Äärellisesti generoitujen Abelin ryhmien peruslause

Koko: px
Aloita esitys sivulta:

Download "Äärellisesti generoitujen Abelin ryhmien peruslause"

Transkriptio

1 Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää. Abelin ryhmä G on joukon B = {a 1, a 2,..., a n } generoima vapaa Abelin ryhmä, jos jokainen g G voidaan esittää yksikäsitteisesti muodossa g = m 1 a 1 + m 2 a m n a n (m i Z). Tässä tapauksessa B on ryhmän G kanta. Esimerkki 1.1. Ryhmä Z on vapaa: joukot {1} ja { 1} ovat sen kantoja. Yleisemmin Z n = Z Z... Z on vapaa kantana {e 1, e 2,..., e n }, missä e i = (0,..., 0, 1, 0,..., 0). Todetaan, ettei vapaan Abelin ryhmän nolla-alkio 0 voi kuulua mihinkään kantaan, sillä = 0 antaa kaksi esitystä joukon {0,...} suhteen. Esimerkki 1.2. Toisaalta Z 2 ei ole vapaa, sillä muutoin sen kantana olisi välttämättä {1}, mutta esimerkiksi (mod 2) eli alkiolla 1 on useita esityksiä. Lemma 1.1. Olkoon G äärellisesti generoitu Abelin ryhmä. Tällöin sen kaikki minimaaliset generoijajoukot ovat äärellisiä. Todistus. Harjoitustehtävä. Lause 1.1. Olkoon G äärellisesti generoitu vapaa Abelin ryhmä. Tällöin ryhmän G jokaisessa kannassa on yhtä monta alkiota. Tätä lukua kutsutaan ryhmän G asteeksi. Todistus. Edeltävän mukaan ryhmällä G on (äärellinen) kanta B = {a 1,..., a n }. Tarkastellaan ryhmän G aliryhmää 2G = {2g g G} G, ja sen tekijäryhmää G/2G = {g + 2G g G}. Kun g G, niin g = m i a i joillain m i Z, sanokaamme m i = 2k i + r i, missä 0 r i 1. Siten g + 2G = (2k i + r i )a i + 2G = r i a i + 2 k i a i + 2G = r i a i + 2G. Tässä r i {0, 1} ja siten G/2G = 2 n, missä G/2G on riippumaton kannan B valinnasta. Näin ollen jokaisessa kannassa on tarkalleen n alkiota.

2 Lause 1.2. Olkoon G astetta n oleva vapaa Abelin ryhmä kantana B = {a 1, a 2,..., a n } ja olkoon H Abelin ryhmä. Tällöin jokainen kuvaus f : B H laajenee yksikäsitteisesti homomorfismiksi f : G H, missä f(a n ) = f (a n ). Todistus. Määritellään f(m 1 a m n a n ) = m 1 f (a 1 ) m n f (a n ), 2 jolloin väite todetaan helposti oikeaksi. Lause 1.3. Samaa astetta olevat vapaat Abelin ryhmät G 1 ja G 2 ovat isomorfiset. Todistus. Olkoot B 1 = {a 1, a 2,..., a n } ja B 2 = {b 1, b 2,..., b n } vastaavasti näiden ryhmien kantoja. Tällöin kuvaus f : B 1 G 2 ehdosta f (a i ) = b i laajenee homomorfismiksi f : G 1 G 2. Kuvaus f on surjektiivinen, sillä B 2 generoi ryhmän G 2, ja se on injektiivinen, koska B 2 on kanta. Täten f on isomorfismi. Edeltävän nojalla saadaan: Lause 1.4. Jokainen astetta n oleva vapaa Abelin ryhmä on isomorfinen ryhmän Z n = Z... Z kanssa. Lause 1.5. Jokainen äärellisesti generoitu Abelin ryhmä on vapaan Abelin ryhmän homomorfinen kuva. Todistus. Olkoon G = g 1,..., g n ja olkoon B = {e 1,..., e n } astetta n olevan vapaan Abelin ryhmän H kanta. Tällöin kuvaus f : B G ehdosta f (e i ) = g i laajenee homomorfismiksi f : H G, joka on surjektiivinen. Täten G = f(h). Tässä on erityisesti G = H/ Ker(f). Torsiovapaat ryhmät Ryhmä G on torsioryhmä, jos sen jokaisen alkion g kertaluku ord(g) on äärellinen. Ryhmä G on torsiovapaa, jos jokaisen alkion a 1 kertaluku on ääretön. Esimerkki 1.3. Abelin ryhmät Z, Q, R ja C ovat torsiovapaita yhteenlaskun suhteen. Tekijäryhmä Q/Z on torsioryhmä, sillä p (q/p) Z kaikille q/p Q. Kertolaskun suhteen Q \ {0} on torsiovapaa, mutta C \ {0} ei ole. Vuonna 1902 Burnside esitti seuraavan ongelman: Ovatko äärellisesti generoidut torsioryhmät välttämättä äärellisiä? Kysymys sai negatiivisen vastauksen, kun Golod ja Shafarevich (1964) osoittivat, että on olemassa kolmen alkion generoima ääretön ryhmä, jonka alkioiden kertaluvut ovat alkuluvun p potensseja. Adjan ja Novikov (1968) todistivat, että kun n 4381 on pariton luku, niin on olemassa kahden alkion generoima ääretön ryhmä, jossa g n = 1 kaikille g.

