15. Laajennosten väliset homomorfismit
|
|
- Susanna Elstelä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit niin sanotut automorfismit auttavat vastaavasti rakenteen omien ominaisuuksien selvittämisessä. Automorfismit muodostavat aina ryhmän, ja tällä tavoin ryhmäteoriasta tuttuja tuloksia päästään käyttämään hyväksi uusilla alueilla. Kuntalaajennosten yhteydessä automorfismien tutkiminen johtaa Galois n teoriaan, jolla on lukemattomia sovelluksia lukuteoriassa ja yleisten kuntien teoriassa Homomorfismin määritelmä ja Galois n ryhmä. Määritelmä Kunnan K laajennosten välistä kuntahomomorfismia σ kutsutaan K-laajennosten homomorfismiksi tai lyhyemmin K-homomorfismiksi, jos σ(a) = a kaikilla a K. Kuntalaajennosten välinen kuntahomomorfismi σ on siis K-homomorfismi, jos se kiinnittää lähtökunnan K. Tämä voidaan ilmaista yhtäpitävästi myös niin, että kuvauksen σ on oltava K-algebrahomomorfismi eli sen täytyy säilyttää skalaarikertolasku. Jos nimittäin σ on mielivaltainen K:n kiinnittävä kuntahomomorfismi, kaikilla skalaareilla a K pätee σ(ab) = σ(a)σ(b) = aσ(b). Toisaalta, jos σ on K-algebrahomomorfismi, niin σ(a) = σ(a.1) = a.σ(1) = a. Koska kuntahomomorfismit ovat aina injektioita, myös laajennosten väliset homomorfismit ovat injektioita. Lisäksi, jos [L 1 : K] = [L 2 : K] <, niin laajennosten L 1 ja L 2 välinen homomorfismi on surjektio, koska se on injektio kahden samanulotteisen vektoriavaruuden välillä. Erityisesti äärellisen laajennoksen sisäiset K-homomorfismit ovat aina bijektioita, niin sanottuja K-automorfismeja. Määritelmä Kuntalaajennoksen L/K Galois n ryhmä Gal(L/K) on kaikkien K-automorfismien σ : L L muodostama ryhmä. Galois n ryhmä on siis kaikkien L:n automorfismien ryhmässä Aut(L) se aliryhmä, joka kiinnittää lähtökunnan K. Tarkastellaan joukon X virittämää kunnan K laajennosta K(X). Koska jokainen K-automorfismi säilyttää alkioiden tulot ja K-kertoimiset lineaarikombinaatiot, nähdään, että virittäjäalkioiden kuvat määrittävät automorfismin täysin. Puetaan tämä havainto täsmälliseen muotoon seuraavassa lemmassa. Lemma Olkoon K(X) joukon X virittämä kunnan K laajennos, ja olkoot σ, τ Gal(K(X)/K). Jos σ X = τ X, niin σ = τ Juurten kuvautuminen. Osoittautuu, että kuntalaajennosten väliset homomorfismit kuvaavat polynomien juuria toisikseen. Tämä tarjoaa erittäin hyödyllisen tavan päästä käsiksi algebrallisten laajennosten välisiin homomorfismeihin. Lause Olkoon σ : L 1 L 2 jokin K-laajennosten homomorfismi, ja olkoon α L 1 algebrallinen lähtökunnan K suhteen. Jos polynomille f K[X] pätee f(α) = 0, niin f(σ(α)) = 0. Lisäksi min(k, α) = min(k, σ(α)). 111
