MS-A0102 Differentiaali- ja integraalilaskenta 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "MS-A0102 Differentiaali- ja integraalilaskenta 1"

Transkriptio

1 MS-A0102 Differentili- j integrlilskent 1 Riikk Korte (Pekk Alestlon klvojen pohjlt) Alto-yliopisto

2 Sisältö Pint-l Integrli

3 1.1 Pint-l: Suorkulmio Seurvss trkstelln umpinisten tsokäyrien rjmi joukkoj. Tsojoukon pint-l määritellään pluttmll se yksinkertisemmn joukon pint-ln. Joukon pint-l ei voi lske, ellei pint-l ole ensin yleisesti määritelty (vikk koulumtemtiikss näin yleensä menetelläänkin). Lähtökoht: Suorkulmion pint-l on (määritelmän mukn) knt korkeus: A = b. b

4 1.1 Suunniks Suunnikkn pint-l on (määritelmän mukn) knt korkeus: A = h. h

5 1.1 Kolmio Kolmion pint-l on (määritelmän mukn) A = 1 2 h. h

6 1.1 Monikulmio Monikulmio on tsolue, jot rj umpininen (j itseään leikkmton) murtoviiv. Murtoviiv koostuu peräkkäisistä jnoist, joille edellisen päätepiste = seurvn lkupiste. Se on umpininen, jos viimeisen päätepiste = ensimmäisen lkupiste.

7 1.1 Monikulmion pint-l Monikulmion pint-l sdn jkmll monikulmio kolmioihin (= monikulmion kolmiointi) j lskemll kolmioiden pint-lojen summ. Luse: Kolmioiden pint-lojen summ ei riipu kolmioinnin vlinnst.

8 1.1 Yleinen tsojoukko Muodostetn rjoitetulle tsolueelle D sisämonikulmioit M s j ulkomonikulmioit M u : M s D M u. Ain pätee: A(M s ) A(M u ).

9 1.1 Pint-ln määritelmä Määritelmä 1 Rjoitetull tsojoukoll D on pint-l, jos jokist ε > 0 vst sisämonikulmio M s j ulkomonikulmio M u, joiden pint-lojen erotus on pienempi kuin ε: A(M u ) A(M s ) < ε. Tällöin kikkien lukujen A(M s ) j A(M u ) välissä on yksikäsitteinen luku A(D), jok on (määritelmän mukn) joukon D pint-l. Yllätys: Vikk joukko D rjoittisi jtkuv umpininen tsokäyrä, ei sillä in ole pint-l! Syy: Reunkäyrä voi oll niin kiemurtelev, että sen pint-l > 0. Ensimmäinen esimerkki [W.F. Osgood, 1903].

10 1.1 Ympyrän pint-l Esimerkki 2 Johd R-säteisen ympyrän pint-ln kv A = πr 2 trkstelemll sen sisä- j ulkopuolelle setettujen säännöllisten n-kulmioiden pint-lojen rj-rvoj, kun n. Rtkisu jätetään (vpehtoiseksi) hrjoitustehtäväksi.

11 2.1 Määrätty integrli Geometrinen tulkint: Funktiolle f : [, b] R pätee f (x) 0 kikill x [, b]. Kuink suuren pint-ln käyrä y = f (x) rj yhdessä x-kselin knss välillä [, b]? Vstuksen tähän kysymykseen nt määrätty integrli f (x) dx, jonk määritelmässä ehto f (x) 0 ei tosin trvit linkn.

12 2.1 Määrätty integrli (cont.) y y = f (x) A = b f(x) dx b x Tällä kurssill integrli määritellään kikille ploittin jtkuville funktioille; yleisemmin sitä voidn tutki myös rjoitettujen funktioiden tpuksess, jolloin puhutn Riemnn-integrlist.

13 2.1 Määrätty integrli (cont.) Ploittin jtkuvt funktiot ovt Riemnn-integroituvi, mutt toislt kikki rjoitetut funktiot eivät ole. Tämä hnkloitt yleisen tpuksen käsittelyä. Vielä yleisempi integrlin käsite on Lebesgue-integrli, jot käsitellään kurssill MS-E1280 Mesure nd integrl. Sen vull voidn mm. systemttisesti selvittää, millisille tsojoukoille pint-l voidn järkevällä tvll määritellä.