3 Olkoon G Abelin ryhmä. Alkio g G on torsioalkio, jos on n 1, jolla ng = 0. Merkitään T (G) = {g G g torsioalkio}. Lause 1.6. Olkoon G Abelin ryhmä. Tällöin T (G) G on torsioryhmä ja G/T (G) on torsiovapaa. Todistus. Selvästi 0 T (G). Jos g 1, g 2 T (G), sanokaamme ng 1 = 0 ja mg 2 = 0, niin nm(g 1 g 2 ) = 0 ja siten g 1 g 2 T (G). Siis T (G) G. Myös T (G) G, koska G on Abelin ryhmä. Jos g + T (G) G/T (G) ja n(g + T (G)) = ng + T (G) = T (G) (ryhmän G/T (G) nolla-alkio), niin m(ng) = 0 jollain m 1, eli g T (G), ja siten g + T (G) = T (G). Esimerkki 1.4. Todetaan, että T (Z Z 2 ) = {(0, 0), (0, 1)} ja Z Z 2 /T (Z Z 2 ) = Z. Lause 1.7. Äärellisesti generoitu Abelin ryhmä G on vapaa jos ja vain jos se on torsiovapaa. Todistus. Ensinnä, jos G on vapaa, niin G = Z n jollain n, ja näin ollen T (G) = {0}. Toisaalta, oletetaan, että G on torsiovapaa, ja G = g 1,..., g n, missä n on minimaalinen. Todistetaan väite induktiolla lukuun n. Jos n = 1, niin G = g 1 = Z, joten väite on selvä. Olkoon sitten n 2 ja että jollain g G on kaksi esitystä generaattorien avulla: 3 g = m 1 g m n g n = m 1g m ng n (m i, m i Z). Vähentämällä toisistaan saadaan k 1 g 1 + k 2 g k n g n = 0 (k i Z). (1.1) Oletetaan nyt, että (1.1) on valittu niin, että k i on pienin mahdollinen. Tällöin varmastikin syt(k 1,..., k n ) = 1. (Muutoin jaetaan yhteinen tekijä pois vedoten ryhmän G torsiovapauteen.) Todetaan, että k i 1, sillä muutoin g i voidaan lausua muiden generaattorien avulla vastoin luvun n minimaalisuutta. Voidaan olettaa myös, että 0 < k 2 k 1, sanokaamme k 1 = sk 2 + r, missä 0 r < k 2. Merkitään g 2 = g 2 + sg 1. Nyt rg 1 + k 2 g 2 + k 3 g k n g n = 0. Siis G = g 1, g 2,..., g n, missä 0 r < k 1 vastoin summan k i minimaalisuutta. Tämä on ristiriita todistaa väitteen.

