jaettava pyj(a, b) on pienin sellainen positiivinen luku, joka on jaollinen molemmilla luvuilla a ja b. Huomautus. d = pyj(a, b), jos ja vain jos luku d > 0 toteuttaa ehdot: 1) a d ja b d. 2) Jos a c ja b c, missä c > 0, niin d c.

5 Matematiikan mestariluokka, syksy Lause 2.11 Olkoot a = p a 1 n ja b = p b 1 n. Tällöin missä d i = max{a i, b i }, i = 1,..., n. pyj(a, b) = p d 1 n, Todistus. Jos d = p d 1 n, missä d i = max{a i, b i }, niin a i d i ja b i d i, joten Lauseen 2.8 mukaan a d ja b d. Olkoon c > 0 sellainen, että a c ja b c. Tällöin Lauseen 2.8 mukaan c = p c 1 n, missä a i c i ja b i c i kaikilla i = 1,..., n. Siis max{a i, b i } c i, eli d i c i. Lauseen 2.8 perusteella d c, joten d c. Yhdistämällä päättelyt saadaan, että d = pyj(a, b). Lause 2.12 Luvuille a ja b pätee yhtälö syt(a, b)pyj(a, b) = ab. Todistus. Olkoot a = p a 1 n, b = p b 1 n. Lauseiden 2.8 ja 2.11 perusteella syt(a, b) = p c 1 n ja pyj(a, b) = p d 1 n, missä c i = min{a i, b i } ja d i = max{a i, b i }. Nyt c i + d i = min{a i, b i } + max{a i, b i } = a i + b i, joten syt(a, b)pyj(a, b) = p c 1 n p d 1 n = p c 1+d 1 +dn n = p a 1+b 1 +bn n = p a 1 n p b 1 n = ab. Tehtäviä 23 Etsi lukujen 1234, ja kanoniset esitykset. 24 Etsi kaikki luvun 50! = alkutekijät. 25 Etsi kaikki luvun 120 = positiiviset tekijät. 26 Osoita, että luvun a = p a 1 1 p a 2 2 p an n (a 1 + 1)(a 2 + 1) (a n + 1). positiivisten tekijöiden lukumäärä on 27 Todista käyttämällä kanonisia esityksiä, että syt(ka, kb) = k syt(a, b). 28 Määritä pyj(2600, 10140) käyttämällä a) Lausetta 2.11, b) Lauseita 2.9 ja 2.12.

6 Matematiikan mestariluokka, syksy Alkutekijöiden etsimisestä Luvun a alkutekijöitä voidaan etsiä yksinkertaisen alkulukutestin perusteella tarkastamalla jaollisuutta alkuluvuilla p, missä p a. Esimerkki. Etsi lukujen a) 2093, b) 6077 alkutekijät. Ratkaisu. a) Koska 45 < 2093 < 46, niin riittää tarkastaa jaollisuutta alkuluvuilla 2, 3,..., 43. Kokeilemalla huomataan, että pienin alkutekijä on 7, joten 2093 = Koska , niin tarkastellaan luvun 299 jaollisuutta alkuluvuilla 2, 3,..., 17. Kokeilemalla huomataan, että 299 = 13 23, missä myös 23 on alkuluku. Siis luvulla 2093 on kolme alkutekijää ja 2093 = b) Koska 77 < 6077 < 78, niin tarkastetaan jaollisuutta alkuluvuilla 2, 3,..., 73. Kokeilemalla huomataan, että pienin alkutekijä on 59, joten 6077 = Myös 103 on alkuluku, joten 6077 = on esitys alkulukujen avulla. Joskus tekijöiden etsimisessä seuraavaan lauseeseen perustuva Fermat n menetelmä on tehokkaampi. Lause 2.13 Jos a > 0 on pariton, niin a on yhdistetty luku, jos ja vain jos on olemassa sellaiset luvut x ja y, että a = x 2 y 2. Todistus. Olkoon a yhdistetty luku, jolloin a = bc. Merkitään Tällöin x = b + c 2 ja y = b c 2. x 2 y 2 = b2 + 2bc + c 2 b2 2bc + c 2 = 4bc = bc = a Olkoon kääntäen a = x 2 y 2. Tällöin a = (x y)(x + y), joten a on yhdistetty luku. Tässä menetelmässä etsitään siis yhtälön a = x 2 y 2 eli yhtälön y 2 = x 2 a. toteuttavia kokonaislukuja x ja y. Kannattaa huomata, että x 2 a > 0 x 2 > a x > a. Fermat n menetelmä. Olkoon a > 0 pariton ja t 0 pienin epäyhtälön t > a toteuttava kokonaisluku. Etsitään sellainen luku k = 0, 1,..., että lausekkeen arvo on jonkin kokonaisluvun y neliö. (t 0 + k) 2 a

