[E : F ]=[E : K][K : F ].
|
|
- Laura Pesonen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 ALGEBRA II 35 Lause 4.4 (Astelukulause). Olkoot E/K/Fäärellisiä kuntalaajennuksia. Silloin [E : F ]=[E : K][K : F ]. Todistus. Olkoon {α 1,...,α n } kanta laajennukselle E/K ja {β 1,...,β m } kanta laajennukselle K/F. Silloin {α 1 β 1,...,α n β 1,α 1 β 2,...,α n β 2,...,α n β m } on laajennuksen E/F kanta (Perustele!). Lause 4.5. Jos K/F on äärellinen, niin se on algebrallinen. Todistus. Olkoon n =[K : F ]jaα K. Nyt alkiot 1,α,α 2,...,α n ovat lineaarisesti riippuvat F :n suhteen, joten a 0 +a 1 α+ +a n α n = 0 joillakin a 0,...,a n F,joista jokin a i 0. Lause 4.6. Laajennuksen F (α)/f aste on yhtäsuuri kuin alkion α aste n. Tarkemmin: laajennuksella F (α)/f on kanta {1,α,...,α n 1 }. Todistus. Lauseen 4.2 nojalla jokainen kunnan F (α) alkio voidaan esittää alkioiden 1,α,...,α n 1 F -lineaarisena kombinaationa. Täten väite tulee osoitetuksi kunhan näytämme, että alkiot 1,α,...,α n 1 ovat lineaarisesti riippumattomat kunnan F suhteen. Jos a 0 + a 1 α + + a n 1 α n 1 =0 ja jokin a i 0, niin α on korkeintaan astetta n 1olevanF-kertoimisen polynomin nollakohta mikä on vastoin asteen n minimaalisuutta. Esimerkki 4.5. Osoitetaan, että [Q( 2,i) : Q] = 4. Koska {1, 2} on kanta laajennukselle Q( 2)/Q, niin [Q( 2) : Q] =2. Koskai Q( 2), niin [Q( 2,i): Q( 2)] 2. Toisaalta p(x) :=x 2 +1 Q( 2)[x] jap(i) =0joten[Q( 2,i): Q( 2)] 2. Täten [Q( 2,i):Q( 2)] = 2. Väite seuraa nyt astelukulauseesta Hajoamiskunta. Lause 4.7. Olkoon F kunta ja f(x) F [x], deg f(x) 1. Silloin polynomi f(x) hajoaa lineaarisiin tekijöihin renkaassa K[x], missä K on jokin kunnan F laajennuskunta. Todistus. Olkoon p(x) jokin polynomin f(x) jaoton tekijä renkaassa F [x]. Nyt polynomilla p(x) on nollakohta α jakojäännöskunnassa K := F [x] modp(x), nimittäin
2 36 ALGEBRA II α = x. Siispä pätee implikaatio f(x) =p(x)q(x) h(α) =p(α)q(α) =0. Täten renkaassa K[x] pätee f(x) =(x α)h(x). Valitaan nyt F :n paikalle K, f(x):n paikalle h(x) ja toistetaan eo. prosessia. Lopulta saamme kunnan K F jossa f(x) hajoaa lineaarisiin tekijöihin. Määritelmä 4.6.Olkoon f(x) F [x] jak/f kuntalaajennus. Jos f(x) hajoaa lineaarisiin tekijöihin renkaassa K[x], f(x) =(x α 1 )(x α 2 ) (x α n ), α i K, niin kunta F (α 1,...,α n ) on polynomin f(x) hajoamiskunta kunnan F suhteen. Määritelmä 4.7.Olkoot K/F ja K /F kuntalaajennuksia. Jos on olemassa isomorfismi τ : K K jolle pätee τ(a) =a kaikilla a F, niin τ on kuntien K ja K välinen F -isomorfismi, merkitään K F K. Lause 4.8. Olkoot F (α 1,...,α n ) ja F (β 1,...,β n ) polynomin g(x) F [x] hajoamiskuntia. Silloin F (α 1,...,α n ) ja F (β 1,...,β n ) ovat F -isomorfiset. Tämän tuloksen todistamiseksi tarvitsemme tarvitsemme muutaman aputuloksen. Olkoon τ : F F isomorfismi ja f(x) =f 0 + f 1 x + + f n x n F [x]. Merkitään τf(x) =τ(f 0 )+τ(f 1 )x + + τ(f n )x n F [x]. Lemma 4.2. Kuvaus τ : F [x] F [x],f(x) τf(x) on isomorfismi. Todistus. Harjoitustehtävä. Lemma 4.3. Olkoon g(x) F [x]. Silloin F [x]/(g(x)) F [x]/(τg(x)). Todistus. Merkitään I =(τg(x)) ja tarkastellaan kuvausta ψ : F [x] F [x]/i, f(x) τf(x)+i. Lemmasta 4.2 seuraa, että ψ on homomorfismi. Se on myös surjektio, sillä jos b(x)+i F [x]/i, niin ψ(τ 1 b(x)) = b(x)+i. Osoitetaan, että Ker(ψ) =(g(x)): f(x) Ker(ψ) τf(x) I τg(x) τf(x) g(x) f(x) f(x) (g(x)).