4 4 Äärellisesti generoidut Abelin ryhmät Muistetaan, että Abelin ryhmä G on aliryhmiensä H ja N suora summa, eli G = H N, jos jokainen g G voidaan esittää yksikäsitteisesti muodossa g = a + b, missä a H ja b N. Vielä: G = H N jos ja vain jos H N = {0} ja G = H + N. Lause 1.8. Olkoon G äärellisesti generoitu Abelin ryhmä. Tällöin G = T (G) G/T (G), missä T (G) on äärellinen ja G/T (G) on vapaa Abelin ryhmä, eli G = T (G) Z... Z. Todistus. Lauseen 1.6 mukaan G/T (G) on torsiovapaa, ja lauseen 1.7 mukaan se on vapaa. Olkoon {e 1 + T (G), e 2 + T (G),..., e k + T (G)} (e i G) ryhmän G/T (G) jokin kanta, ja merkitään B = {e 1, e 2,..., e k }. Merkitään H = B. Jos nyt k m ie i = 0 joillain m i Z, niin myös k m i(e i + T (G)) = T (G) (= 0 G/T (G) ), ja siis vapauden perusteella m i = 0 kaikilla i. Näin ollen H on vapaa, ja siten H = G/T (G) lauseen 1.3 mukaan. Väite 1. G = T (G) H. Tod. Kun g G, niin on luvut m i Z, joilla g + T (G) = ( k k ) m i (e i + T (G)) = m i e i + T (G), toisin sanoen g m i e i T (G), ja siten on alkio a T (G), jolla g = a + m i e i T (G) + H. Siis G = T (G) + H. Toisaalta jos a 1 + m i e i = a 2 + n i e i joukossa T (G)+H, niin (m i n i )e i = a 2 a 1 T (G), ja siten on luku n Z, n 0, niin, että 0 = n (m i n i )e i = n(mi n i )e i. Mutta B on ryhmän H kanta, joten n(m i n i ) = 0 kaikilla i, eli m i = n i kaikilla i. Lopulta myös a 2 = a 1, ja väite 1 on todistettu. On osoitettu, että G = T (G) G/T (G), missä G/T (G) on vapaa. Väite 2. T (G) on äärellinen. Olkoon G = g 1, g 2,..., g n, missä edeltävän nojalla g i = a i + h i joillain a i T (G) ja h i H. Kun a T (G), on se muotoa a = m i g i = m i a i + m i h i, missä m i h i T (G) H = {0} suoran summan ominaisuuden perusteella. Siis a = m i a i. Olkoot r i a i = 0 eli ord(a i ) = r i, kun i = 1, 2,..., n. Tällöin jokainen g T (G) on edeltävän mukaisesti muotoa a = m i a i, missä m i < r i. Näin ollen T (G) r 1 r 2 r n, mikä todistaa väitteen.

5 5 Äärelliset Abelin ryhmät Seuraava tulos liittyy jo Sylowin lauseisiin. Sitä varten, olkoon p alkuluku. Joukko G p = {g p k g = 0 jollain k 0} on ryhmän G (p-)primäärinen komponentti. Lemma 1.2. Olkoon G kertalukua p e 1 1 pe 2 2 pe k k ovat luvun n eri alkulukutekijät. Tällöin oleva Abelin ryhmä, missä p 1,..., p k G = G p1 G p2... G pk. Todistus. Abelin ryhmälle G p G kuten helposti todetaan. Olkoon g G, g 0, ja ord(g) = n = p c 1 1 pc k k, missä kukin c i Z (mahdollisesti 0). Merkitään n i = n/p c i i, jolloin syt(n 1, n 2,..., n k ) = 1, ja näin ollen on olemassa luvut m 1,..., m k niin, että k m in i = 1. Nyt ( k ) g = m i n i g = (m 1 n 1 )g (m k n k )g. Tässä p c i i (m in i )g = (m i n)g = 0, sillä ord(g) = n. Siis (m i n i )g G pi kaikilla i, ja näin ollen g G p1 + G p G pk. Täten G = G p1 + G p G pk. Toisaalta, jos g G pi ( G p G pi 1 + G pi G pk ), niin p e i g = 0 jollain e, ja siten ord(g) = p t i jollain t e. Myös g = j i g j, missä g j G pj, sanokaamme p d j j g j = 0. Kun m = p d 1 1 pd i 1 i 1 pd i+1 i+1... pd k k, niin mg = 0, ja siten ord(g) m. Mutta p i m; ristiriita. Näin ollen jokaisella alkiolla g on yksikäsitteinen esitys summassa G p1 + G p G pk, ja väite seuraa. Ryhmä G on p-ryhmä, jos sen kertaluku on alkuluvun potenssi. Lagrangen lauseen nojalla p-ryhmän jokaisen alkion kertaluku on saman alkuluvun p potenssi. Jokainen Abelin ryhmän primäärinen komponentti on siis p-ryhmä. Lause 1.9. Jokainen Abelin p-ryhmä G on syklisten ryhmien suora summa. Todistus. Olkoon g G alkio jonka kertaluku on mahdollisimman suuri, ja merkitään H = g, jolloin H = p n jollain n 1. Voidaan olettaa, että H G. (Muutoin G on syklinen.) Väitetään, että G = H F jollekin aliryhmälle F G. Koska tässä F on myös p-ryhmä, lopullinen väite seuraa induktiivisesti. Väite ( ). On olemassa C G, jolle H C = {0} ja C = Z p. Tod. Olkoon a G \ H ja olkoon alkion a + H G/H kertaluku p r, missä r 1. Tällöin p r a H = g, joten p r a = sg jollekin s Z. Koska ord(g) = p n on