7 Matematiikan mestariluokka, syksy Esimerkki. Etsi lukujen a) 2093, b) 6077 alkutekijät. Ratkaisu. a) Koska 45 < 2093 < 46, niin merkitään t 0 = 46. Etsitään neliöitä: = = = = 1156 = 34 2 Siis 2093 = = (57 34)( ) = Lisäksi 23 on alkuluku. Etsitään vielä luvun 91 alkutekijät. Huomataan, että 9 < 91 < 10, joten merkitään t0 = 10. Etsitään taas neliöitä: = 9 = 3 2. Siis 91 = = (10 3)(10 + 3) = Kumpikin luvuista 7 ja 13 on alkuluku. Näin ollen 2093 = b) Huomataan, että 77 < 6077 < 78, joten merkitään t 0 = 78. Etsitään neliöitä: = = = = 484 = 22 2 siis 6077 = = (81 22)( ) = Lisäksi 59 ja 103 ovat alkulukuja. Siis 6077 = Tehtäviä 29 Etsi lukujen 2279 ja alkutekijät yksikertaiseen alkulukutestiin perustuvalla tavalla. 30 Etsi lukujen 2279 ja alkutekijät Fermat n menetelmällä. 31 Osoita, että Fermat n menetelmän prosessi pysähtyy jossain vaiheessa. Opastus. Tutki arvoa t 0 + k = a Pohdi milloin a) yksinkertaiseen alkulukutestiin perustuva tapa, b) Fermat n menetelmä on tehokas alkutekijöiden etsinnässä.

8 Matematiikan mestariluokka, syksy Lisätehtäviä 33 Jos p ja p + 2 ovat alkulukuja, niitä sanotaan alkulukukaksosiksi. a) Etsi viisi paria alkulukukaksosia. b) Lisätään alkulukukaksosten tuloon luku 1. Todista, että saadaan jonkin luvun neliö. c) Todista, että jos p > 3, niin alkulukukaksosten p ja p + 2 summa on jaollinen luvulla 12. Opastus. Tehtävä Osoita, että jos luvut p, p + 2 ovat alkulukuja ja p > 3, niin p + 4 on yhdistetty luku. 35 Jos p, p + 2 ja p + 6 ovat alkulukuja, niitä sanotaan alkulukukolmosiksi. Etsi viisi alkulukukolmosten muodostamaa kolmikkoa. 36 Etsi kaikki alkuluvut p ja q, joille pätee p q = Otaksutaan, että on ääretön määrä muotoa n 2 2 olevia alkulukuja. Etsi viisi tällaista alkulukua. 38 Osoita, että jokaista lukua n kohti löytyy sellainen alkuluku p, että p > n. Opastus. Tutki lukua a = n! Osoita, että löytyy n peräkkäistä yhdistettyä lukua kaikilla n N, n 2. Opastus. Tutki lukuja a k = (n + 1)! + k, missä k = 2,..., n Etsi Eratostheneen seulalla kaikki lukujen 100 ja 200 välissä olevat alkuluvut. 41 Etsi pienin positiivinen luku n jolla a) n 2 + n + 17, b) n n + 1 on yhdistetty luku. 42 Tutki ovatko kaikki muotoa n 2 + n + 41 olevat luvut alkulukuja. 43 Merkitään alkulukuja p 1 = 2, p 2 = 3, p 3 = 5,.... Voidaan osoittaa, että jokaista lukua n 2 kohti on ainakin yksi sellainen alkuluku p, että n < p < 2n (Tšebysev, 1850). Osoita tämän tuloksen avulla, että p n < 2 n kaikilla n N. 44 Millaisilla luvuilla on a) kolme, b) neljä eri positiivista tekijää? 45 Osoita, että luku a 2 on jonkin positiivisen luvun neliö, jos ja vain jos a:n kanonisen esityksen jokainen eksponentti on parillinen. 46 Etsi luvun alkutekijät Fermat n menetelmällä. 47 Voit opiskella lisää lukuteoriaa esimerkiksi Jukka Pihkon monisteesta Lukuteorian helmiä lukiolaisille, joka löytyy Solmu-lehden kotisivun kautta. Katso