2 112 Todistus. Merkitään f = b 0 + b 1 X + + b n X n. Koska b i K kaikilla i ja σ on K-homomorfismi, nähdään että σ(b i ) = b i kaikilla i. Täten f(σ(α)) = b i σ(α) i = σ(b i )σ(α) i = σ(f(α)) = σ(0) = 0. i i Lisäksi, jos p = min(k, α), niin p(σ(α)) = 0, joten alkion σ(α) minimipolynomi jakaa p:n. Toisaalta p on jaoton pääpolynomi, joten täytyy olla p = min(k, σ(α)). Korollaari Jos L on kunnan K äärellinen laajennos, niin Gal(L/K) on äärellinen ryhmä. Todistus. Laajennos on äärellinen, jos ja vain jos se on äärellisen monen algebrallisen alkion virittämä. Olkoon L = K(α 1,..., α n ), ja olkoon p i alkion α i minimipolynomi kullakin i. Jokainen K-automorfismi määräytyy täysin sen mukaan, mihin virittäjäalkiot kuvautuvat. Toisaalta edellisen lauseen mukaan jokainen α i voi kuvautua vain jollekin polynomin p i juurista, joita on äärellinen määrä. Yhteensä erilaisia automorfismeja on siis vain äärellisen monta. Lauseen 15.4 tulos voidaan myös kääntää: jos α ja α ovat jonkin jaottoman polynomin juuria, on olemassa sellainen automorfismi, joka kuvaa alkion α alkiolle α. Tämän tuloksen todistaminen jätetään myöhemmäksi. Esimerkki Tarkastellaan laajennosta C/R. Voidaan helposti näyttää, että kuvaukset id sekä σ : a + bi a bi ovat R-automorfismeja. Koska lisäksi C = R(i), jokainen R-automorfismi määräytyy sen perusteella, miten se kuvaa alkion i. Tämän alkion minimipolynomi on p = X 2 + 1, ja sillä on juurina i ja i. Lauseen 15.4 perusteella jokainen R-automorfismi τ permutoi p:n juuria, joten täytyy päteä joko τ(i) = i tai τ(i) = i. Edellisessä tapauksessa τ = id, jälkimmäisessä τ = σ. Täten Gal(C/R) = {id, σ}. Esimerkki Esimerkissä 14.6 tarkasteltiin polynomin (X 2 + 2)(X 2 + 1) juurikuntaa L = Q(i, 2). Oletetaan, että σ Gal(L/Q). Kuvaus σ määräytyy siitä, mihin se kuvaa virittäjäalkiot i ja 2. Näiden alkioiden minimipolynomit ovat järjestyksessä X ja X 2 2, joten lauseen 15.4 perusteella i kuvautuu joukkoon {i, i} ja 2 joukkoon { 2, 2}. Saadaan neljä kombinaatiota: σ(i) σ( 2) σ i 2 id i 2 σ 1 : a + bi + c 2 + di 2 a + bi c 2 di 2 i 2 σ2 : a + bi + c 2 + di 2 a bi + c 2 di 2 i 2 σ 3 : a + bi + c 2 + di 2 a bi c 2 + di 2 Raa alla laskulla nähdään, että jokainen taulukon kuvaus tosiaan on Q-automorfismi. (Tämän osoittamiseen voidaan myös käyttää myöhemmin todistettavaa lausetta 16.1.) Ryhmä Gal(L/Q) on siis neljän alkion ryhmä {id, σ 1, σ 2, σ 3 } Galois n teorian peruslause. Kuntalaajennoksen automorfismiryhmän rakenteen selvittäminen auttaa laajennoksen ominaisuuksien tutkimisessa. Tärkeä vastaavuus saadaan liittämällä kukin automorfismiryhmän aliryhmä sellaiseen kuntaan, jonka sen alkiot kiinnittävät. Tutkitaan seuraavaksi tätä niin kutsuttua Galois n yhteyttä.