6 mahdollisimman suuri, niin p n a = 0, ja siten p n a = (sp n r )g = 0. Siis p n jakaa luvun sp n r, jolloin p s, koska r 0. Olkoon s = ps. Valitaan a 1 = p r 1 a s g ja C = a 1, jolloin pa 1 = p r a ps g = sg sg = 0. Siis ord(a 1 ) = p ja näin ollen C = p. Siten C = Z p. Lisäksi C H = {0}, sillä a 1 / H (koska p r 1 a / H). Tämä todistaa väitteen ( ). Etsitään sitten F induktiivisesti. Tätä varten olkoon f : G G/C luonnollinen homomorfismi, eli f(a) = a + C. Nyt f(h) = g + C on tekijäryhmän G/C syklinen aliryhmä, jonka kertaluku on mahdollisimman suuri p n. Koska G/C < G ja G/C on p-ryhmä, induktio osoittaa, että G/C = f(h) F (1.2) jollain F G/C. Merkitään F = f 1 ( F ). Nyt F G ja C F (sillä C = 0 G/C ). Edelleen h G = h + C = m(g + C) + (d + C) (sillä (1.2) : d + C F ) = h mg d C Siis G = H + F. Toisaalta = h = mg + (d + c) H + F (c C, d + c F ). h H F = f(h) f(h) f(f ) = f(h) F = {0} (sillä 1.2) = h Ker(f) = C = h H C = h = 0. 6 Näin ollen G = H F. Seuraava tulos on Abelin ryhmien peruslause. Lause Olkoon G äärellisesti generoitu Abelin ryhmä. Tällöin G = Z... Z H, missä H on äärellinen Abelin ryhmä, joka voidaan kirjoittaa muotoon H = Z p r 1 1 Z p r Z p rn n, missä jokainen p i on alkuluku (jotka eivät välttämättä ole erisuuria). Tämä esitys on yksikäsitteinen komponenttien järjestystä lukuunottamatta. Todistus. Väitteen alkuosa on osoitettu lauseessa 1.8. Äärellisiä Abelin ryhmiä koskeva väite seuraa lauseesta 1.9, sillä jokainen syklinen ryhmä on isomorfinen jonkun ryhmän Z m kanssa.

7 7 Lause Olkoon G äärellinen Abelin ryhmä. Tällöin se on muotoa missä d i d i+1 jokaisella i. G = Z d1 Z d2... Z dt, Todistus. Tiedetään, että G = G p1... G pm missä jokainen primäärinen komponentti (luvut p i ovat erisuuria alkulukuja), G pi = C i1 C i2... C ik niin, että C ij C i(j+1) (1.3) on syklisten ryhmien C ij suora summa. Tässä siis C ij jakaa kertaluvun C i(j+1), koska molemmat ovat alkuluvun p i potensseja. Liittämällä tarvittaessa loppuun triviaaleja aliryhmiä {0} voidaan olettaa, että esityksen (1.3) pituus k on sama kaikille p i. Nyt H j = C 1j... C kj on syklinen ryhmä, koska alkuluvut p i ovat erisuuria (harjoitustehtävä). Selvästi H j jakaa kertaluvun H j+1, ja lisäksi G = H 1 H 2... H k kuten vaadittua.