LUKUTEORIAN ALKEET HELI TUOMINEN

LUKUTEORIAN ALKEET HELI TUOMINEN LUKUTEORIAN ALKEET HELI TUOMINEN Sisältö 1. Lukujärjestelmät 2 1.1. Kymmenjärjestelmä 2 1.2. Muita lukujärjestelmiä 2 1.3. Yksikäsitteisyyslause 4 2. Alkulukuteoriaa 6 2.1. Jaollisuus 6 2.2. Suurin yhteinen

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

Lukuteorian kurssi lukioon

Lukuteorian kurssi lukioon TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sini Siira Lukuteorian kurssi lukioon Informaatiotieteiden yksikkö Matematiikka Huhtikuu 2015 Tampereen yliopisto Informaatiotieteiden yksikkö SIIRA, SINI: Lukuteorian

Lisätiedot

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain

+ 3 2 5 } {{ } + 2 2 2 5 2. 2 kertaa jotain Jaollisuustestejä (matematiikan mestariluokka, 7.11.2009, ohjattujen harjoitusten lopputuloslappu) Huom! Nämä eivät tietenkään ole ainoita jaollisuussääntöjä; ovatpahan vain hyödyllisiä ja ainakin osittain

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

Lukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto

Lukuteorian helmiä lukiolaisille. 0. Taustaa. Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto Lukuteorian helmiä lukiolaisille Jukka Pihko Matematiikan ja tilastotieteen laitos Helsingin yliopisto 0. Taustaa Sain 24.4.2007 Marjatta Näätäseltä sähköpostiviestin, jonka aihe oli Fwd: yhteistyökurssi,

Lisätiedot

ALKULUVUISTA (mod 6)

ALKULUVUISTA (mod 6) Oulun Yliopisto Kandidaatintutkielma ALKULUVUISTA (mod 6) Marko Moilanen Opiskelijanro: 1681871 17. joulukuuta 2014 Sisältö 1 Johdanto 2 1.1 Tutkielman sisältö........................ 2 1.2 Alkulukujen

Lisätiedot

Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä

Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Törmäyskurssi kilpailulukuteoriaan pienin välttämätön oppimäärä Anne-Maria Ernvall-Hytönen 14. tammikuuta 2011 Sisältö 1 Jaollisuus, alkuluvut, ynnä muut perustavanlaatuiset asiat 2 1.1 Lukujen tekijöiden

Lisätiedot

Cauchyn ja Sylowin lauseista

Cauchyn ja Sylowin lauseista Cauchyn ja Sylowin lauseista Pro gradu-tutkielma Jukka Kuru Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Peruskäsitteet 4 1.1 Funktion käsitteitä........................ 4

Lisätiedot

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut

XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut XXIII Keski-Suomen lukiolaisten matematiikkakilpailu 23.1.2014, tehtävien ratkaisut 1. Avaruusalus sijaitsee tason origossa (0, 0) ja liikkuu siitä vakionopeudella johonkin suuntaan, joka ei muutu. Tykki

Lisätiedot

Lyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen

Lyhyt johdatus alkeelliseen lukuteoriaan. Esa V. Vesalainen yhyt johdatus alkeelliseen lukuteoriaan Esa V. Vesalainen Sisällysluettelo 1 Aritmetiikan peruslause 0 Jakoyhtälö.................................. 0 Jaollisuus.................................. 0 Alkuluvut..................................

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jukka Vilen. Polynomirenkaista TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jukka Vilen Polynomirenkaista Informaatiotieteiden tiedekunta Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2005 Tampereen yliopisto Matematiikan,

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää

Lisätiedot

Äärellisesti generoitujen Abelin ryhmien peruslause

Äärellisesti generoitujen Abelin ryhmien peruslause Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.

Lisätiedot

Johdatus matemaattiseen päättelyyn

Johdatus matemaattiseen päättelyyn Johdatus matemaattiseen päättelyyn Oulun yliopisto Matemaattisten tieteiden laitos 2011 Maarit Järvenpää 1 Todistamisesta Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Lisätiedot

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo.