3 15. LAAJENNOSTEN VÄLISET HOMOMORFISMIT 113 Jokaiseen K:n laajennokseen L liittyy automorfismiryhmä Gal(K/L). Toisaalta jokaiseen L:n kunta-automorfismien joukkoon S Aut(L) voidaan liittää sen kiintokunta Fix(S, L) = {a L σ(a) = a kaikilla σ S}. On helppo nähdä, että kiintokunta todellakin on kunta, jolloin se on kunnan L alikunta. Lisäksi, jos S sisältää vain K-automorfismeja eli S Gal(L/K), niin K Fix(S, L) eli Fix(S, L) on kunnan K laajennos. Oletetaan seuraavassa, että L on jokin kunta, ja yksinkertaistetaan merkintöjä kirjoittamalla Gal(L/K) = Gal(K) ja Fix(S, L) = Fix(S). Kiintokuntien ja Galois n ryhmien välille saadaan seuraavan lauseen mukainen vastaavuus. Lause Olkoon L kunta. Tällöin seuraavat ehdot pätevät: a) Jos K 1 K 2 L on jono kuntia, niin Gal(K 2 ) Gal(K 1 ). b) Jos S 1 S 2 Aut(L), niin Fix(S 2 ) Fix(S 1 ). c) Jos S Aut(L), niin Fix(S) = Fix(Gal(Fix(S))). d) Jos K on jokin kunnan L alikunta, niin Gal(K) = Gal(Fix(Gal(K))). Todistus. Väitteet (a) ja (b) seuraavat suoraan kiintokunnan ja Galois n ryhmän määritelmistä. Todistetaan väitteet (c) ja (d). Oletetaan ensin, että S on jokin kunnan L automorfismien joukko, ja merkitään K = Fix(S). Koska S:n alkiot kiinnittävät K:n, niin S Gal(K). Kohdasta (b) seuraa, että Fix(Gal(K)) Fix(S) = K. Toisaalta jokainen ryhmän Gal(K) alkio kiinnittää K:n, joten K Fix(Gal(K)). Oletetaan sitten, että K on kunnan L alikunta, ja merkitään H = Gal(K). Nyt K Fix(Gal(K)), joten kohdan (a) mukaan Gal(Fix(Gal(K))) Gal(K) = H. Toisaalta jokainen H:n alkio kiinnittää kunnan Fix(H), joten H Gal(Fix(H)). Yllä olevan lauseen sanoma on, että on olemassa bijektiivinen, inkluusiosuunnan kääntävä vastaavuus Galois n ryhmien Gal(L/M) Gal(L/K) ja kiintokuntien Fix(S, L) L välillä, missä K M L ja S on ryhmän Gal(L/K) osajoukko. Tämän vastaavuuden antaa kuvaus M Gal(L/M), ja sen käänteisvastaavuus on muotoa H Fix(H, L). Vastaavuuden bijektiivisisyys seuraa lauseen kohdista (c) ja (d): Jos M 1, M 2 L ovat kaksi kiintokuntaa, joille pätee Gal(M 1 ) = Gal(M 2 ), niin M 1 = Fix(Gal(M 1 )) = Fix(Gal(M 2 )) = M 2. Toisaalta, jos H Gal(L) on mikä hyvänsä Galois n ryhmä, niin Fix(H) on kiintokunta, jolle pätee Gal(Fix(H)) = H. Lauseen ehdot toteuttavaa vastaavuutta kutsutaan yleisesti Galois n vastaavuudeksi tai Galois n yhteydeksi. Sellainen esiintyy monilla muillakin aloilla, esimerkiksi algebrallisessa geometriassa polynomijoukkojen ja niiden sisältämien polynomien yhteisten nollakohtien joukkojen välillä. Määritelmä Olkoon L kunnan K laajennos. Kuntaa M, jolle pätee K M L, kutsutaan laajennoksen L/K välikunnaksi.
4 114 kiintokunnat M 2 Gal Fix Galois n ryhmät Gal( L / M 2 ) M 1 Gal( L / M 1 ) Kuva 27. Galois n yhteys liittää toisiinsa kiintokunnat ja niiden Galois n ryhmät Jos S on joukko K-automorfismeja, niin kiintokunta Fix(S, L) sisältää K:n. Täten Fix(S, L) on laajennoksen L/K välikunta. Olisi hyödyllistä, jos lauseen 15.8 määrittelemä bijektiivinen vastaavuus voitaisiin ulottaa kaikkien ryhmän Gal(L/K) aliryhmien ja kaikkien laajennoksen L/K välikuntien välille. Erityisesti jos laajennos L/K on äärellinen, pystyttäisiin tällöin löytämään kaikki kyseisen laajennoksen välikunnat tutkimalla laajennoksen äärellistä Galois n ryhmää. Haluttaisiin siis esimerkiksi tilanne, jossa jokainen ryhmän Gal(L/K) aliryhmä olisi Galois n ryhmä ja jokainen L/K:n välikunta olisi kiintokunta. Kuitenkin voi käydä esimerkiksi niin, että Gal(L/K) kiinnittää muutakin kuin lähtökunnan K. Tällöin triviaali välikunta K ei ole minkään aliryhmän H Gal(L/K) kiintokunta. Tämä antaa aiheen seuraavaan määritelmään. Määritelmä Algebrallista laajennosta L/K kutsutaan Galois n laajennokseksi, jos K = Fix(Gal(L/K), L). Kunnan K algebrallinen laajennos on siis Galois n laajennos (tai lyhyemmin, predikatiivina: Galois), jos kaikkien K-automorfismien kiinnittämä joukko on täsmälleen K. Esimerkki Laajennoksen C/R Galois n ryhmä on {id, σ}, missä σ on kompleksikonjugointi a + bi a bi. Kompleksikonjugoinnille