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että

LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,

Lisätiedot

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}. Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4

Lisätiedot

4. Ryhmien sisäinen rakenne

4. Ryhmien sisäinen rakenne 4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.

Lisätiedot

4 Abelin ryhmät. 4.1 Suorat tulot ja summat

4 Abelin ryhmät. 4.1 Suorat tulot ja summat 4 Abelin ryhmät Ensimmäisellä ryhmäteorian kurssilla käytiin läpi lähinnä syklisiä ryhmiä. Tällä kurssilla keskitymme epäkommutatiivisiin esimerkkeihin. On kuitenkin niin, että äärellisesti viritettyjen

Lisätiedot

Transversaalit ja hajoamisaliryhmät

Transversaalit ja hajoamisaliryhmät Transversaalit ja hajoamisaliryhmät Graduseminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Motivointi Esimerkki 1 (Ryhmäteorian kurssin harjoitustehtävä). Jos G on ryhmä,

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Eräitä ratkeavuustarkasteluja

Eräitä ratkeavuustarkasteluja Eräitä ratkeavuustarkasteluja Pro gradu-tutkielma Milla Jantunen 2124227 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2014 Sisältö 1 Ryhmät ja aliryhmät 3 1.1 Ryhmä...............................

Lisätiedot

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään 5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}

Lisätiedot

Liite 2. Ryhmien ja kuntien perusteet

Liite 2. Ryhmien ja kuntien perusteet Liite 2. Ryhmien ja kuntien perusteet 1. Ryhmät 1.1 Johdanto Erilaisissa matematiikan probleemoissa törmätään usein muotoa a + x = b tai a x = b oleviin yhtälöihin, joissa tuntematon muuttuja on x. Lukujoukkoja

Lisätiedot

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä

Lisää ryhmästä A 5 1 / 28. Lisää ryhmästä 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 1 / 28 14A.1 14A.1 14A.2 14A.3 14A.4 14A.5 14A.6 14A.7 14A.8 14A.9 14A.10 14A.11 14A.12 14A.13 Tehtävä: Määrää ryhmän karakteritaulu,

Lisätiedot

Shorin algoritmin matematiikkaa Edvard Fagerholm

Shorin algoritmin matematiikkaa Edvard Fagerholm Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua

Lisätiedot

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä

802354A Algebran perusteet Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä 802354A Algebran perusteet Luentorunko Kevät 2017 Työryhmä: Markku Niemenmaa, Kari Myllylä, Topi Törmä Sisältö 1 Lukuteoriaa 3 1.1 Jakoalgoritmi ja alkuluvut.................... 3 1.2 Suurin yhteinen tekijä......................

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

ei ole muita välikuntia.

ei ole muita välikuntia. ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten

Lisätiedot

Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016

Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Syklinen ryhmä Pro Gradu -tutkielma Taava Kuha Matemaattisten tieteiden laitos Oulun yliopisto 2016 Sisältö Johdanto 2 1 Ryhmäteoriaa 4 1.1 Ryhmän määritelmä....................... 4 1.2 Kertaluku.............................

Lisätiedot

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2

3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 Olen valinnut kunkin luvun teemaksi yhden ryhmän. Ensimmäisen luvun teema on pienin epätriviaali ryhmä, eli ryhmä, jossa on kaksi alkiota. Merkitsen

Lisätiedot

Cauchyn ja Sylowin lauseista

Cauchyn ja Sylowin lauseista Cauchyn ja Sylowin lauseista Pro gradu-tutkielma Jukka Kuru Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Peruskäsitteet 4 1.1 Funktion käsitteitä........................ 4

Lisätiedot

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen

802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen 802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................

Lisätiedot

H = H(12) = {id, (12)},

H = H(12) = {id, (12)}, 7. Normaali aliryhmä ja tekijäryhmä Tarkastelemme luvun aluksi ryhmän ja sen aliryhmien suhdetta. Olkoon G ryhmä ja olkoon H G. Alkiong G vasen sivuluokka (aliryhmän H suhteen) on gh = {gh : h H} ja sen

Lisätiedot

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen

Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D

Lisätiedot

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.

H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b. 10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas

Lisätiedot

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.

a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle. Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a

Lisätiedot

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014

Laitos/Institution Department Matematiikan ja tilastotieteen laitos. Aika/Datum Month and year Huhtikuu 2014 Tiedekunta/Osasto Fakultet/Sektion Faculty Matemaattis-luonnontieteellinen tiedekunta Laitos/Institution Department Matematiikan ja tilastotieteen laitos Tekijä/Författare Author Anna-Mari Pulkkinen Työn

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä

Lisätiedot

Esko Turunen Luku 3. Ryhmät

Esko Turunen Luku 3. Ryhmät 3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,

Lisätiedot

Ratkeavista ryhmistä: teoriaa ja esimerkkejä

Ratkeavista ryhmistä: teoriaa ja esimerkkejä Ratkeavista ryhmistä: teoriaa ja esimerkkejä Pro Gradu-tutkielma Lauri Kangas 2192712 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2015 Sisältö 1 Perusteita 3 1.1 Ryhmät ja aliryhmät.......................