Merkitse kertolasku 3 3 3 3 potenssin avulla ja laske sen arvo. 13 Luvun potenssi Kertolasku, jonka kaikki tekijät ovat samoja, voidaan merkitä lyhyemmin potenssin avulla. Potenssimerkinnässä eksponentti ilmaisee, kuinka monta kertaa kantaluku esiintyy tulossa. Potenssin

Lisätiedot

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA

1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA 1. OSA: MURTOLUVUT, JAOLLISUUS JA ARKIPÄIVÄN MATEMATIIKKAA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Seuraavien tehtävien tekemiseen tarvitset tulitikkuja

Lisätiedot

RSA Julkisen avaimen salakirjoitusmenetelmä

RSA Julkisen avaimen salakirjoitusmenetelmä RSA Julkisen avaimen salakirjoitusmenetelmä Perusteet, algoritmit, hyökkäykset Matti K. Sinisalo, FL Alkuluvut Alkuluvuilla tarkoitetaan lukua 1 suurempia kokonaislukuja, jotka eivät ole tasan jaollisia

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio MAT-13510 Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio Olkoon a 1 = a 2 = 5 ja a n+1 = a n + 6a n 1 kun n 2. Todista induktiolla, että a n = 3 n ( 2) n, kun n on positiivinen

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?

Lisätiedot

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia

LUKU II HOMOLOGIA-ALGEBRAA. 1. Joukko-oppia LUKU II HOMOLOGIA-ALGEBRAA 1. Joukko-oppia Matematiikalle on tyypillistä erilaisten objektien tarkastelu. Tarkastelu kohdistuu objektien tai näiden muodostamien joukkojen välisiin suhteisiin, mutta objektien

Lisätiedot

Äärettömistä joukoista

Äärettömistä joukoista Äärettömistä joukoista Markku Halmetoja Mistä tietäisit, että sinulla on yhtä paljon sormia ja varpaita, jos et osaisi laskea niitä? Tiettyä voimisteluliikettä tehdessäsi huomaisit, että jokaista sormea

Lisätiedot

Harjoitustehtävät, syys lokakuu 2010. Helpommat

Harjoitustehtävät, syys lokakuu 2010. Helpommat Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.

Lisätiedot

Neljän alkion kunta, solitaire-peli ja

Neljän alkion kunta, solitaire-peli ja Neljän alkion kunta, solitaire-peli ja taikaneliöt Kalle Ranto ja Petri Rosendahl Matematiikan laitos, Turun yliopisto Nykyisissä tietoliikennesovelluksissa käytetään paljon tekniikoita, jotka perustuvat

Lisätiedot

Lukuteorian sovelluksia tiedon salauksessa

Lukuteorian sovelluksia tiedon salauksessa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Aki-Matti Luoto Lukuteorian sovelluksia tiedon salauksessa Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla

Nimittäin, koska s k x a r mod (p 1), saadaan Fermat n pienen lauseen avulla 6. Digitaalinen allekirjoitus Digitaalinen allekirjoitus palvelee samaa tarkoitusta kuin perinteinen käsin kirjotettu allekirjoitus, t.s. Liisa allekirjoittaessaan Pentille lähettämän viestin, hän antaa

Lisätiedot

Kansainväliset matematiikkaolympialaiset 2008

Kansainväliset matematiikkaolympialaiset 2008 Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun

Lisätiedot

Lukujoukot luonnollisista luvuista reaalilukuihin

Lukujoukot luonnollisista luvuista reaalilukuihin Lukujoukot luonnollisista luvuista reaalilukuihin Pro gradu -tutkielma Esa Pulkka 517378 Itä-Suomen Yliopisto Fysiikan ja matematiikan laitos 26. maaliskuuta 2012 Sisältö 1 Johdanto 1 2 Luonnolliset luvut

Lisätiedot

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.

27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella

Lisätiedot

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2)

Solmu 3/2010 1. toteutuu kaikilla u,v I ja λ ]0,1[. Se on aidosti konveksi, jos. f ( λu+(1 λ)v ) < λf(u)+(1 λ)f(v) (2) Solmu 3/200 Epäyhtälöistä, osa 2 Markku Halmetoja Mätä lukio Välillä I määriteltyä fuktiota saotaa koveksiksi, jos se kuvaaja o alaspäi kupera, eli jos kuvaaja mitkä tahasa kaksi pistettä yhdistävä jaa

Lisätiedot

Lukuteoriaa ja salakirjoitusta, osa 1

Lukuteoriaa ja salakirjoitusta, osa 1 Solmu 3/2007 1 Lukuteoriaa ja salakirjoitusta, osa 1 Heikki Apiola Dosentti Matematiikan laitos, Teknillinen korkeakoulu Johdanto Lukuteoriaa on joskus pidetty esteettisesti kauniina, mutta käytännössä

Lisätiedot

DISKREETTIÄ MATEMATIIKKAA.