14 2.1 Jtkuvn funktion integrli Olkoon f : [, b] R jtkuv. Välin [, b] jkoon = x 0 < x 1 < x 2 < < x n = b liittyy sitä vstv funktion f yläsumm S = n M k (x k x k 1 ), M k = mx{f (x) x k 1 x x k }, k=1 j lsumm s = n m k (x k x k 1 ), m k = min{f (x) x k 1 x x k }. k=1 Nämä ovt positiivisen funktion tpuksess erään ulko- j sisämonikulmion (= pylväsdigrmmit) pint-loj.

15 2.1 Jtkuvn funktion integrli (cont.) y y y = f ( x) y = f (x) b x b x Punisten pylväiden pint-lojen summ on (tsvälistä jko vstv) yläsumm S vsemmnpuoleisess kuvss j lsumm s oikenpuoleisess kuvss.

16 2.1 Ominisuuksi Ain pätee: (i) Kun jkopisteitä lisätään (snotn: jko tihennetään), niin s ksv j S pienenee; (ii) s S, vikk ne lskettisiin eri jkopisteillä. Perustelu: (i) Kuviost (ti muull tvoin) nähdään, miten l- j yläsumm muuttuvt, kun lisätään yksi jkopiste. (ii) Jos ylä- j lsummn lskemiseen käytetään smoj jkopisteitä, niin väite on selvä, kosk m k M k kikill k. Jos jkopisteet eivät ole smt, niin trkstelln tihennettyä jko ottmll mukn molempien jkojen kikki pisteet. Tämän jälkeen väite seur kohdst (i).

17 2.1 Integrlin määritelmä Määritelmä 3 Funktio f on integroituv välillä [, b], jos jokist ε > 0 vst sellinen jko, joss S s < ε. Funktion f integrli I R on tällöin se yksikäsitteinen luku, jolle s I S kikiss joiss; merkitään f (x) dx = I. Positiivisen funktion tpuksess tämä vst täsmälleen sitä vtimust, että jkoihin liittyvien pylväsdigrmmien vull lsketut ulko- j sisämonikulmioiden pint-lt sdn mielivltisen lähelle toisin, kun vlitn riittävän tiheä jko.

18 2.1 Integroituvuus Luse 4 Integrli on määritelty kikille jtkuville funktioille j se voidn lske rj-rvon f (x) dx = lim n k=1 n f (x k ) x käyttämällä tsvälisiä jkopisteitä x k = + k x, joss x = (b )/n on skelpituus j 0 k n. Yleisemmin: Edellisessä summss rvon f (x k ) tilll voi oll mikä thns rvo f (z k ), kun x k 1 z k x k, eikä jon trvitse oll tsvälinen. Aino vtimus: Jkovälien mx-pituus 0, kun n. Tässä tpuksess puhutn integrlin lskemisest Riemnnin summien vull. Moniss sovelluksiss integrliin päädytään juuri Riemnnin summien kutt.

19 2.1 Sopimuksi Sopimus: Tällöin pätee b f (x) dx = 0, f (x) dx = f (x) dx. f (x) dx = c f (x) dx + f (x) dx c kikill, b, c järjestyksestä riippumtt (Piirrä kuvio!).

20 2.1 Ploittin jtkuv funktio Määritelmä 5 Funktio f : [, b] R on ploittin jtkuv, jos sillä on vin äärellinen määrä epäjtkuvuuskohti c 1 < c 2 < < c m b, joiss kikiss toispuoliset rj-rvot ovt olemss j äärellisiä (ts. ± ei sllit). Määritelmästä seur, että jokisell yksittäisellä välillä [c k 1, c k ] funktio f voidn muokt jtkuvksi muuttmll päätepistervoiksi ko. toispuoliset rj-rvot.

21 2.1 Integrlin yleistys Määritelmä 6 Jos f : [, b] R on ploittin jtkuv, niin f (x) dx = m+1 k=1 ck c k 1 f (x) dx, kun käytetään edellisen sivun merkintöjä, c 0 =, c m+1 = b j f tulkitn jtkuvksi jokisell välillä [c k 1, c k ] erikseen. Käytännössä integrlin lskeminen täytyy tehdä usemmss osss yllä olevn kvn tpn myös silloin, kun funktio f on määritelty ploittin (jtkuvuudest riippumtt).