3 ALGEBRA II 37 Lause 4.9. Olkoot α jaottoman polynomin p(x) F [x] nollakohta jossakin kunnan F laajennuksessa, ja olkoon α polynomin τp(x) nollakohta josakin kunnan F laajennuksessa. Silloin kuvaus on isomorfismi. F (α) F (α ), f(α) τf(α ) Todistus. Olkoot I =(p(x)) ja I =(τp(x)). Kuvaukset τ 1 : F [x]/i F (α), f(x)+i f(α), τ 2 : F [x]/i F (α ), h(x)+i h(α ), ovat isomorfismeja sillä I = (m α,f (x)) ja I = (m α,f (x)). Täten kuvaus η := τ 2 ψ τ1 1, missä ψ on Lemman 4.3 isomorfismi, on isomorfismi F (α) F (α ) jolle pätee η(f(α)) = (τ 2 ψ)(f(x)+i) =τ 2 (τf(x)+i )=τf(α ). Seuraus. Olkoot α ja α jaottoman polynomin p(x) F [x] nollakohtia joissakin kunnan F laajennuksissa K ja K. Silloin kuvaus on F -isomorfismi. τ : F (α) F (α ), f(α) f(α ) Todistus. Valitaan Lauseessa 4.9 isomorfismiksi τ identiteettikuvaus id F. Nyt voidaan todistaa hajoamiskunnan yksikäsitteisyys eli Lause 4.8: Olkoon g(α 1 )=g(β 1 ) = 0 missä α 1 K F ja β 1 K F. Nyt p(α 1 )=p(β 1 ), missä p(x) on jokin polynomin g(x)jaotontekijä renkaassa F [x], ja täten Lauseen 4.9 Seurauksen nojalla τ : F (α 1 ) F (β 1 ),f(α 1 ) f(β 1 ) on F -isomorfismi. Jos α 1 = = α n, niin Lauseen 4.9 nojalla välttämättä myös β 1 = = β n. Oletetaan, että α 2 α 1. Tarkastellaan polynomeja h(x) := g(x)/(x α 1 ) F (α 1 )[x] jaτh(x) = g(x)/(x β 1 ) F (β 1 )[x]. Nyt h(α 2 ) = τh(β 2 ) = 0 ja edelleen p 1 (α 2 ) = τp 1 (β 2 ), missä p 1 (x) on jokin polynomin h(x) jaoton tekijä renkaassa F (α 1 )[x]. Täten Lauseen 4.9 nojalla kuvaus F (α 1,α 2 ) F (β 1,β 2 ),f(α 1,α 2 ) f(β 1,β 2 )
4 38 ALGEBRA II on isomorfismi ja selvästi se on myös F -isomorfismi. Toistamalla eo. prosessia saamme lopulta F -isomorfismin F (α 1,...,α n ) F (β 1,...,β n ),f(α 1,...,α n ) f(β 1,...,β n ) Karakteristika, alkukunta. Olkoon K kunta ja tarkastellaan homomorfismia ψ : Z K, n n 1. Jos Ker(ψ) ={0}, niin K:ssa on isomorfinen kopio renkaasta Z ja täten kunnasta Q. JosKer(ψ) {0}, niin Ker(ψ) =(m), missä m on ihanteen Ker(ψ) pienin positiivinen luku. Tällöin ensimmäisen isomorfialauseen nojalla K:ssa on isomorfinen kopio renkaasta Z/(m) =Z m.koskak on kokonaisalue, niin m on alkuluku. Määritelmä 4.8.Olkoon K kunta. Alkuluku p jolle pätee p 1 = 0 on kunnan K karakteristika, merkitään char(k) = p. Joställaista lukua p ei ole olemassa, niin kunnan K karakteristika char(k) = 0. Esimerkki 4.6. char(f p )=p, char(q) =0. Huomautus. Jos char(k) = 0, niin välttämättä K:n kertaluku on ääretön. Käänteinen väite ei päde: esim. rationaalifunktioiden kunnan F 2 (x) kertaluku on ääretön vaikka karakteristika on 2. Määritelmä 4.9. Kunnan K alkukunta on kaikkien K:n alikuntien leikkaus (eli alkukunta on pienin K:n alikunta). Lause Kunnan K alkukunta on { F p, jos char(k) =p, Q, jos char(k) =0. Todistus. Tarkstellaan jälleen homomorfismia ψ : Z K, n n 1. Olkoon L kaikkien K:n alikuntien leikkaus. Nyt 1 L joten Im(ψ) L. Jos siis char(k) =p, niin F p L. Toisaalta L:n määritelmän nojalla L F p. Jos taas char(k) = 0, niin Z L, jakoskal on kunta niin Q L. KoskaL Q, niin väite seuraa.