DISKREETTIÄ MATEMATIIKKAA. Heikki Junnila DISKREETTIÄ MATEMATIIKKAA. LUKU I JOUKOT JA RELAATIOT 0. Merkinnöistä.... 1 1. Relaatiot ja kuvaukset..... 3 2. Luonnolliset luvut. Induktio.... 9 3. Äärelliset joukot.... 14 4. Joukon ositukset.

Lisätiedot

Insinöörimatematiikka A

Insinöörimatematiikka A Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

LUONNOLLISTEN LUKUJEN JAOLLISUUS

LUONNOLLISTEN LUKUJEN JAOLLISUUS Luonnollisten lukujen jaollisuus 0 Calculus Lukion Täydentävä aineisto Alkuluv,,,,,,,..., ut 11 1 1 1 411609 -, 4 6 8 9 10 11 1 1 14 1 16 1 18 19 0 1 4 6 8 9 0 1 4 6 8 9 40 41 4 4 44 4 46 4 48 49 0 1 4

Lisätiedot

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta

Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen

Lisätiedot

Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut

Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut Oulun seitsemäsluokkalaisten matematiikkakilpailu 18.1.2012 Tehtävät ja ratkaisut (1) Kolmen peräkkäisen kokonaisluvun summa on 42. Luvuista keskimmäinen on a) 13 b) 14 c) 15 d) 16. Ratkaisu. Jos luvut

Lisätiedot

1.11. 1. Kun luku 5 140 8 47 kirjoitetaan tavalliseen tapaan, niin luvussa on numeroita a) pariton määrä b) 47 c) 48 d) 141

1.11. 1. Kun luku 5 140 8 47 kirjoitetaan tavalliseen tapaan, niin luvussa on numeroita a) pariton määrä b) 47 c) 48 d) 141 %% % 1.11.!#"$ 2011 1. Kun luku 5 140 8 47 kirjoitetaan tavalliseen tapaan, niin luvussa on numeroita a) pariton määrä b) 47 c) 48 d) 141 2. Oheinen kuvio muodostuu yhdeksästä neliöstä, joista jokaisen

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

PERUSASIOITA ALGEBRASTA

PERUSASIOITA ALGEBRASTA PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen

Lisätiedot

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,

Lisätiedot

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1.

w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Kotitehtävät, tammikuu 2011 Vaikeampi sarja 1. Ratkaise yhtälöryhmä w + x + y + z =4, wx + wy + wz + xy + xz + yz =2, wxy + wxz + wyz + xyz = 4, wxyz = 1. Ratkaisu. Yhtälöryhmän ratkaisut (w, x, y, z)

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

RAKKAUS MATEMAATTISENA RELAATIONA

RAKKAUS MATEMAATTISENA RELAATIONA RAKKAUS MATEMAATTISENA RELAATIONA HEIKKI PITKÄNEN 1. Johdanto Määritelmä 1. Olkoon I ihmisten joukko ja a, b I. Määritellään relaatio : a b a rakastaa b:tä. Huomautus 2. Määritelmässä esiintyvälle käsitteelle

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju.

Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15 JosAjaA B ovat tosia, niin välttämättä myösb on tosi (A (A B)) B on tautologia eli (A (A B)) B. 1 / 15 JosAjaA B ovat tosia, niin välttämättä

Lisätiedot

1 Johdanto, Tavoitteet 2. 2 Lähteitä 2. 3 Propositiologiikkaa 2. 4 Karnaugh'n kartat 16. 6 Predikaattilogiikkaa 31. 8 Relaatiot 42.

1 Johdanto, Tavoitteet 2. 2 Lähteitä 2. 3 Propositiologiikkaa 2. 4 Karnaugh'n kartat 16. 6 Predikaattilogiikkaa 31. 8 Relaatiot 42. Diskreetit rakenteet, syksy 2015 Itä-Suomen yliopisto, Tietojenkäsittelytieteen laitos Ville Heikkinen 14.12.2015 15:18 Sisältö 1 Johdanto, Tavoitteet 2 2 Lähteitä 2 3 Propositiologiikkaa 2 4 Karnaugh'n

Lisätiedot

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32 1 / 32 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki 4B.2 Esimerkki 4B.3 Esimerkki 4C.1 Esimerkki 4C.2 Esimerkki 4C.3 2 / 32 Esimerkki 4A.1 Esimerkki 4A.1 Esimerkki 4A.2 Esimerkki 4B.1 Esimerkki

