5.1. Reaalifunktioiden määräämätön integraali

Koko: px
Aloita esitys sivulta:

Download "5.1. Reaalifunktioiden määräämätön integraali"

Transkriptio

1 MAT-3430 Lj mtemtiikk 3 TTY 00 Risto Silvennoinen Luku 5. Integrli 5.. Relifunktioien määräämätön integrli Integrlifunktio Derivoinnin käänteistoimituksen on vstt kysymykseen "Mikä on se funktio, jonk erivtt on f?" Kosk vkion erivtt = 0, hvitn heti, että vstus ei voi oll yksikäsitteinen. Funktion f : S integrlifunktio (määräämätön integrli, primitiivi, ntierivtt) on funktio F, jonk erivtt on f: F ( ) = f( ), jollkin välillä I funktion f määrittelyjoukoss S. Jos F on funktion f integrlifunktio, niin myös F() + C on sitä kikill vkioill C (integroimisvkio). Integrlifunktiolle käytetään yleisesti merkintää F( ) = f( ), joss integrlimerkki tulee tyylitellystä S-kirjimest snst summ. Tämä yhteys selittyy tuonnempn ns. määrätyn integrlin kutt. Smoin symolin sisältö trkentuu silloin, nyt se voin ktso lähinnä merkinnäksi, jok on joskus hyöyllinen, esim. sijoittmismenettelyssä.

2 Seurvt perussäännöt oletetn tunnetuksi lukion kursseilt ti muilt ikisemmilt opinnoilt. (Ne on helppo myös toist erivoimissääntöjen pohjlt.) Merkintä F trkoitt funktion f integrlifunktiot: F( ) = f( ). f g f g (linerisuus). ( ) + ( ) = ( ) + ( ) f g F g F g (osittisintegrointi). ( ) ( ) = ( ) ( ) ( ) ( ) f tt= f( g ) g ( ), t= g( ) (sijoitus) 3. ( ) ( ) ( ) ( ) = ( ( )) 4. ( ) f g g F g f + = F( + ) 4. ( ) 4. ( ) ( ) f = ln f f ( ) 5. f ( ) priton ( ) 5. f ( ) prillinen ( ) F prillinen F priton (jos vkio C on vlittu siten, että ( ) F 0 = 0)

3 3 Alkeisfunktioien integrointikvoist tärkeimpiä ovt seurvt. Ne ovt kikki vstvien erivoimissääntöjen "käänteiskvoj". (Integrleiss oikelle puolelle in lisättävä integroimisvkio C on jätetty kvoiss merkitsemättä.) Derivointi Integrointi = 6. = ( ) 6. ( ), ln = 7. = ln 8. e e = 8. e= e 9. cos = sin 9. sin = cos 0. sin = cos 0. cos = sin. cot = sin. sin cot =. tn = cos. cos tn = 3. rctn = + 3. rctn + = rcsin = rsinh = = rcsin = rsinh + 6. cosh = sinh 6. sinh = cosh 7. sinh = cosh 7. cosh = sinh

4 Vrsinisi integroimistekniikkoj ei nykyisin symolisten ohjelmistojen (Mple, Mtl Symolic Mthemtics Toolo, Mthemtic, MthC, ) stvuuen tki enää hrjoitell rutiiniksi sti. Ohjelmistot eivät in kuitenkn selviä kikist tilnteist ilmn pu, joten perustpukset on syytä tunte. Ohess on lueteltu tärkeimmät perusmenetelmät. 4

5 5 Rtionlifunktioien integrointi Rtionlifunktiot ovt polynomien osmääriä j niillä on yhteyksiä moniin teknisiin sovelluksiin, mm. siirtofunktioien j integrlimuunnosten kutt. Jokinen rtionlifunktio on integroitviss j integrlifunktio esitettävissä lkeisfunktioien vull ("suljetuss muooss"). (Näin ei ole sinlit yleisesti funktioille. On pljon funktioit, joien integrlej ei voi esittää lusekkein yksinkertisimmist funktioist. Tällisi ovt mm. useimmt fysiikn "erikoisfunktiot", kuten Besselin funktiot.) Rtionlifunktio f( ) = ( ) Q ( ) missä j Q ovt polynomej, voin jk muotoon f( ) = K( ) + R( ) Q ( ) missä K() on polynomi j rtionlifunktion R()/Q() osoittjn olevn polynomin R() ste on lempi kuin nimittäjän Q() = + + Esim., mikä nähään käsin lskien esimerkiksi jkokulm käyttäen: ( + 6 ) ( + 3) + 8