22 2.2 Integrlin ominisuuksi Ploittin jtkuvien funktioiden integrlille pätee Linerisuus: Jos c 1, c 2 R, niin ( c1 f (x) + c 2 g(x) ) dx = c 1 f (x) dx + c 2 g(x) dx. Positiivisuus: Jos h(x) 0 kikill x, niin Seurus: f (x) g(x) f (x) dx h(x) dx 0. g(x) dx Erityisesti: Kosk ±f (x) f (x), niin ± f (x) dx f (x) dx f (x) dx f (x) dx.

23 2.2 Diff-int-lskennn perusluse Luse 7 Keskirvoperite: Jos f : [, b] R on jtkuv, niin f (x) dx = f (c)(b ) jollkin c [, b], ts. f (c) = 1 f (x) dx = f = funktion f keskirvo välillä [, b]. b Luse 8 Anlyysin perusluse: Jos f : [, b] R on jtkuv, niin d x f (t) dt = f (x) dx kikill x ], b[.

24 2.2 Integrlifunktio Määritelmä 9 Jos F (x) = f (x) jollkin voimell välillä, niin F on funktion f integrlifunktio. Perusluseen mukn kikill jtkuvill funktioill f on integrlifunktio F (x) = x f (t) dt. Sitä ei in void esittää lkeisfunktioiden vull, vikk f olisi lkeisfunktio; esim. f (x) = e x 2. Tällisi integrlifunktioit (j muit vstvi) kutsutn erikoisfunktioiksi.

25 2.2 Integrlifunktio (cont.) Integrlifunktio ei ole yksikäsitteinen, mutt eri integrlifunktiot poikkevt toisistn vin vkioll; merkitään f (x) dx = F(x) + C, C R vkio, jos F (x) = f (x). Perustelu: Jos F 1 (x) = F 2 (x) = f (x) kikill x, niin funktion F 1 (x) F 2 (x) derivtt on identtisesti noll, joten se on vkio.

26 2.2 Integrlifunktio (cont.) Luse 10 Jos f : [, b] R on jtkuv, niin sen määrätty integrli voidn lske (päätepisteissäkin jtkuvn) integrlifunktion F vull: f (x) dx = / b x=b F(x) = F(x) = F(b) F(). x= Tärkeimmät integrlifunktiot sdn suorn derivoimissäännöistä:

27 2.2 Integrlifunktio (cont.) x r 1 dx = r + 1 x r+1 + C, r 1 x 1 dx = ln x + C e x dx = e x + C sin x dx = cos x + C cos x dx = sin x + C dx 1 + x 2 = rctn x + C

28 2.2 Integrlifunktio (cont.) Esimerkki 11 Lske integrlit 1 1 e x dx j 1 0 sin(πx) dx. Rtkisu: Ensimmäinen integrlifunktio on e x, joten integrlin rvo on 1 1 e x dx = e 1 + e 1 = 2 sinh 1. Toinen integrlifunktio on 1 π cos(πx), joten integrlin rvo on 1 sin(πx) dx = 1 π (cos π cos 0) = 2 π. 0

29 2.2 Integrlifunktio (cont.) Esimerkki 12 Lske integrli 1 0 x 25 9x 2 dx. Rtkisu: Integrlifunktion oike muoto voisi oll F (x) = (25 9x 2 ) 1/2 ; trkistetn kerroin derivoimll: D ( (25 9x 2 ) 1/2) = 1 2 ( 18x)(25 9x 2 ) 1/2 = 9x 25 9x 2, joten vlinnll = 1/9 sdn oike integrlifunktio. Näin ollen 1 0 x dx = 1 1 / 25 9x 2 9 0(25 9x 2 ) 1/2 = 1 ( ) = 9 9. Toinen tp: Käytetään myöhemmin käsiteltävää sijoitusmenetelmää.