Lisätiedot

ALGEBRA Tauno Mets ankyl a Marjatta N a at anen 2010

ALGEBRA Tauno Mets ankyl a Marjatta N a at anen 2010 ALGEBRA Tauno Metsänkylä Marjatta Näätänen 2010 c Tauno Metsänkylä ja Marjatta Näätänen ALGEBRA Tauno Metsänkylä Marjatta Näätänen Esipuhe Tämä kirja on syntynyt toisen tekijän(t.m.) Turun yliopistossa

Lisätiedot

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1

Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 811120P 3. 5 op Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 ja laskenta tarkastelemme terveeseen järkeen perustuvaa päättelyä formaalina järjestelmänä logiikkaa sovelletaan

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

2.2 Neliöjuuri ja sitä koskevat laskusäännöt

2.2 Neliöjuuri ja sitä koskevat laskusäännöt . Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri

Lisätiedot

x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y a + n 1 n a a + 1 a +. On myös helppo tarkastaa, että ratkaisut toteuttavat yhtälön.

x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y a + n 1 n a a + 1 a +. On myös helppo tarkastaa, että ratkaisut toteuttavat yhtälön. Kotitehtävät joulukuu 20 Helpopi sarja 1. Ratkaise yhtälöryhä x 2 + y 2 = 2z y 2 + z 2 = 2x z 2 + x 2 = 2y reaaliluvuilla x y ja z. Ratkaisu. Jokainen luvuista on puolet kahden neliön suasta ja siten välttäättä

Lisätiedot

1 Logiikkaa. 1.1 Logiikan symbolit

1 Logiikkaa. 1.1 Logiikan symbolit 1 Logiikkaa Tieteessä ja jokapäiväisessä elämässä joudutaan tekemään päätelmiä. Logiikassa tutkimuskohteena on juuri päättelyt. Sen sijaan päätelmien sisältöön ei niinkäään kiinnitetä huomiota. Päätelmät

Lisätiedot

Reaaliluvut 1/7 Sisältö ESITIEDOT:

Reaaliluvut 1/7 Sisältö ESITIEDOT: Reaaliluvut 1/7 Sisältö Reaalilukujoukko Reaalilukujoukkoa voidaan luonnollisimmin ajatella lukusuorana, molemmissa suunnissa äärettömyyteen ulottuvana suorana, jonka pisteet ja reaaliluvut vastaavat toisiaan:

Lisätiedot

Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 14.4.2013

Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 14.4.2013 Solmu 3/03 Kuusi haastavaa tehtävää: Euroopan tyttöjen matematiikkaolympialaiset Luxemburgissa 8. 4.4.03 Esa V. Vesalainen Matematiikan ja tilastotieteen laitos, Helsingin yliopisto Luxemburgissa järjestettiin

Lisätiedot

JOHDATUS MATEMATIIKKAAN

JOHDATUS MATEMATIIKKAAN JOHDATUS MATEMATIIKKAAN Toitteko minulle ihmisen, joka ei osaa laskea sormiaan? Kuolleiden kirja JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Alkusanat Tämä tiivistelmä on allekirjoittaneen

Lisätiedot

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita

Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan

Lisätiedot

A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS

A L G E B R A N O P P I - J A E S I M E R K K I K I R J A PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ KAHDESTOISTA PAINOS K. V Ä I S Ä L Ä A L G E B R A N O P P I - J A E S I M E R K K I K I R J A I KAHDESTOISTA PAINOS PORVOO HELSINKI WERNER SÖDERSTRÖM OSAKEYHTIÖ Kouluhallituksen hyväksymä WERNER SÖDERSTRÖM OSAKEYHTIÖN KIRJAPAINOSSA

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Luukkonen Sahlqvistin kaavat Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö LUUKKONEN, HEIDI: Sahlqvistin

Lisätiedot

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun

Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun Aloitustunti MAA22 Starttikurssi pitkän matematiikan opiskeluun 13. elokuuta 2015 Miksi matikkaa Erityisen tärkeää teknillisillä ja luonnontieteellisillä aloilla Ohjelmointi ja tietojenkäsittelytiede Lääketieteellinen

Lisätiedot

LAUSEKKEET JA NIIDEN MUUNTAMINEN

LAUSEKKEET JA NIIDEN MUUNTAMINEN LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua

Lisätiedot

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisihajotelmat: Schur ja Jordan Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi Matriisihajotelmat:

Lisätiedot

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut

KOMPLEKSILUVUT C. Rationaaliluvut Q. Irrationaaliluvut KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen

Lisätiedot

Matematiikan olympiavalmennus: Diofantoksen yht al oit a

Matematiikan olympiavalmennus: Diofantoksen yht al oit a Matematiikan olympiavalmennus: Diofantoksen yht al oit a Heikki M antysaari 25. helmikuuta 2007 V ah an teoriaa Diofantoksen yht al o: tuntemattomia enemm an kuin yht al oit a. Lukiossa esim. 4x + 8y =

Lisätiedot

Matematiikkalehti 3/2007. http://solmu.math.helsinki.fi/

Matematiikkalehti 3/2007. http://solmu.math.helsinki.fi/ Matematiikkalehti 3/2007 http://solmu.math.helsinki.fi/ 2 Solmu 3/2007 Solmu 3/2007 ISSN 1458-8048 (Verkkolehti) ISSN 1459-0395 (Painettu) Matematiikan ja tilastotieteen laitos PL 68 (Gustaf Hällströmin

Lisätiedot

Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla:

Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla: KERTAUSTEHTÄVIÄ Tietue Tietuetyypin määrittely toteutetaan C-kielessä struct-rakenteena seuraavalla tavalla: struct henkilotiedot char nimi [20]; int ika; char puh [10]; ; Edellä esitetty kuvaus määrittelee

Lisätiedot

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen.

nyky-ymmärryksemme mukaan hajaantuvaan sarjaan luvun 1 2 kun n > N Huom! Määritelmä on aivan sama C:ssä ja R:ssä. (Kuva vain on erilainen. Sarjaoppia Käsitellään kompleksi- ja reaalisarjat yhdessä. Reaalilukujen ominaisuuksista (kuten järjestys) riippuvat asiat tulevat lisämausteena mukaan. Kirjallisuutta: 1. [KRE] Kreyszig: Advanced Engineering

Lisätiedot

Matematiikkaa logiikan avulla

Matematiikkaa logiikan avulla Ralph-Johan Back Joakim von Wright Matematiikkaa logiikan avulla Lyhyt lukuteorian kurssi Turku Centre for Computer Science IMPEd Resource Centre TUCS Lecture Notes No 5, Oct 2008 Matematiikkaa logiikan

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Baltian Tie 2005 ratkaisuja

Baltian Tie 2005 ratkaisuja Baltian Tie 2005 ratkaisuja. Osoitetaan, että jonossa on aina kaksi samaa lukua. Olkoon k pienin positiivinen kokonaisluku, jolle on voimassa (k +) 9 2005 < 0 k. (Tällainen luku on olemassa, koska epäyhtälön

Lisätiedot

Tehtävä 1 2 3 4 5 6 7 Vastaus

Tehtävä 1 2 3 4 5 6 7 Vastaus Kenguru Benjamin, vastauslomake Nimi Luokka/Ryhmä Pisteet Kenguruloikka Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Jätä ruutu tyhjäksi,

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion. Vastaavuus puolestaan on erikoistapaus relaatiosta.

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut ja kompleksiluvut ja kompleksiluvut 1.1 MS-A0007 Matriisilaskenta 1. ja kompleksiluvut Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 26.10.2015 Reaalinen

Lisätiedot

Lukujen uusi maailma: p-adiset luvut

Lukujen uusi maailma: p-adiset luvut Solmu 3/2008 1 Lukujen uusi maailma: p-adiset luvut Tauno Metsänkylä Matematiikan laitos, Turun yliopisto Kun kokonaislukujen 0,1,2,... joukkoa laajennetaan vaiheittain ottamalla mukaan negatiiviset kokonaisluvut,

Lisätiedot

Muodolliset kieliopit

Muodolliset kieliopit Muodolliset kieliopit Luonnollisen kielen lauseenmuodostuksessa esiintyy luonnollisia säännönmukaisuuksia. Esimerkiksi, on jokseenkin mielekästä väittää, että luonnollisen kielen lauseet koostuvat nk.

Lisätiedot

5. Julkisen avaimen salaus

5. Julkisen avaimen salaus Osa3: Matematiikkaa julkisen avaimen salausten taustalla 5. Julkisen avaimen salaus Public key cryptography 5. 1 Julkisen avaimen salausmenetelmät - Diffien ja Hellmannin periaate v. 1977 - RSA:n perusteet

Lisätiedot

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka)

Kenguru 2011 Cadet RATKAISUT (8. ja 9. luokka) sivu / 2 IKET VSTUSVIHTEHDT N LLEVIIVTTU. 3 pistettä. Minkä laskun tulos on suurin? () 20 (B) 20 (C) 20 (D) + 20 (E) : 20 20 20, 20, 20 20 20 202 ( suurin ) ja : 20 0,0005 2. Hamsteri Fridolin suuntaa

Lisätiedot

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto

FUNKTIONAALIANALYYSIN PERUSKURSSI 1. 0. Johdanto FUNKTIONAALIANALYYSIN PERUSKURSSI 1. Johdanto Funktionaalianalyysissa tutkitaan muun muassa ääretönulotteisten vektoriavaruuksien, ja erityisesti täydellisten normiavaruuksien eli Banach avaruuksien ominaisuuksia.