6 6 Oletmme jtkoss, että näin on trvittess tehty, j siis polynomin R( ) ste on pienempi kuin Q:n ( ) eli eg R( ) < eg Q( ). R( ) Tällöin on hjotettviss Q:n tekijöien suhteen Q ( ) osmurtokehitelmäksi. (prtil frctions) olynomi Q( ) voin jk relisiin tekijöihin, joien steluku tyyliin m n ( ) = ( ) ( )...( + + ) ( + + )..., (, c, ) Q C r s c < < missä rs,, ovt kertluku m, n olevi relisi juuri, j toisen steen tekijät jottomi, eli vstvt kompleksijuuriprej. Silloin osmurtokehitelmän yleinen muoto on p q ( ) ( ) ( r) ( ) R R R R = + m Q r + + m + r Esim. S S S s ( s) ( s) A + B A p+ Bp p n n + + ( ) ( ) C + + D C q + Dq + + q +, + c+ + c+ ( ) A B C+ D = + + = + + ( + )( + ) ( + ) + ( + )( ) + B( + ) + ( C + D)( + ) ( + ) ( + ) A = A + C = 3 ( ) + ( A + B + C + D) + ( A + C + D) + ( A + B + D) ( + ) ( + ) =

7 7 A + C = 0, A + B + C + D = 0, A + C + D = 0, A + B + D = A = B = C =, D = 0. = ( )( ) ( ) ( ) ( ) Osmurtokehitelmässä olevt integrlit voin lske seurvsti: 8. A ( ) n Aln, n= = A n, n ( n )( ) 9. Ct n ( t + ) t ( ) C ln t +, n= = C n, n ( n )( t + ) 0... D D t rctn t = I n ( t + ) = I D n t lsketn rekursiivisesti: ( t + ) Dt n = + I n t n ( + ) n+ n A+ B n ( ) ( + + ) n ( n ) < plutetn eellisiin täyentämällä nimittäjässä olev toisen steen polynomi neliöksi.

8 8 Irrtionlifunktioien integrointi Käsittelemme lyhyesti vin eräitä erityistpuksi. Jos funktio on rtionlinen luseke R juurilusekkeest, kyseisen juurilusekkeen sijoitus voi joht tulokseen. 3. R, n + n, sijoitus t= + n, = t c n + c + ct rtionlifunktioksi muuttujn t suhteen. muunt integrlin Neliöksi täyentäminen 4. ( 0) + + c c c t= + johtvt funktioihin + + = + + j sijoitus 4 rcsin ti logritmi vkion etumerkistä riippuen kvojen 4 j 5 mukisesti. Sijoittmll sopiv trigonometrinen funktio voin neliöjuurest päästä eroon: R = sint, =, = cost 5. (, ) R t = tnt, =, + = cos t 6. (, + ) Vstvsti merkeistä riippuen voin hyöyntää hyperolisi funktioit sijoituksin: R = cosht, = sinhtt, = sinht 7. (, ) cos t

9 9 Eksponentti- j logritmifunktiot integroituvt myös joskus sopivll sijoituksell ti osittisintegroinnill. t Sijoitus e = t, = ln t, = t plutt rtionlifunktion integroinniksi. 8. R ( e ) Rtionlifunktio lusekkeist sin j cos plutuu sijoituksell rtionlifunktion integroinniksi 9. ( cos,sin ) R t t t tn = t, sin =, cos =, = + t + t + t Tehtäviä Lske oheisten funktioien integrlit:. sin. e 3. /( +) 4. /( 4 +) 5. cos 6. ln 7. rctn 8. ( )

10 Rtkisuj. sin = sin t t t (sij. = t, ( )=( ½ )=½ -½ =t = ½ t ) = t sint t (ositt. int. u=t, v'=sint, u'=, v=-cost) = (-tcost + cost t) = -t cost + sint = - cos + sin + C.. e = / e = / e + C 3. /( +) = ½ /( +) = ½ ln( +) + C 4. /( 4 +) = ½/(t +) t (sij. =t, = t, = ½t) =½rctn(t) = ½rctn( ) + C 5. cos = sin - sin (ositt. int. u=, v'=cos, u'=, v=sin ) = sin +cos + C 6. ln = ln -/ (ositt. int. u=ln, v'=, u'=/, v= ) = ln - + C 7. rctn = rctn -/+ ) (ositt. int. u=rctn, v'=, u'=/(+ ), v= ) = rctn -½ln(+ ) + C (Teht. 3)