pätee σ(x) = x jos ja vain jos x R, joten laajennos C/R Galois n laajennos. Esimerkissä 15.7 tarkasteltiin Q:n laajennosta L = Q(i, 2), jonka Galois n ryhmäksi löydettiin {id, σ 1, σ 2, σ 3 } = V 4. Myös tämä laajennos on Galois. Sen näyttämiseksi oletetaan, että x = a + bi + c 2 + di 2 Fix(V 4 ). Nyt a + bi + c 2 + di 2 = σ 1 (a + bi + c 2 + di 2) = a + bi c 2 di 2, mistä nähdään, että c + di = 0 ja edelleen x = a + bi. Tästä voidaan kuvausta σ 2 käyttämällä päätellä, että b = 0. Siispä x = a Q, joten Fix(V 4 ) = Q. Osoittautuu, että jos laajennos L/K on Galois n laajennos, niin jokainen laajennos L/M, missä M on L/K:n välikunta, on myös Galois. Tästä seuraa puolestaan, että jokainen välikunta on kiintokunta (nimittäin M = Fix(Gal(L/M))) ja lopulta jokainen Galois n ryhmän aliryhmä on Galois n ryhmä.
5 15. LAAJENNOSTEN VÄLISET HOMOMORFISMIT 115 Lause (Galois n teorian peruslause). Oletetaan, että L on kunnan K äärellinen Galois n laajennos. Tällöin kuvaus M Gal(L/M) antaa bijektiivisen, inkluusiosuunnan kääntävän vastaavuuden laajennoksen L/K välilaajennosten sekä ryhmän Gal(L/K) aliryhmien välillä. Tämän vastaavuuden käänteisvastaavuus on H Fix(H, L). Todistus. Sivuutetaan. L = Fix({id}) M 2 Gal Fix {id} H 2 M 1 H 1 K = Fix(Gal( L / K)) Gal( L / K) Kuva 28. Galois n laajennokseen liittyvän Galois n ryhmän jokainen aliryhmä vastaa jotain välikuntaa
15. Laajennosten väliset homomorfismit
15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit eli niin sanotut automorfismit auttavat vastaavasti
14. Juurikunnat Määritelmä ja olemassaolo.
14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.
ei ole muita välikuntia.
ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten
16. Valikoituja aiheita
16. Valikoituja aiheita Materiaalin viimeisessä luvussa käydään läpi väliinjääneitä kuntalaajennoksiin liittyviä tuloksia ja tutustutaan vielä hieman tarkemmin Galois n teoriaan. 16.1. Isomorfismien jatkaminen.
13.3. Transkendenttisuudesta. 14. Juurikunnat Määritelmä ja olemassaolo.
13.3. Transkendenttisuudesta. Luvun todistamiseksi algebralliseksi riittää löytää polynomi, jonka juuri kyseinen luku on. Transkendenttisuuden todistaminen on sen sijaan työläämpää. Jotkut tapaukset ovat
[E : F ]=[E : K][K : F ].
ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle
Avainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Sampo
koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan
4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
1. Hiukan lineaarialgebraa
ÁÎ ÃÓ Ø ÐÓ ³Ò Ø ÓÖ 1. Hiukan lineaarialgebraa 1.1. Määritelmä. Olkoon K = (K, +, ) kunta (ns. kerroinkunta). Joukko V varustettuna yhteenlaskulla +:V V V ja skalaarikerronnalla :K V V on K- vektoriavaruus,
Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
Ryhmäteoriaa. 2. Ryhmän toiminta
Ryhmäteoriaa 2. Ryhmän toiminta Permutaatiot kuvaavat jonkin perusjoukon alkioita toisikseen. Eräät permutaatiot jättävät joitain alkioita paikalleen, toiset liikuttavat kaikkia joukon alkioita. Kaikki
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
Kantavektorien kuvavektorit määräävät lineaarikuvauksen
Kantavektorien kuvavektorit määräävät lineaarikuvauksen Lause 18 Oletetaan, että V ja W ovat vektoriavaruuksia. Oletetaan lisäksi, että ( v 1,..., v n ) on avaruuden V kanta ja w 1,..., w n W. Tällöin
= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
Äärelliset kunnat ja polynomien jako alkutekijöihin
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Kananoja Äärelliset kunnat ja polynomien jako alkutekijöihin Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2007 Tampereen yliopisto
Galois'n teoria polynomien ratkeavuudesta. Wille Lehtomäki
Galois'n teoria polynomien ratkeavuudesta Wille Lehtomäki HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen
1 Algebralliset perusteet
1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset
4. Ryhmien sisäinen rakenne
4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.