Lisätiedot

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.

g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta. ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot

Lisätiedot

Algebra II. Syksy 2004 Pentti Haukkanen

Algebra II. Syksy 2004 Pentti Haukkanen Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista

Lisätiedot

Matematiikan mestariluokka, syksy 2009 7

Matematiikan mestariluokka, syksy 2009 7 Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty

Lisätiedot

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia

Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,

Lisätiedot

4. Ryhmien sisäinen rakenne

4. Ryhmien sisäinen rakenne 3.5. Sisäiset symmetriat. Kuution väritysesimerkissä 3.14 tarkasteltiin yksittäisten alkioiden sijaan niiden konjugaattiluokkia ja todettiin, että konjugaattiluokkia vastaavat luonnollisella tavalla erityyppiset

Lisätiedot

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen

Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin

Lisätiedot

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta

TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Oulun yliopisto TIIVISTELMÄ OPINNÄYTETYÖSTÄ (liite FM-tutkielmaan) Luonnontieteellinen tiedekunta Maisterintutkinnon kypsyysnäyte Laitos: Matemaattisten tieteiden laitos Tekijä (Sukunimi ja etunimet) Isopahkala

Lisätiedot

Hänessä kaikki viisauden ja tiedon aarteet ovat kätkettyinä. Vrt. Paavalin kirje kolossalaisille 2:2-3.

Hänessä kaikki viisauden ja tiedon aarteet ovat kätkettyinä. Vrt. Paavalin kirje kolossalaisille 2:2-3. TAMPEREEN YLIOPISTO Matematiikan pro gradu -työ Seppo Janhonen Ryhmäteoriaa Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Kesäkuu 2001 Hänessä kaikki viisauden ja tiedon aarteet ovat kätkettyinä.

Lisätiedot

6 A 5, alternoiva ryhmä ja muita yksinkertaisia ryhmiä

6 A 5, alternoiva ryhmä ja muita yksinkertaisia ryhmiä 6 A 5, alternoiva ryhmä ja muita yksinkertaisia ryhmiä Tutustukaamme ensin ryhmään S 5. Jos käytämme syklinotaatiota, toteamme, että se sisältää syklejä, jotka ovat muotoa (12), (123), (1234), (12345),

Lisätiedot

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori

Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja

Lisätiedot

Algebra I, harjoitus 5,

Algebra I, harjoitus 5, Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)

Lisätiedot

Algebra I, harjoitus 8,

Algebra I, harjoitus 8, Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen

Lisätiedot

ÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG

ÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG ÄÄRELLISTEN RYHMIEN VAIHDANNAISUUSVERKOT MIIKKA SILFVERBERG PRO GRADU HELSINGIN YLIOPISTON MATEMATIIKAN LAITOS TOUKOKUU 2008 SISÄLTÖ 1. Merkinnöistä ja määritelmistä 2 2. Johdanto 3 3. Ryhmäteoriaa 5 3.1.

Lisätiedot

1 Lineaariavaruus eli Vektoriavaruus

1 Lineaariavaruus eli Vektoriavaruus 1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus

Lisätiedot

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi

7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi 7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).

Lisätiedot

[E : F ]=[E : K][K : F ].

[E : F ]=[E : K][K : F ]. ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle

Lisätiedot

1 Lukujen jaollisuudesta

1 Lukujen jaollisuudesta Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun

Lisätiedot

1 Algebralliset perusteet

1 Algebralliset perusteet 1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset

Lisätiedot

(xa) = (x) (a) = (x)0 = 0

(xa) = (x) (a) = (x)0 = 0 11. Ideaalit ja tekijärenkaat Rengashomomorfismi : R! R 0 on erityisesti ryhmähomomorfismi :(R, +)! (R 0, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat: Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) 21.2.-25.2.2011 OT 1. a) Määritä seuraavat summat: [2] 4 + [3] 4, [2] 5 + [3] 5, [2] 6 + [2] 6 + [2] 6, 7 [3]

Lisätiedot

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.