11 8. I =/(( -)) = (A/ + B/(+) + C/(-)) /((+)(-)) = (A/ + B/(+) + C/(-) = A( -) +B(-) + C(+) =(A+B+C) + (-B+C) -A A=-, B=C=½ I= (-/ + ½/(+) + ½/(-)) = -ln +½ln + +½ln - +C 9. I = ( -3+3)/( 3 - +) ( -3+3)/( 3 - +) = ( -3+3)/((-) ) = A/ +B/(-) + C/(-) -3+3 = A(-) + B + C(-) -3+3 = (A+C) + (-A+B-C) +A A+C=, -A+B-C=-3, A=3 A=3, B=, C=- I=(3/ + /(-) - /(-)) = 3 ln -/(-) -ln - +C 0. I = (+)/( -+) (nimittäjä joton) = ½(-)/( -+) + 3//( -+) = I + I I = ½ ln( -+) I = 3//((-½) +3/4) (nimittäjä täyennettiin neliöksi) = (3/) (4/3) (muunnettiin rctn mielessä) ½ + 3/ = 3/ /(t +) t, tehtiin sijoitus t=(-½)/( 3/), t=/( 3/) = 3 rctn t I=I +I = ½ ln ( ½ -+) + 3 rctn( 3/ + C

12 5.. Relifunktioien määrätty integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätystä integrlist, jok on läheistä suku summmiselle. Yhteys erivttn on sitten perustv ltu olev tulos, jot snotnkin ifferentili- j integrlilskennn ("nlyysin") perusluseeksi. Tästä eteenpäin trkoitmme termillä "integrli" in määrättyä integrli, ellei toisin nimenomn snot. Integrlin esiintyminen liittyy usein kumultiivisiin ilmiöihin. Esimerkiksi, jos yhen muuttujn funktio kuv nopeutt v j ik etenee hetkestä t i välin Δt i, niin v(t i ) Δt i kertoo ikvälillä Δt i eetyn mtkn, likimin tosin, kosk v voi muuttu välillä Δt i. Kun jko ik-kselill tihennetään j mtkplset summtn yhteen, tulln kuljetun kokonismtkn likirvoon. Trkstelln si geometrisesti. Jos positiivisen jtkuvn rjoitetun funktion f() kuvjn j -kselin välisen lueen pint-l hlutn määrittää välillä [,], niin voin käyttää suorkulmioit ln pproksimoimiseen. Suorkulmion korkeueksi vlitn funktion suurin j vstvsti pienin rvo kntn olevll osvälillä. Jos osvälejä lyhennetään eli välin [,] jko tihennetään, niin ilmeisesti kummtkin pproksimtiot trkentuvt. Eellisessä tpuksess sn pint-llle A yläpproksimtio S j vstvsti jälkimmäisessä l-pproksimtio s. Kirjimell on merkitty pproksimtioon liittyvää jko, jok ll olevss kuvss on tsvälinen. Fitzptrickin merkinnöillä S = U( f, ), s = L( f, ). Trenchin merkinnöillä S = S( ) j s = s ( ).

13 3 Jon määrittelevät sen jkopisteet = 0< < < n =. Snomme, että S j s ovt funktion f jkoon liittyvät ylä- j lsummt välillä [,]. Vikutt ilmeiseltä, että sillä ei ole merkitystä, onko jko tsvälinen vi ei. Kosk yläsummill (kun jkoj vihelln mielivltisesti) on in lrjn mikä hyvänsä lsumm, on niitten joukoll infimum eli suurin lrj inf S. Vstvsti lsummill on supremum eli pienin ylärj sups. n Funktiot f snotn välillä I=[,] integroituvksi (trkemmin Riemnnintegroituvksi), jos yläsummien suurin lrj j lsummien pienin ylärj ovt smt: sup s = f( ) = inf S. Tämä yhteinen rvo on funktion f (Riemnn-)integrli "yli välin [,]" eli määrätty integrli.