5 ALGEBRA II Äärelliset kunnat. Merkitään jatkossa symbolilla F q äärellistä kuntaajonka kertaluku on q. Lause Olkoon p = char(f q ). Silloin q = p m jollakin m N. Todistus. Kunnan F q alkukunta on F p.nytlaajennusf q /F p on äärellinen, joten F q = {a 1 α a m α m a i F p }, missä {α 1,...,α m } on jokin laajennuksen F q /F p kanta. Siispä F q = p m. Lemma 4.4. Olkoot α 1,...,α n kokonaisluku. Silloin F q, char(f q )=p, jaolkoont ei-negatiivinen (α α n ) pt = α pt α pt n. Todistus. Harjoitustehtävä. Lause Jokaista alkulukupotenssia q = p m kohti on olemassa äärellinen kunta F q. Todistus. Olkoon F p (α 1,...,α q ) polynomin g(x) :=x q x F p [x] hajoamiskunta. Osoitetaan alikuntakriteerin avulla, että g(x):n nollakohtien joukko S := {α 1,...,α q } on kunta. Koska g(0) = g(1) = 0, niin joukossa S on vähintään kaksi alkiota. Jos α, β S, niin g(α + β) =(α + β) q (α + β) =α q α +(β q β) =g(α)+g(β) =0. Täten α β S. Lisäksi g(αβ) =(αβ) q αβ = α q β q αβ = αβ αβ =0, ja täten αβ S. Siispä S on kunta. Koska polynomin g(x) derivaatta g (x) = qx q 1 1= 1, niin syt(g(x),g (x)) = 1. Täten g(x):n nollakohdat α 1,...,α q ovat pareittain erisuuret ja niinpä S = q. Selvitetään seuraavaksi kunnan F q yksikköryhmän F q rakenne. Lemma 4.5. Olkoon n N. Silloin φ(d) =n, missä φ(d) on Eulerin funktio eli φ(d) = Z d. d n
6 40 ALGEBRA II Todistus. Ryhmän (Z n, +) jokaisen alkion kertaluku on luvun n tekijä. Koska (Z n, +) on syklinen, niin jokaista tekijää d n kohti on olemassa täsmälleen φ(d) alkiota joiden kertaluku on d. Lause Olkoon K kunta, äärellinen tai ääretön. Silloin jokainen ryhmän K äärellinen aliryhmä on syklinen. Erityisesti siis F q on syklinen. Todistus. Olkoon G K ja G = n<. Olkoon d n ja olkoon O d niiden G:n alkioiden joukko joiden kertaluku on d. OlkoonS d = {a G a d =1}. NytS d G ja S d d. Jos siis g O d, niin S d =<g>. Täten O d <g>ja näin ollen O d = φ(d). Jos O d =, niin O d <φ(d). Siispä n = d n O d d n φ(d) =n, ja näin ollen O d = φ(d) kaikilla d n. Erityisesti O n = φ(n) 1. Määritelmä Ryhmän F q generoija on kunnan F q primitiivialkio. Esimerkki 4.7. Tarkastellaan äärellistä kuntaa F 16 = {a 0 + a 1 α + a 2 α 2 + a 3 α 3 α 4 =1+α, a i F 2 }. Nyt F 16 = 15, joten ord(α) =3, 5 tai 15. Koska α3 1jaα 5 = α 2 + α 1, niin α on eräs kunnan F 16 primitiivialkio. Muut primitiivalkiot ovat α i, missä i = 2, 4, 7, 8, 11, 13, 14. Tämän kunnan nk. Zechin logaritmitalukko tai indeksitaulukko primitiivialkion α suhteen on ind α(β) β missä esimerkiksi α 5 = β = 0110 tarkoittaa alkiota α +1 α 2 +0 α 3. Lause Laajennus F q m/f q on yksinkertainen kaikilla m N. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt <α> F q (α) F q m. Koska 0 F q (α), niin q m F q (α) q m.täten F q m = F q (α). Seuraus. Olkoon F q mikä tahansa äärellinen kunta. Silloin on olemassa jaoton astetta m oleva polynomi F q [x] kaikilla m N. Todistus. Olkoon F q m m α,fq (x). = F q (α). Väitteen jaottomaksi polynomiksi voidaan valita
ei ole muita välikuntia.
ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten
koska 2 toteuttaa rationaalikertoimisen yhtälön x 2 2 = 0. Laajennuskunnan
4. Äärellisten kuntien yleisiä ominaisuuksia 4.1. Laajenuskunnat. Tarkastellaan aluksi yleistä kuntaparia F ja K, missä F on kunnan K alikunta. Tällöin sanotaan, että kunta K on kunnan F laajennuskunta
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi
7. Olemassaolo ja yksikäsitteisyys Galois n kunta GF(q) = F q, jossa on q alkiota, määriteltiin jäännösluokkarenkaaksi Z p [x]/(m), missä m on polynomirenkaan Z p [x] jaoton polynomi (ks. määritelmä 3.19).