(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R. 11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ

Lisätiedot

Esko Turunen MAT Algebra1(s)

Esko Turunen MAT Algebra1(s) Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H

Lisätiedot

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1) Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee

Lisätiedot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa) Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten

Lisätiedot

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä

802354A Lukuteoria ja ryhmät Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä 802354A Lukuteoria ja ryhmät Luentorunko Kevät 2014 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Ekvivalenssirelaatio 3 2 Lukuteoriaa 4 2.1 Lukuteorian

Lisätiedot

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan

koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan 4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta

Lisätiedot

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten Ratkaisuehdotelma Tehtävä 1 1. Etsi lukujen 4655 ja 12075 suurin yhteinen tekijä ja lausu se kyseisten lukujen lineaarikombinaationa ilman laskimen

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua) Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,

Lisätiedot

Äärellisistä ryhmistä, transversaaleista ja luupeista

Äärellisistä ryhmistä, transversaaleista ja luupeista Äärellisistä ryhmistä, transversaaleista ja luupeista Pro Gradu - tutkielma Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Oulun yliopisto Tiedekunta/osasto/laitos Matemaattisten tieteiden

Lisätiedot

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120 Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen

Lisätiedot

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)

Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) 10.12.2012 Tehtävä 1. Osoita, että tuloryhmän R np R sp indeksi Rubikin paikkaryhmässä R p on täsmälleen kaksi. (Tarkkaan

Lisätiedot

6. Tekijäryhmät ja aliryhmät

6. Tekijäryhmät ja aliryhmät 6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,

Lisätiedot

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Jarmo Niemelä. Primitiivisistä juurista ja. alkuluokkaryhmistä TAMPEREEN YLIOPISTO Pro gradu -tutkielma Jarmo Niemelä Primitiivisistä juurista ja alkuluokkaryhmistä Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Marraskuu 2000 2 TAMPEREEN YLIOPISTO

Lisätiedot

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016

Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016 Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang 2187044 Matematiikan yksikkö Oulun yliopisto 2016 Sisältö Johdanto 2 1 Esitietoja 3 1.1 Ryhmät.............................. 3 1.1.1 Ryhmä ja aliryhmä....................

Lisätiedot

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää

1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,

Lisätiedot

d Z + 17 Viimeksi muutettu

d Z + 17 Viimeksi muutettu 5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

Ensimmäinen induktioperiaate

Ensimmäinen induktioperiaate 1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla

Lisätiedot

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen

MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen

Lisätiedot

isomeerejä yhteensä yhdeksän kappaletta.

isomeerejä yhteensä yhdeksän kappaletta. Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua

Lisätiedot

HN = {hn h H, n N} on G:n aliryhmä.

HN = {hn h H, n N} on G:n aliryhmä. Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa

Lisätiedot

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0

Tensorialgebroista. Jyrki Lahtonen A = A n. n=0. I n, I = n=0 Tensorialgebroista Esitysteorian kesäopintopiiri, Turun yliopisto, 2012 Jyrki Lahtonen Olkoon k jokin skalaarikunta. Kerrataan k-algebran käsite: A on k-algebra, jos se on sekä rengas että vektoriavaruus

Lisätiedot

ALKULUKUJA JA MELKEIN ALKULUKUJA

ALKULUKUJA JA MELKEIN ALKULUKUJA ALKULUKUJA JA MELKEIN ALKULUKUJA MINNA TUONONEN Versio: 12. heinäkuuta 2011. 1 2 MINNA TUONONEN Sisältö 1. Johdanto 3 2. Tutkielmassa tarvittavia määritelmiä ja apulauseita 4 3. Mersennen alkuluvut ja

Lisätiedot

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma

Fermat n pieni lause. Heikki Pitkänen. Matematiikan kandidaatintutkielma Fermat n pieni lause Heikki Pitkänen Matematiikan kandidaatintutkielma Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2009 Sisältö Johdanto 3 1. Fermat n pieni lause 3 2. Pseudoalkuluvut

Lisätiedot

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja

{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja 5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.

Lisätiedot

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio. Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin

Lisätiedot

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.

Lisätiedot

a b 1 c b n c n

a b 1 c b n c n Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi

Lisätiedot

Frobeniuksen lauseesta ja sen yleistyksistä

Frobeniuksen lauseesta ja sen yleistyksistä Frobeniuksen lauseesta ja sen yleistyksistä Pro Gradu-tutkielma Mikko Korhonen Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö 1 Johdanto 2 2 Määritelmiä ja perustuloksia 4 2.1 Lukuteoriaa............................