14 4 Voin osoitt, että (inkin) kikki rjoitetut ploittin jtkuvt funktiot ovt Riemnn-integroituvi. Toinen tp on vlit välin [, ] jon : = 0< < n < n = osväleiltä [ i-, i ] mielivltinen piste * i j määrittää suorkulmion korkeueksi f( * i ). Silloin l pproksimoi Riemnnin summ n i= f( i * )Δ i missä Δ i = i - i- on i:nnen osvälin pituus. Merkitään suurimmn osvälin pituutt eli jon normi = m( i i ). Snomme, että jko tihenee i rjtt, jos D 0, kun i. Silloin siis osvälien määrä ksv rjtt j niien pituuet lähestyvät noll. Funktion f määrätty integrli (Riemnn-integrli) on silloin n f ( ) = lim f( ) Δ n n D i n 0 = i n i missä rj-rvo trkoitt mitä hyvänsä Riemnnin summien jono, joss jot rjtt tihenevät. (Täsmälliset toistukset, ks.fitzptrick, Trench j kurssit Mtemttinen nlyysi sekä Mitt- j integrliteori.)

15 5 y o 3 i f * ( i ) i n * * * 3 * i * n Määrätylle integrlille voin joht seurvt perusominisuuet. f ( ) = f ( ). ( ) 0 f = c c 3. ( ) + ( ) = ( ) f f f (itiivisuus) f g f g (linerisuus) 4. α ( ) + β ( ) = α ( ) + β ( )

16 6 f g F g F g (osittisintegrointi) 5. ( ) ( ) = / ( ) ( ) ( ) ( ) f ( g ) g ( ) = f ( t) t ( t g( ) ) 6. ( ) g ( ) ( ) g 7. ( ) ( ) ( ) ( ) f g f g = (Sijoitus) 8. f ( ) f ( ) M ( ), M= m f ( ), Voin osoitt, että välillä [,] jtkuvlle funktiolle f löytyy in piste c voimelt väliltä (,) siten, että pint-l sn yhellä suorkulmioll: f() = f(c)(-). Tämä yhtälö pätee myös muille kuin ei-negtiivisille funktioille (siis ilmn em. geometrist tulkint). (Integrlilskennn välirvoluse.) y y=f() f(c) 0 c

17 7 Jos määrätyn integrlin ylärj otetn jtkuvn funktion f integrliss muuttujksi: G() = f(t)t, niin stu funktio on ifferentioituv: +h G(+h) - G() = f(t)t - +h f(t)t = f(t)t = f(c) h = f() h + (f(c) -f()) h = f() h + ε(h) h missä <c<+h j ε(h) = f(c)-f() 0, kun h 0. Sn siis tulos: Jos f on jtkuv välillä [,], niin funktion G() = f(t)t erivtt välillä (,) on G '() = f(). Siis erityisesti toetn, että G() on funktion f () integrlifunktio (primitiivi). Jos F on toinen f:n integrlifunktio, niin se ero G:stä vin vkion verrn: F() = G() + C. Kosk G() = 0, on tämä vkio C = F(). Siis mille hyvänsä f:n integrlifunktiolle F pätee

18 8 F() = f(t)t + F(). Tästä sn sijoittmll = yhteys, joll määrätyt integrlit voin lske integrlifunktion vull: Luse (Differentili- j integrlilskennn perusluse) Jos f :, on jtkuv, niin f on integroituv j jos F on jokin f:n integrlifunktio, niin f() = / F() = F() -F().

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

3. Reaalifunktioiden määräämätön integraali

3. Reaalifunktioiden määräämätön integraali 50 3. Reaalifunktioiden määräämätön integraali Integraalifunktio Derivoinnin käänteistoimituksena on vastata kysymykseen "Mikä on se funktio, jonka derivaatta on f?" Koska vakion derivaatta 0, havaitaan

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

Johdatus reaalifunktioihin P, 5op

Johdatus reaalifunktioihin P, 5op Johdtus relifunktioihin 802161P, 5op Os 3 Pekk Slmi 19. lokkuut 2015 Pekk Slmi FUNK 19. lokkuut 2015 1 / 48 Integrlit 1 Määrätty integrli = oike integrli: esim. 1 0 x 2 dx = reliluku 2 Määräämätön integrli

Lisätiedot

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja.