Äärelliset kunnat ja polynomien jako alkutekijöihin
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Kananoja Äärelliset kunnat ja polynomien jako alkutekijöihin Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Syyskuu 2007 Tampereen yliopisto
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi
14. Juurikunnat Määritelmä ja olemassaolo.
14. Juurikunnat Mielivaltaisella polynomilla ei välttämättä ole juuria tarkasteltavassa kunnassa. Tässä luvussa tutkitaan sellaisia algebrallisia laajennoksia, jotka saadaan lisäämällä polynomeille juuria.
g : R R, g(a) = g i a i. Alkio g(a) R on polynomin arvo pisteessä a. Jos g(a) = 0, niin a on polynomin g(x) nollakohta.
ALGEBRA II 27 on homomorfismi. Ensinnäkin G(a + b) a + b G(a)+G(b) (f), G(ab) ab G(a)G(b) G(a) G(b) (f), ja koska kongruenssien vasempien ja oikeiden puolten asteet ovat pienempiä kuin f:n aste, niin homomorfiaehdot
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos Koodausteoria 10 op Kontaktiopetusta 50 h, 26.5. - 26.6. ma 10-14, ti 10-13, to 10-13 Aloitusviikolla poikkeuksellisesti ke 10-13 torstain
Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.
18 ALGEBRA II missä r n (x) =syt(f(x),g(x)). Lause 2.7. Olkoot f(x),g(x) K[x]. Silloin syt(f(x),g(x)) = a(x)f(x)+b(x)g(x), joillakin a(x),b(x) K[x]. Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset
15. Laajennosten väliset homomorfismit
15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit niin sanotut automorfismit auttavat vastaavasti
TOOLS. Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO TOOLS 1 / 28
TOOLS Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO 2018 TOOLS 1 / 28 Merkintöjä ja algebrallisia rakenteita Lukujoukkoja N = {0, 1, 2,..., GOOGOL 10,...} = {ei-negatiiviset kokonaisluvut}. TOOLS
15. Laajennosten väliset homomorfismit
15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit eli niin sanotut automorfismit auttavat vastaavasti
802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013
802355A Renkaat, kunnat ja polynomit Luentorunko Syksy 2013 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä, Antti Torvikoski, Topi Törmä Sisältö 1 Kertausta kurssilta Lukuteoria ja ryhmät
on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
Toispuoleiset raja-arvot
Toispuoleiset raja-arvot Määritelmä Funktiolla f on oikeanpuoleinen raja-arvo a R pisteessä x 0 mikäli kaikilla ɛ > 0 löytyy sellainen δ > 0 että f (x) a < ɛ aina kun x 0 < x < x 0 + δ; ja vasemmanpuoleinen
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Tommi Kuusisto
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Tommi Kuusisto Äärellisistä kunnista Matematiikan ja tilastotieteen laitos Matematiikka Huhtikuu 2008 Tampereen yliopisto Matematiikan, tilastotieteen ja filosofian
4. Ryhmien sisäinen rakenne
4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.
Algebra I, harjoitus 8,
Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
ja jäännösluokkien joukkoa
3. Polynomien jäännösluokkarenkaat Olkoon F kunta, ja olkoon m F[x]. Polynomeille f, g F [x] määritellään kongruenssi(-relaatio) asettamalla g f mod m : m g f g = f + m h jollekin h F [x]. Kongruenssi
Shorin algoritmin matematiikkaa Edvard Fagerholm
Edvard Fagerholm 1 Määritelmiä Määritelmä 1 Ryhmä G on syklinen, jos a G s.e. G = a. Määritelmä 2 Olkoon G ryhmä. Tällöin alkion a G kertaluku ord(a) on pienin luku n N \ {0}, jolla a n = 1. Jos lukua
2 Renkaat ja kunnat. toteutuvat: 1. pari (K, +) on Abelin ryhmä, jonka neutraalialkio on 0 K,
1 Ryhmät Olkoot S on joukko ja X S. Jos kuvaus : S S S, (x, y) x y toteuttaa ehdon x y X kaikilla x, y X, niin sanotaan, että binäärinen operaatio on suljettu joukon X suhteen. Määritelmä 1. Olkoot G joukko
Algebra 1, harjoitus 9, h = xkx 1 xhx 1. a) Käytetään molemmissa tapauksissa isomorfialausetta. Tarkastellaan kuvauksia
Algebra 1, harjoitus 9, 11.-12.11.2014. 1. Olkoon G ryhmä ja H G normaali aliryhmä. Tiedetään, että tällöin xhx 1 H kaikilla x G. Osoita, että itse asiassa xhx 1 = H kaikilla x G. Ratkaisu: Yritetään osoittaa,
1 Algebralliset perusteet
1 Algebralliset perusteet 1.1 Renkaat Tämän luvun jälkeen opiskelijoiden odotetaan muistavan, mitä ovat renkaat, vaihdannaiset renkaat, alirenkaat, homomorfismit, ideaalit, tekijärenkaat, maksimaaliset
k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0
1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota
Äärellisesti generoitujen Abelin ryhmien peruslause
Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.