H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori
Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja
b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan
Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla
Esko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
13. Algebralliset laajennokset
13. Algebralliset laajennokset Vanhoina aikoina algebran tutkimuksen päämääränä oli oppia ratkaisemaan polynomiyhtälöitä. Niinpä erityisen tärkeää osaa klassisessa kuntalaajennosten teoriassa näyttelevät
Resolventtimenetelmästä
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jori Mäntysalo Resolventtimenetelmästä Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö MÄNTYSALO, JORI:
Approbatur 3, demo 5, ratkaisut
Approbatur 3, demo 5, ratkaisut 51 Tehtävänä on luetella kaikki joukon S 4 alkiot eli neljän alkion permutaatiot Tämä tarkoittaa kaikkia eri tapoja kuvata joukko {1, 2, 3, 4} bijektiivisesti itselleen
Algebra I, harjoitus 8,
Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen
g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.
ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot
Kuvaus. Määritelmä. LM2, Kesä /160
Kuvaus Määritelmä Oletetaan, että X ja Y ovat joukkoja. Kuvaus eli funktio joukosta X joukkoon Y on sääntö, joka liittää jokaiseen joukon X alkioon täsmälleen yhden alkion, joka kuuluu joukkoon Y. Merkintä
k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0
1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota
Tehtävä 5 : 1. Tehtävä 5 : 2
Tehtävä 5 : 1 Merkitään kirjaimella H kuvan punaisten solmujen virittämää verkon G yhtenäistä aliverkkoa, jossa on yhteensä kolme särmää. Aliverkosta H voidaan kahdella tavalla valita kahden solmun joukko
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi
kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen
802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Lineaarikuvauksen R n R m matriisi
Lineaarikuvauksen R n R m matriisi Lauseessa 21 osoitettiin, että jokaista m n -matriisia A vastaa lineaarikuvaus L A : R n R m, jolla L A ( v) = A v kaikilla v R n. Osoitetaan seuraavaksi käänteinen tulos:
8. Avoimen kuvauksen lause
116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28
TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS
Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014
Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn
jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.
1 Lineaarikuvaus 1.1 Määritelmä Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V W on lineaarinen, jos (a) L(v + w) = L(v) + L(w); (b) L(λv) = λl(v) aina, kun v, w V ja λ K. Termejä:
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut
Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus, malliratkaisut 1.-5.9.009 1. Muodosta joukot A B, A B ja A\B sekä laske niiden alkioiden lukumäärät (mikäli kyseessä on äärellinen
Kanta ja dimensio 1 / 23
1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio
Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.
3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää
R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,
2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään
Esko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.