Käydään läpi: ääriarvo tarkastelua, L Hospital, integraalia ja sarjoja. DI mtemtiikn opettjksi: Täydennyskurssi, kevät Luentorunko j hrjoituksi viikolle : ti 9.. klo :-5:, to.. klo 9:5-: j klo 4:5-6: Käydään läpi: äärirvo trkstelu, L Hospitl, integrli j srjoj.. Kerrtn äärirvojen

Lisätiedot

Integraalilaskenta. Määrätty integraali

Integraalilaskenta. Määrätty integraali 9..08 Integrlilskent Määräämätön Etsitään funktiot Derivoinnille käänteistoimenpide integroiminen Integrlifunktio F(x), jolle F x = f x, lisäksi integrlifunktioille G x = F x + C. Vkion C lisäys (merkitys),

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali

5 Riemann-integraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT Ala- ja yläintegraali ANALYYSI B, HARJOITUSTEHTÄVIÄ, KEVÄT 9 5 Riemnn-integrli 5. Al- j yläintegrli Voit olett tunnetuksi ll esitetyt supremumin j infimumin ominisuudet (joukot A j B ovt rjoitettuj sekä epätyhjiä j λ R). Jos

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

Riemannin integraali

Riemannin integraali LUKU 5 iemnnin integrli Tässä luvuss funktion f iemnnin integrli merkitään - b f = - b f() d. Vstvsti funktion f Lebesgue in integrli merkitään f = f() dm(). [,b] [,b] Luse 5.1. Olkoon f : [, b] rjoitettu

Lisätiedot

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29

Numeeriset menetelmät TIEA381. Luento 9. Kirsi Valjus. Jyväskylän yliopisto. Luento 9 () Numeeriset menetelmät / 29 Numeeriset menetelmät TIEA381 Luento 9 Kirsi Vljus Jyväskylän yliopisto Luento 9 () Numeeriset menetelmät 17.4.2013 1 / 29 Luennon 9 sisältö Numeerisest integroinnist Newtonin j Cotesin kvt Luento 9 ()

Lisätiedot

4 Pinta-alasovelluksia

4 Pinta-alasovelluksia Pint-lsovelluksi. Kuvjn lle jäävä pint-l voidn määrittää, jos kuvj on -kselin yläpuolell. Välillä [, 5] funktion f kuvj on -kselin lpuolell. Peiltn funktion f kuvj -kselin suhteen, jolloin sdn funktion

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

Numeerinen integrointi.

Numeerinen integrointi. Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

2 Epäoleellinen integraali

2 Epäoleellinen integraali ANALYYSI C, HARJOITUSTEHTÄVIÄ, SYKSY 8 Epäoleellinen integrli Integrointivihje: Hyödynnä yhdistetyn funktion integrointisääntöä.. Määritä 9 9 (c) ( ). Tutki, millä vkion p rvoill epäoleellinen integrli

Lisätiedot

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto x 3. a x 1. x 4 x 11. x 2

ANALYYSI 2. Camilla Hollanti. Tampereen yliopisto x 3. a x 1. x 4 x 11. x 2 ANALYYSI 2 Cmill Hollnti _ M M x x 2 x 3 x 4 x b Tmpereen yliopisto 200 2 Sisältö. Preliminäärejä 3 2. Riemnn-integrli 5 2.. Pint-lt j porrsfunktiot....................... 5 2... Pint-l rj-rvon.......................

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Kertausta ja täydennystä

Kertausta ja täydennystä LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

ANALYYSI 2. Tero Kilpeläinen

ANALYYSI 2. Tero Kilpeläinen ANALYYSI Tero Kilpeläinen 3 Teksti sisältää muistiinpnoj vuosin j 3 pidetystä kurssist. Tämän pketin trkoitus on tuke omien muistiinpnojen teko, ei korvt niitä. Mtemtiikk oppii prhiten itse kirjoitten

Lisätiedot

MS-A0102 Differentiaali- ja integraalilaskenta 1

MS-A0102 Differentiaali- ja integraalilaskenta 1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto 22.11.2016 Sisältö Pint-l Integrli 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi

Lisätiedot

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset

Differentiaali- ja integraalilaskenta 1 (CHEM) Laskuharjoitus 4 / vko 47, mallivastaukset Differentili- j integrlilskent (CHEM) Lskuhrjoitus / vko 7, mllivstukset Johdntotehtävä x dx = ln.693, joten rvo ln voidn pproksimoid integroimll numeerisesti funktiot x välillä [,]. Jetn väli [,] khteen

Lisätiedot

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia. 2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x