13.3. Transkendenttisuudesta. 14. Juurikunnat Määritelmä ja olemassaolo.
13.3. Transkendenttisuudesta. Luvun todistamiseksi algebralliseksi riittää löytää polynomi, jonka juuri kyseinen luku on. Transkendenttisuuden todistaminen on sen sijaan työläämpää. Jotkut tapaukset ovat
d Z + 17 Viimeksi muutettu
5. Diffien ja Hellmanin avaintenvaihto Miten on mahdollista välittää salatun viestin avaamiseen tarkoitettu avain Internetin kaltaisen avoimen liikennöintiväylän kautta? Kuka tahansahan voi (ainakin periaatteessa)
Algebran ja lukuteorian harjoitustehtäviä. 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen
Algebran ja lukuteorian harjoitustehtäviä Versio 1.0 (27.1.2006) Turun yliopisto Lukuteoria 1. Tutki, ovatko seuraavat relaatiot ekvivalenssirelaatioita joukon N kaikkien osajoukkojen joukolla: a) C D
Primitiiviset juuret: teoriaa ja sovelluksia
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Outi Sutinen Primitiiviset juuret: teoriaa ja sovelluksia Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Huhtikuu 2006 Tampereen yliopisto Matematiikan,
1. Hiukan lineaarialgebraa
ÁÎ ÃÓ Ø ÐÓ ³Ò Ø ÓÖ 1. Hiukan lineaarialgebraa 1.1. Määritelmä. Olkoon K = (K, +, ) kunta (ns. kerroinkunta). Joukko V varustettuna yhteenlaskulla +:V V V ja skalaarikerronnalla :K V V on K- vektoriavaruus,
8. Avoimen kuvauksen lause
116 FUNKTIONAALIANALYYSIN PERUSKURSSI 8. Avoimen kuvauksen lause Palautamme aluksi mieleen Topologian kursseilta ehkä tutut perusasiat yleisestä avoimen kuvauksen käsitteestä. Määrittelemme ensin avoimen
H = : a, b C M. joten jokainen A H {0} on kääntyvä matriisi. Itse asiassa kaikki nollasta poikkeavat alkiot ovat yksiköitä, koska. a b.
10. Kunnat ja kokonaisalueet Määritelmä 10.1. Olkoon K rengas, jossa on ainakin kaksi alkiota. Jos kaikki renkaan K nollasta poikkeavat alkiot ovat yksiköitä, niin K on jakorengas. Kommutatiivinen jakorengas
Rollen lause polynomeille
Rollen lause polynomeille LuK-tutkielma Anna-Helena Hietamäki 7193766 Matemaattisten tieteiden tutkinto-ohjelma Oulun yliopisto Kevät 015 Sisältö 1 Johdanto 1.1 Rollen lause analyysissä.......................
(x + I) + (y + I) = (x + y)+i. (x + I)(y + I) =xy + I. kaikille x, y R.
11. Ideaalit ja tekijärenkaat Rengashomomorfismi φ: R R on erityisesti ryhmähomomorfismi φ: (R, +) (R, +) additiivisten ryhmien välillä. Rengashomomorfismin ydin määritellään tämän ryhmähomomorfismin φ
Polynomien suurin yhteinen tekijä ja kongruenssi
Polynomien suurin yhteinen tekijä ja kongruenssi Pro gradu -tutkielma Outi Aksela 2117470 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Renkaat 3 1.1 Rengas...............................
Seurauksia. Seuraus. Seuraus. Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa
Seurauksia Seuraus Jos asteen n polynomilla P on n erisuurta nollakohtaa x 1, x 2,..., x n, niin P on muotoa P(x) = a n (x x 1 )(x x 2 )... (x x n ). Seuraus Astetta n olevalla polynomilla voi olla enintään
Esko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
ALGEBRA. Tauno Metsänkylä. K f. id K
ALGEBRA Tauno Metsänkylä K f τ K f τ 1 K(α 1 ) K(α 1 ) K id K K SISÄLTÖ 1 Sisältö 1 MODULI 4 1.1 Moduli; alimoduli................................ 4 1.2 Modulihomomorfia; tekijämoduli.......................