11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ
802320A LINEAARIALGEBRA OSA III
802320A LINEAARIALGEBRA OSA III Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 56 Määritelmä Määritelmä 1 Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V
2 Permutaatioryhmät. 2.1 Permutaation olemus. 2.2 Permutaatioilla laskeminen
2 Permutaatioryhmät Rubikin kuution siirrot ovat tietynlaisia permutaatioita Permutaatiot muodostavat ryhmiä, ja tällä tavoin ryhmäteorian työkaluja päästään käyttämään kuutio-ongelman selvittämiseen Tässä
Avaruuden R n aliavaruus
Avaruuden R n aliavaruus 1 / 41 Aliavaruus Esimerkki 1 Kuva: Suora on suljettu yhteenlaskun ja skalaarilla kertomisen suhteen. 2 / 41 Esimerkki 2 Kuva: Suora ei ole suljettu yhteenlaskun ja skalaarilla
Pysähtymisongelman ratkeavuus [Sipser luku 4.2]
Pysähtymisongelman ratkeavuus [Sipser luku 4.2] Osoitamme nyt vihdoin, että jotkin Turing-tunnistettavat kielet ovat ratkeamattomia ja jotkin kielet eivät ole edes Turing-tunnistettavia. Lisäksi toteamme,
5. Ryhmän kompositiotekijät
5. Ryhmän kompositiotekijät Jos ryhmästä löydetään normaali aliryhmä, sen suhteen voidaan muodostaa tekijäryhmä, jolla saattaa olla yksinkertaisempi rakenne kuin alkuperäisellä ryhmällä. Ryhmä voidaan
7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita
802328A LUKUTEORIAN PERUSTEET Merkintöjä ja Algebrallisia rakenteita Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LUKUTEORIA 1 / 25 Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset
ja jäännösluokkien joukkoa
3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi
Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit
Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen
{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
Proäärelliset ryhmät ja kuntalaajennukset
Proäärelliset ryhmät ja kuntalaajennukset Matti Åstrand Helsinki 25.5.2009 Pro gradu -tutkielma HELSINGIN YLIOPISTO Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.
Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa suuriin, helpommin käsiteltäviin osiin. Tämän jälkeen voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin
Tehtävä 4 : 2. b a+1 (mod 3)
Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,
5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
Tehtävä 8 : 1. Tehtävä 8 : 2
Tehtävä 8 : 1 Merkitään kirjaimella G tarkasteltavaa Petersenin verkkoa. Olkoon A joukon V(G) niiden solmujen joukko, joita vastaavat solmut sijaitsevat tehtäväpaperin kuvassa ulkokehällä. Joukon A jokaisella
Hieman joukko-oppia. A X(A a A b A a b).
Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei
802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013
802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät
MS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
Algebrallisista käyristä
Tampereen yliopisto Pro gradu -tutkielma Heidi Kalliojärvi Algebrallisista käyristä Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
Kompaktisuus ja filtterit
Kompaktisuus ja filtterit Joukkoperheellä L on äärellinen leikkausominaisuus, mikäli jokaisella äärellisellä L L on voimassa L. Nähdään helposti, että perheellä L on äärellinen leikkausominaisuus ja L
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit
Matriisilaskenta Luento 16: Matriisin ominaisarvot ja ominaisvektorit Antti Rasila 2016 Ominaisarvot ja ominaisvektorit 1/5 Määritelmä Skalaari λ C on matriisin A C n n ominaisarvo ja vektori v C n sitä
2 Permutaatioryhmät. 2.1 Permutaation olemus
2 Permutaatioryhmät Rubikin kuution siirrot ovat tietynlaisia permutaatioita Permutaatiot muodostavat ryhmiä, ja tällä tavoin ryhmäteorian työkaluja päästään käyttämään kuutioongelman selvittämisessä Tässä
Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.
Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden
HN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.
Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta
Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta Teppo Lahti Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2014 Tiivistelmä
H = H(12) = {id, (12)},
7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen
verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
Kertausta: avaruuden R n vektoreiden pistetulo
Kertausta: avaruuden R n vektoreiden pistetulo Määritelmä Vektoreiden v R n ja w R n pistetulo on v w = v 1 w 1 + v 2 w 2 + + v n w n. Huom. Pistetulo v w on reaaliluku! LM2, Kesä 2012 227/310 Kertausta:
Ensimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Ensimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio
6 Vektoriavaruus R n 6.1 Lineaarikombinaatio Määritelmä 19. Vektori x œ R n on vektorien v 1,...,v k œ R n lineaarikombinaatio, jos on olemassa sellaiset 1,..., k œ R, että x = i v i. i=1 Esimerkki 30.
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
Äärellisesti generoitujen Abelin ryhmien peruslause
Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.
a ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.
Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.
Taulumenetelmä modaalilogiikalle K
/ Kevät 2004 ML-6 1 Taulumenetelmä modaalilogiikalle On vaikeaa löytää Hilbert-tyylisiä todistuksia: Käytössä Modus Ponens -sääntö: jotta voidaan johtaa Q, täytyy johtaa P ja P Q. Mutta mikä on sopiva
rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/310 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.