Lisätiedot

Pinta-alan laskeminen

Pinta-alan laskeminen Pint-ln lskeminen Esimerkki Välillä, jtkuvn, einegtiivisen funktion f määrätt integrli nt suorn pint-ln, eli f = A. INTEGRAALILASKENTA, MAA9 A = f Toislt, jos f on välillä,, eipositiivinen, eli f R, niin

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 +

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 + I. INTEGRAALILASKENTA Arkhimedes (287 22 e.kr.) prbelin segmentin pint-l Newton (642 727) j Leibniz (646 76) keksivät diff.- j int.-lskennn Cuhy (789 857) ε, δ Riemnn (826 866) Riemnnin integrli Lebesgue

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista

Matematiikan johdantokurssi, syksy 2017 Harjoitus 6, ratkaisuista. 1. Onko jokin demojen 5 tehtävän 3 relaatioista Mtemtiikn johntokurssi, syksy 07 Hrjoitus 6, rtkisuist. Onko jokin emojen 5 tehtävän reltioist ) R := {(, ), (, ), (, ), (, ), (, ), (, ), (, ), (, )}, ) S := {(, ), (, ), (, ), (, ), (, ), (, ), (, ),

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto Fkultet/Sektion Fculty Litos Institution Deprtment Mtemttis-luonnontieteellinen Tekijä Förfttre Author Antti Khri Työn

Lisätiedot

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön.

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön. I.6. Sijoitusmenettely A. Integrlifunktiot Integrlifunktiot etsittäessä on sopiv derivoimissääntö luettv tkperin. funktion voi trkist derivoimll. Sijoitusmenettely perustuu ketjusääntöön. Löydetyn 6..

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio ähkömgneettinen inuktio Kun johinsilmukn läpi menevä mgneettikentän vuo muuttuu, silmukkn inusoituu jännite j silmukss lk kulke sähkövit. Mgneettikentässä liikkuvn johtimeen syntyy myös jännite. Näitä

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

Riemann-integraalin ja mittaintegraalin vertailua

Riemann-integraalin ja mittaintegraalin vertailua Riemnn-integrlin j mittintegrlin vertilu Pro grdu -tutkielm Pii Tskinen Mtemttisten tieteiden litos Oulun yliopisto Kevät 216 Sisältö Johdnto 3 1 Esitietoj 5 1.1 Välijost............................. 5

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa Luku 5. Integrli Merkitsemme seurvss [, b]:llä lukusuorn suljettu väliä { R : b}. Olkoon f välillä [, b] määritelty funktio. Snomme, että välillä [, b] määritelty funktio g on funktion f integrlifunktio

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

R4 Harjoitustehtävien ratkaisut

R4 Harjoitustehtävien ratkaisut . Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka B 2014

Mika Hirvensalo. Insinöörimatematiikka B 2014 Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

Muita määrätyn integraalin sovelluksia

Muita määrätyn integraalin sovelluksia Muit määrätyn integrlin sovelluksi Ekstr Pohint Auto kiihyttää tsisesti viiessä sekunniss vuhist 4 km/h vuhtiin 76 km/h. ) Muoost funktio, jok ilmisee uton vuhin v(t), kun on kulunut t sekunti kiihytyksen

Lisätiedot

Lebesguen integraali - Rieszin määritelmä

Lebesguen integraali - Rieszin määritelmä Lebesguen integrli - Rieszin määritelmä Tru Lehtonen Mtemtiikn pro grdu-tutkielm Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kevät 216 Tiivistelmä Jyväskylän Yliopisto Lehtonen, Tru Puliin: Lebesguen

Lisätiedot

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa Integrlilskennst lukioss j lukion oppikirjsrjoiss Mtemtiikn pro grdu -tutkielm Mikko Huttunen Helsingin yliopisto 14. mliskuut 2013 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto

Lisätiedot

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13

Diskreetin matematiikan perusteet Laskuharjoitus 6 / vko 13 MS-A040 Diskreetin mtemtiikn perusteet, IV/07 Kngslmpi / Jkosson Diskreetin mtemtiikn perusteet Lskuhrjoitus / vko Tuntitehtävät 4-4 lsketn lkuviikon hrjoituksiss j tuntitehtävät 45-4 loppuviikon hrjoituksiss.