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta
Viidennen asteen yhtälön ratkaisukaavan olemassaolon mahdottomuus Galois n teorian pohjalta Teppo Lahti Matematiikan pro gradu Jyväskylän yliopisto Matematiikan ja tilastotieteen laitos Kevät 2014 Tiivistelmä
a b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
Algebra II. Syksy 2004 Pentti Haukkanen
Algebra II Syksy 2004 Pentti Haukkanen 1 Sisällys 1 Ryhmäteoriaa 3 1.1 Ryhmän määritelmä.... 3 1.2 Aliryhmä... 3 1.3 Sivuluokat...... 4 1.4 Sykliset ryhmät... 7 1.5 Ryhmäisomorfismi..... 11 2 Polynomeista
802355A Algebralliset rakenteet Luentorunko Syksy Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen
802355A Algebralliset rakenteet Luentorunko Syksy 2016 Markku Niemenmaa Kari Myllylä Topi Törmä Marko Leinonen Sisältö 1 Kertausta kurssilta Algebran perusteet 3 2 Renkaat 8 2.1 Renkaiden teoriaa.........................
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
LUKUTEORIA A. Harjoitustehtäviä, kevät 2013. (c) Osoita, että jos. niin. a c ja b c ja a b, niin. niin. (e) Osoita, että
LUKUTEORIA A Harjoitustehtäviä, kevät 2013 1. Olkoot a, b, c Z, p P ja k, n Z +. (a) Osoita, että jos niin Osoita, että jos niin (c) Osoita, että jos niin (d) Osoita, että (e) Osoita, että a bc ja a c,
Mitään muita operaatioita symbolille ei ole määritelty! < a kaikilla kokonaisluvuilla a, + a = kaikilla kokonaisluvuilla a.
Polynomit Tarkastelemme polynomirenkaiden teoriaa ja polynomiyhtälöiden ratkaisemista. Algebrassa on tapana pitää erillään polynomin ja polynomifunktion käsitteet. Polynomit Tarkastelemme polynomirenkaiden
rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.
9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen
R 1 = Q 2 R 2 + R 3,. (2.1) R l 2 = Q l 1 R l 1 + R l,
2. Laajennettu Eukleideen algoritmi Määritelmä 2.1. Olkoot F kunta ja A, B, C, D F [x]. Sanotaan, että C jakaa A:n (tai C on A:n jakaja), jos on olemassa K F [x] siten, että A = K C; tällöin merkitään
a ord 13 (a)
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 4, MALLIRATKAISUT Tehtävä 1. Etsi asteet ord p (a) luvuille a 1, 2,..., p 1 kun p = 13 ja kun p = 17. (ii) Mitkä jäännösluokat ovat primitiivisiä juuria (mod
Hieman joukko-oppia. A X(A a A b A a b).
Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei
Proäärelliset ryhmät ja kuntalaajennukset
Proäärelliset ryhmät ja kuntalaajennukset Matti Åstrand Helsinki 25.5.2009 Pro gradu -tutkielma HELSINGIN YLIOPISTO Matematiikan ja tilastotieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY
2 1/ /2 ; (a) Todista, että deg P (x)q(x) = deg P (x) + deg Q(x). (b) Osoita, että jos nolla-polynomille pätisi. deg 0(x) Z, Z 10 ; Z 10 [x];
802656S ALGEBRALLISET LUVUT Harjoituksia 2017 1. Näytä, että (a) (b) (c) (d) (e) 2 1/2, 3 1/2, 2 1/3 ; 2 1/2 + 3 1/2 ; 2 1/3 + 3 1/2 ; e iπ/m, m Z \ {0}; sin(π/m), cos(π/m), tan(π/m), m Z \ {0}; ovat algebrallisia
Esko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
802656S ALGEBRALLISET LUVUT OSA II ALGEBRAIC NUMBERS PART II
802656S ALGEBRALLISET LUVUT OSA II ALGEBRAIC NUMBERS PART II Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2017 Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN 802656S ALGEBRALLISET YLIOPISTO LUVUT
Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)
Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5 BCH-, RS- ja Goppa-koodit Topi Törmä Matemaattisten tieteiden laitos 2 / 15 5.1 BCH-koodien määrittely Olkoon jälleen F = F q, syt(n,
16. Valikoituja aiheita
16. Valikoituja aiheita Materiaalin viimeisessä luvussa käydään läpi väliinjääneitä kuntalaajennoksiin liittyviä tuloksia ja tutustutaan vielä hieman tarkemmin Galois n teoriaan. 16.1. Isomorfismien jatkaminen.