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa TAMPEREEN YLIOPISTO Pro gradu -tutkielma Roosa Niemi Riippuvuuslogiikkaa Informaatiotieteiden yksikkö Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö ROOSA NIEMI: Riippuvuuslogiikkaa

Lisätiedot

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka

Osa 1: Todennäköisyys ja sen laskusäännöt. Klassinen todennäköisyys ja kombinatoriikka Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Klassinen todennäköisyys ja kombinatoriikka TKK (c) Ilkka Mellin (2007) 1 Klassinen todennäköisyys ja kombinatoriikka >> Klassinen

Lisätiedot

Harjoitustehtävät, joulukuu 2013, (ehkä vähän) vaativammat

Harjoitustehtävät, joulukuu 2013, (ehkä vähän) vaativammat Harjoitustehtävät, joulukuu 013, (ehkä vähän) vaativammat Ratkaisuja 1. Viisinumeroinen luku a679b on jaollinen 7:lla. Määritä a ja b. Ratkaisu. Luvun on oltava jaollinen 8:lla ja 9:llä. Koska luku on

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 kevät 2014 Talousmatematiikan perusteet Matti Laaksonen, (Matemaattiset tieteet / Vaasan yliopisto) Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi Opettajan kotisivu: http://lipas.uwasa.fi/

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

2 ALGEBRA I. Sisällysluettelo

2 ALGEBRA I. Sisällysluettelo ALGEBRA I 1 2 ALGEBRA I Sisällysluettelo 1. Relaatio ja funktio 3 1.1. Karteesinen tulo 3 1.2. Relaatio ja funktio 3 1.3. Ekvivalenssirelaatio 9 2. Lukuteoriaa 11 2.1. Jaollisuusrelaatio 11 2.2. Suurin

Lisätiedot

Lukijalle. Modernin algebran alkeita on yleensä tapana opettaa tiukan aksiomaattis abstraktilla

Lukijalle. Modernin algebran alkeita on yleensä tapana opettaa tiukan aksiomaattis abstraktilla Lukijalle Matematiikan opetuksessa käsiteltävä aines voidaan järjestää ainakin seuraavien kolmen periaatteen mukaan: matematiikan historiallinen kehitysjärjestys, matematiikan looginen esitysjärjestys

Lisätiedot

2. Polynomien jakamisesta tekijöihin

2. Polynomien jakamisesta tekijöihin Imaginaariluvut mielikuvitustako Koska yhtälön x 2 x 1=0 diskriminantti on negatiivinen, ei yhtälöllä ole reaalilukuratkaisua Tästä taas seuraa, että yhtälöä vastaava paraabeli y=x 2 x 1 ei leikkaa y-akselia

Lisätiedot

Talousmatematiikan perusteet ORMS.1030

Talousmatematiikan perusteet ORMS.1030 orms.1030 Vaasan avoin yliopisto / kevät 2013 1 Talousmatematiikan perusteet Matti Laaksonen Matemaattiset tieteet Vaasan yliopisto Vastaanotto to 11-12 huone D110/Tervahovi Sähköposti: matti.laaksonen@uva.fi

Lisätiedot

a b c d + + + + + + +

a b c d + + + + + + + 11. 11. ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÖ Ø ÙØ 014 È ÖÙ Ö ÒÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d 1. +. 3. 4. 5. 6. + + + + + + + + P1. Junan nopeus (liikkeellä) on aluksi v 0 ja matka-aika T 0. Matkan pituus s on

Lisätiedot

Tietotyypit ja operaattorit

Tietotyypit ja operaattorit Tietotyypit ja operaattorit Luennossa tarkastellaan yksinkertaisten tietotyyppien int, double ja char muunnoksia tyypistä toiseen sekä esitellään uusia operaatioita. Numeeriset tietotyypit ja muunnos Merkkitieto

Lisätiedot

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3

110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3 4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5

Lisätiedot