Lisätiedot

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen Johdatus diskreettiin matematiikkaan (syksy 009) Harjoitus 3, ratkaisuja Janne Korhonen 1. Väite: Funktio f : [, ) [1, ), missä on bijektio. f(x) = x + 4x + 5, Todistus: Luentomateriaalissa todistettujen

Lisätiedot

Ryhmäteoria. Pirita Paajanen 26. marraskuuta 2008

Ryhmäteoria. Pirita Paajanen 26. marraskuuta 2008 Ryhmäteoria Pirita Paajanen pirita.paajanen@helsinki.fi 26. marraskuuta 2008 Sisältö 1 Merkinnät 3 2 Alkusanat 4 3 Ryhmäteorian peruskäsitteet ja pienet ryhmät, C 2 6 3.1 Peruskäsitteet...........................

Lisätiedot

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on

Lisätiedot

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden

Lisätiedot

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,

Lisätiedot

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko 3. Tekijälaskutoimitus, kokonaisluvut ja rationaaliluvut Tässä luvussa tutustumme kolmanteen tapaan muodostaa laskutoimitus joukkoon tunnettujen laskutoimitusten avulla. Tätä varten määrittelemme ensin

Lisätiedot

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Joukon määritelmä Joukko on alkioidensa kokoelma. Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti. Näin ei tässä

Lisätiedot

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan

Lisätiedot

Äärelliset kunnat ja polynomien jako alkutekijöihin

Äärelliset kunnat ja polynomien jako alkutekijöihin TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Kananoja Äärelliset kunnat ja polynomien jako alkutekijöihin Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2007 Tampereen yliopisto

Lisätiedot

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Luonnollisten lukujen ja kokonaislukujen määritteleminen Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................

Lisätiedot

Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto

Lineaarialgebra Kerroinrenkaat. Kevät Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Lineaarialgebra 2 Kevät 2014 Kerkko Luosto Informaatiotieteiden yksikkö, Tampereen yliopisto Á Ë Ð Ö Ø Ú ØÓÖ Ø 1. Kerroinrenkaat 1.1. Määritelmä. Yhden laskutoimituksen rakenne(g, + on Abelin ryhmä, jos

Lisätiedot

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013

802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät

Lisätiedot

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto

Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,

Lisätiedot

Johdatus matematiikkaan

Johdatus matematiikkaan Johdatus matematiikkaan Luento 4 Mikko Salo 4.9.2017 Sisältö 1. Rationaali ja irrationaaliluvut 2. Induktiotodistus Rationaaliluvut Määritelmä Reaaliluku x on rationaaliluku, jos x = m n kokonaisluvuille

Lisätiedot

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä

800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä 800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio

Lisätiedot

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006

Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Sisältö 1 Luupeista 2 1.1 Luupit ja niiden kertolaskuryhmät................. 2 2 Transversaalit 5 3

Lisätiedot

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Lampinen Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta Informaatiotieteiden yksikkö Matematiikka Kesäkuu 2016 Tampereen

Lisätiedot

ALGEBRA. Tauno Metsänkylä. K f. id K

ALGEBRA. Tauno Metsänkylä. K f. id K ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................

Lisätiedot

1 Jakajat ja jäännökset. on hyvinjärjestetty, eli jokaisessa epätyhjässä joukossa J N on pienin alkio. Otetaan käyttöön merkintä

1 Jakajat ja jäännökset. on hyvinjärjestetty, eli jokaisessa epätyhjässä joukossa J N on pienin alkio. Otetaan käyttöön merkintä LUKUTEORIAA 1 Jakajat ja jäännökset Luonnollisten lukujen joukko N = { 0, 1, 2, 3,... } on hyvinjärjestetty, eli jokaisessa epätyhjässä joukossa J N on pienin alkio. Otetaan käyttöön merkintä Z + = {1,

Lisätiedot

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä.

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen

Lisätiedot

MS-A0402 Diskreetin matematiikan perusteet

MS-A0402 Diskreetin matematiikan perusteet MS-A0402 Diskreetin matematiikan perusteet Osa 4: Modulaariaritmetiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Modulaariaritmetiikka Jakoyhtälö Määritelmä 1 Luku

Lisätiedot