4 Abelin ryhmät. 4.1 Suorat tulot ja summat
4 Abelin ryhmät Ensimmäisellä ryhmäteorian kurssilla käytiin läpi lähinnä syklisiä ryhmiä. Tällä kurssilla keskitymme epäkommutatiivisiin esimerkkeihin. On kuitenkin niin, että äärellisesti viritettyjen
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 5.2 BCH-koodin dekoodaus Tarkastellaan t virhettä korjaavaa n-pituista BCH-koodia. Olkoon α primitiivinen n:s ykkösen juuri, c = c(x)
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle
Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle Olkoon X sisätuloavaruus ja Y X äärellisulotteinen aliavaruus. Tällöin on olemassa lineaarisesti riippumattomat vektorit y 1, y 2,..., yn, jotka
Algebran jatkokurssin demo 1,
Algebran jatkokurssin demo 1, 23.1.2014 0. Tätä nollatehtävää ei käsitellä demoissa, vaan jätetään jokaisen oman harrastuneisuuden varaan käydä läpi nämä kuviot, jotka ovat lähestulkoon identtisiä LAG:n
800333A Algebra I Luentorunko Kevät Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä
800333A Algebra I Luentorunko Kevät 2010 Työryhmä: Markku Niemenmaa, Kari Myllylä, Juha-Matti Tirilä Sisältö 1 Lukuteorian alkeita 3 1.1 Kongruenssiin liittyviä perustuloksia.............. 7 2 Ekvivalenssirelaatio
Algebrallisista käyristä
Tampereen yliopisto Pro gradu -tutkielma Heidi Kalliojärvi Algebrallisista käyristä Matematiikan ja tilastotieteen laitos Matematiikka Elokuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos
kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
802320A LINEAARIALGEBRA OSA I
802320A LINEAARIALGEBRA OSA I Tapani Matala-aho MATEMATIIKKA/LUTK/OULUN YLIOPISTO SYKSY 2016 LINEAARIALGEBRA 1 / 72 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 2018 Harjoitus 3 Ratkaisuehdotuksia.
HY, MTO / Matemaattisten tieteiden kandiohjelma Todennäköisyyslaskenta IIa, syksy 8 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä
HN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,
HY / Matematiikan ja tilastotieteen laitos Todennäköisyyslaskenta II, syksy 07 Harjoitus Ratkaisuehdotuksia Tehtäväsarja I. Mitkä seuraavista funktioista F, F, F ja F 4 ovat kertymäfunktioita? Mitkä niistä
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) 28.3.-1.4.2011 OT 1. a) Osoita, että rengas R = {[0] 10, [2] 10, [4] 10, [6] 10, [8] 10 } on kokonaisalue. Mikä
Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.
Tehtävä 1 Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja. 1 Jos 1 < y < 3, niin kaikilla x pätee x y x 1. 2 Jos x 1 < 2 ja y 1 < 3, niin x y
{I n } < { I n,i n } < GL n (Q) < GL n (R) < GL n (C) kaikilla n 2 ja
5. Aliryhmät Luvun 4 esimerkeissä esiintyy usein ryhmä (G, ) ja jokin vakaa osajoukko B G siten, että (B, B ) on ryhmä. Määrittelemme seuraavassa käsitteitä, jotka auttavat tällaisten tilanteiden käsittelyssä.
Avainsanat Nyckelord Keywords Nullstellensatz, Hilbertin nollajoukkolause, algebrallinen geometria
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen Tekijä Författare Author Sampo
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT
JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT Tehtävä 1. (i) Olkoot n, d 1 ja d n. Osoita, että (k, n) d jos ja vain jos k ad, missä (a, n/d) 1. (ii) Osoita, että jos (m j, m k ) 1 kun
802645S LUKUTEORIA A (5op) Tapani Matala-aho
802645S LUKUTEORIA A (5op) Tapani Matala-aho 25. lokakuuta 2015 Sisältö 1 Johdanto 3 2 Valittuja kaavoja 4 3 Valittuja jaollisuuden tuloksia 4 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat
Renkaat ja modulit. Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit
Renkaat ja modulit Tässä osassa käsiteltävät renkaat ovat vaihdannaisia, ellei toisin mainita. 6. Ideaalit Tekijärenkaassa nollan ekvivalenssiluokka on alkuperäisen renkaan ideaali. Ideaalin käsitteen
x j x k Tällöin L j (x k ) = 0, kun k j, ja L j (x j ) = 1. Alkuperäiselle interpolaatio-ongelmalle saadaan nyt ratkaisu
2 Interpolointi Olkoon annettuna n+1 eri pistettä x 0, x 1, x n R ja n+1 lukua y 0, y 1,, y n Interpoloinnissa etsitään funktiota P, joka annetuissa pisteissä x 0,, x n saa annetut arvot y 0,, y n, (21)