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

3.5 Kosinilause. h a c. D m C b A

3.5 Kosinilause. h a c. D m C b A 3.5 Kosiniluse Jos kolmiost tunnetn kksi sivu j näien välinen kulm, sinilusett on sngen vike sovelt kolmion rtkisemiseen. Luse on työklun vuton myös kolmion kulmien rtkisemiseen tpuksess, jolloin kolmion

Lisätiedot

Analyyttinen lukuteoria

Analyyttinen lukuteoria Anlyyttinen lukuteori Johdnto Kuten yltä näkyy, tämän luentomonisteen kttm luentosrj on nimeltään Anlyyttinen lukuteori, vikkkin opintorekisteribyrokrttisist syistä opintojkso knt nimeä Lukuteori 3. Näin

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

Analyysi B. Derivaatta ja integraali. Pertti Koivisto

Analyysi B. Derivaatta ja integraali. Pertti Koivisto Anlyysi B Derivtt j integrli Pertti Koivisto Kevät 7 Alkusnt Tämä moniste on trkoitettu oheislukemistoksi Tmpereen yliopistoss pidettävälle kurssille Anlyysi B. Monisteen tvoitteen on tuke luentojen seurmist,

Lisätiedot

Pertti Koivisto. Analyysi B

Pertti Koivisto. Analyysi B Pertti Koivisto Anlyysi B TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 TAMPERE 8 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 67/8 JOULUKUU 8 Pertti Koivisto Anlyysi

Lisätiedot

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

Viikon aiheet. Pinta-ala

Viikon aiheet. Pinta-ala info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu

Lisätiedot

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II

MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa II MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, os II G. Gripenberg Alto-yliopisto 9. helmikuut 16 G. Gripenberg (Alto-yliopisto MS-A7 ifferentili- j integrlilskent (Chem Yhteenveto, 9. helmikuut

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

ANALYYSIN TEORIA A JA B

ANALYYSIN TEORIA A JA B ANALYYSIN TEORIA A JA B Kikki luseit ei ole muotoiltu smll tvll kuin luennoill. Ilmoit virheistä yms osoitteeseen mikko.kngsmki@ut. (jos et ole vrm, onko kyseessä virhe, niin ilmoit mieluummin). 1. Yleistä,

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 2009 Sisältö Relilukujen peruskäsitteitä 2 Lukujonoist 3 2. Lukujonon rj-rvo....................... 3 2.2 Monotoniset jonot......................... 7 2.3 Osjonot..............................

Lisätiedot

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 4. Mtemtiikk II Mrkus Hrju Mtemttiset tieteet Näyttömtemtiikktilst I Numerointi trvitsevt, pljon til vtivt ti muust syystä tärkeät kvt j lusekkeet tulee sijoitt omlle rivilleen ns. näyttömtemtiikktiln.

Lisätiedot

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit

Newtonin, Riemannin ja Henstock-Kurzweilin integraalit TAMPEREEN YLIOPISTO Pro grdu -tutkielm Annik Heinonen Newtonin, Riemnnin j Henstock-Kurzweilin integrlit Informtiotieteiden yksikkö Mtemtiikk Helmikuu 2013 Sisältö 1 Johdnto 1 2 Newtonin integrli 2 2.1

Lisätiedot

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet

Johdatus L A TEXiin. 4. Matematiikkaa II Markus Harju. Matemaattiset tieteet Johdtus L A TEXiin 4. Mtemtiikk II Mrkus Hrju Mtemttiset tieteet Näyttömtemtiikktilst I Numerointi trvitsevt, pljon til vtivt ti muust syystä tärkeät kvt j lusekkeet tulee sijoitt omlle rivilleen ns. näyttömtemtiikktiln.

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

Analyysin perusteet kauppatieteilijöille P

Analyysin perusteet kauppatieteilijöille P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2017 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT

LYHYEN MATEMATIIKAN SIMULOITU YO-KOE 2 RATKAISUT Lyhyt mtemtiikk YO-vlmennus 8. mliskuut 00 LYHYEN MATEMATIIKAN SIMULOITU YO-KOE RATKAISUT. Trkstelln yhtälöpri, polynomin sievennöstä j lusekkeeseen sijoittmist. ) Rtkistn jälkimmäisestä yhtälöstä x, jolle

Lisätiedot

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista Differentili- j integrlilskent 1: tiivistelmä j oheislukemist Pekk Alestlo 4. syyskuut 2014 Tähdellä merkityt kohdt on trkoitettu lähinnä oheislukemistoksi. Lisäksi mukn on joitkin lukiot kertvi kohti,

Lisätiedot