pdfmark=/pages, Raw=/Rotate 90 3 Valittuja jaollisuuden tuloksia Renkaan yksikköryhmä Eräs kongruenssiryhmä 0-17
pdfmark=/pages, Raw=/Rotate 90 Sisältö 1 Johdanto 0-3 2 Valittuja kaavoja 0-5 3 Valittuja jaollisuuden tuloksia 0-7 4 Renkaan yksikköryhmä 0-9 5 Eulerin funktio 0-11 6 Euler-Fermat 0-16 7 Eräs kongruenssiryhmä
Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto
Tehtävä 3 : 1 Olkoon G mielivaltainen epätyhjä verkko. Erityisesti siltä ei vaadita äärellisyyttä. Polut ovat verkon G koosta riippumatta määritelmän mukaan aina äärellisiä, joten kahden solmun välisen
Galois'n teoria polynomien ratkeavuudesta. Wille Lehtomäki
Galois'n teoria polynomien ratkeavuudesta Wille Lehtomäki HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Matemaattis-luonnontieteellinen
1 Kertausta algebran kurssilta 1. 4 Kuntalaajennukset Kuntalaajennuksen aste Harppi-viivoitin-konstruktiot Hajoituskunnat 88
Sisältö 1 Kertausta algebran kurssilta 1 2 Lisää polynomeista 10 3 Kertausta Q:n konstruktiosta; jakokunta 20 4 Kuntalaajennukset 27 5 Kuntalaajennuksen aste 49 6 Harppi-viivoitin-konstruktiot 64 7 Galois
802645S LUKUTEORIA A (5op) Tapani Matala-aho
802645S LUKUTEORIA A (5op) Tapani Matala-aho 27. helmikuuta 2013 Sisältö 1 Johdanto 3 2 Merkintöjä 4 3 Valittuja jaollisuuden tuloksia 5 4 Renkaan yksikköryhmä 6 5 Eulerin funktio 7 6 Euler-Fermat 10 7
801698S KRYPTOGRAFIA. Tapani Matala-aho
801698S KRYPTOGRAFIA Tapani Matala-aho 6. tammikuuta 2015 Sisältö 1 Yleistä 2 2 Työkaluja 3 2.1 Asymptoottisesti sama........................ 3 2.2 ISO OO................................ 4 3 Kongruenssi
Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang Matematiikan yksikkö Oulun yliopisto 2016
Lineaariset ryhmät Pro gradu -tutkielma Miia Lillstrang 2187044 Matematiikan yksikkö Oulun yliopisto 2016 Sisältö Johdanto 2 1 Esitietoja 3 1.1 Ryhmät.............................. 3 1.1.1 Ryhmä ja aliryhmä....................
= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.
Jaetaan ryhmä G = Z 17 n H = 4 sivuluokkiin. Ratkaisu: Koska 17 on alkuluku, #G = 16, alkiona jäännösluokat a, a = 1, 2,..., 16. Määrätään ensin n H alkiot: H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4
Reedin ja Solomonin koodit Katariina Huttunen
Pro Gradu Reedin ja Solomonin koodit Katariina Huttunen Jyväskylän yliopisto Matematiikan laitos Lokakuu 2016 Tiivistelmä Huttunen Katariina, Reedin ja Solomonin koodit, matematiikan pro gradututkielma,
1 Johdanto Algebralliset luvut Perusteita Renkaat ja kunnat Kokonaisalue, Integral Domain...
Sisältö 1 Johdanto 0-4 1.1 Algebralliset luvut............... 0-6 2 Perusteita 0-9 3 Renkaat ja kunnat 0-11 3.1 Kokonaisalue, Integral Domain......... 0-12 3.2 Kunta, Field.................. 0-13 4 Jaollisuus
MAT Algebra I (s) periodeilla IV ja V/2009. Esko Turunen
MAT-41150 Algebra I (s) periodeilla IV ja V/2009. Esko Turunen Tämä tiedosto sisältää kurssin kaikki laskuharjoitukset. viikottain uusia tehtäviä. Tiedostoon lisätään To 05.02.09 pidetyt harjoitukset.
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Liisa Ilonen Primitiiviset juuret Matematiikan ja tilastotieteen laitos Matematiikka Joulukuu 2009 Tampereen yliopisto Matematiikan ja tilastotieteen laitos ILONEN,
1 Johdanto Algebralliset luvut Perusteita 5. 3 Renkaat ja kunnat Kokonaisalue, Integral Domain Kunta, Field...
Sisältö 1 Johdanto 3 1.1 Algebralliset luvut.......................... 4 2 Perusteita 5 3 Renkaat ja kunnat 6 3.1 Kokonaisalue, Integral Domain................... 7 3.2 Kunta, Field.............................
Harjoitus Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia:
Differentiaaliyhtälöt, Kesä 216 Harjoitus 2 1. Etsi seuraavien autonomisten yhtälöiden kriittiset pisteet ja tutki niiden stabiliteettia: (a) y = (2 y) 3, (b) y = (y 1) 2, (c) y = 2y y 2. 2. Etsi seuraavien
verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan
Funktioiden approksimointi ja interpolointi
Funktioiden approksimointi ja interpolointi Keijo Ruotsalainen Division of Mathematics interpolaatio-ongelma 8 Eksponenttifunktion exp(x) interpolointi 3.5 Funktion e^{0.25x} \sin(x) interpolointi 7 3