30 2.2 Integrlifunktio (cont.) Perusluseen vull sdn seurv yleisempi derivoimiskv: Luse 13 Jos f on jtkuv j funktiot j b ovt derivoituvi, niin d dx (x) (x) f (t) dt = f ( b(x) ) b (x) f ( (x) ) (x). Perustelu: Olkoon F funktion f integrlifunktio. Tällöin (x) (x) f (t) dt = F ( b(x) ) F ( (x) ). Väite seur tästä käyttämällä yhdistetyn funktion derivoimissääntöä, kosk F = f.

31 2.3 Geometrisi sovelluksi Jos f (x) 0, niin f (x) dx on funktion kuvjn j x-kselin rjoittmn tsolueen pint-l välillä [, b]. Yleisemmin: f (x) g(x) dx on kuvjien y = f (x) j y = g(x) väliin jäävän lueen pint-l välillä [, b]. Funktion kuvjn y = f (x) krenpituus välillä [, b] on l = 1 + f (x) 2 dx. Kun funktion f kuvj y = f (x) pyörähtää x-kselin ympäri välillä [, b], niin syntyvän pyörähdyspinnn pint-l on A = 2π f (x) 1 + f (x) 2 dx.

32 2.3 Geometrisi sovelluksi (cont.) Jos kpplett leiktn yz-tson suuntisell tsoll kohdss x j poikkileikkuksen pint-l on A(x), kun x [, b], niin kppleen tilvuus on V = A(x) dx. Kun funktion f kuvj y = f (x) pyörähtää x-kselin ympäri välillä [, b], niin se rj pyörähdyskppleen, jonk tilvuus on V = π f (x) 2 dx Syy: Poikkileikkus kohdss x on f (x)-säteinen ympyrä, joten A(x) = πf (x) 2.

33 2.3 Geometrisi sovelluksi (cont.) Yleisemmin: Jos 0 g(x) f (x) j kuvjien y = g(x) j y = f (x) välinen lue pyörähtää x-kselin ympäri välillä [, b], niin sdun kppleen tilvuus on V = π Huom: Tulos ei ole sm kuin π ( f (x) 2 g(x) 2) dx. ( f (x) g(x) ) 2 dx. Kun käyrä y = f (x), x b, pyörähtää y-kselin ympäri, niin vstvn pyörähdyskppleen tilvuus on V = 2π xf (x) dx.

34 2.4 Epäoleellinen integrli Kksi eri perustyyppiä: Tyyppi I: Integroimisvälinä [, [ ti ], b] ti koko R Tyyppi II: Funktio f : ], b[ R ei ole rjoitettu ti sillä ei ole toispuoleisi rj-rvoj päätepisteissä Jos ongelmi on molemmiss päätepisteissä ti integroimisvälin sisällä, niin integroimisväli jetn niin moneen osn, että kusskin osss vin yksi ongelmkoht: vditn, että jokinen erikseen nt äärellisen tuloksen, jolloin koko integrli = osien summ Esimerkki 14 0 dx 1 = x(1 + x) 0 dx + x(1 + x) 1 dx x(1 + x), jos molemmt oiken puolen integrlit suppenevt (kuten myöhemmissä esimerkeissä osoitetn).

35 2.4 Tyyppi I Määritelmä 15 Olkoon f : [, [ R ploittin jtkuv. Tällöin R f (x) dx = lim f (x) dx, R jos rj-rvo olemss j äärellinen. Snotn: Funktion f epäoleellinen integrli suppenee välillä [, [. Vstvsti funktiolle f : ], b] R määritellään f (x) dx = lim f (x) dx, R R jos rj-rvo olemss j äärellinen.

36 2.4 Tyyppi I (cont.) Esimerkki 16 Lske epäoleellinen integrli Rtkisu: Kosk R 0 0 e x dx. e x dx = / R e x = 1 e R 1, 0 kun R, niin epäoleellinen integrli suppenee j 0 e x dx = 1.

37 2.4 Integrli koko relikselin yli Esimerkki 17 Funktiolle f (x) = x pätee R lim f (x) dx = 0, R R kosk kikki integrlit ovt nolli. Yleisemmin sm pätee kikille prittomille funktioille f (x). Integrlin määritelmä koko relikselin yli yllä olev rj-rvo käyttämällä on peritteess mhdollinen, mutt joht hiemn kummllisiin tuloksiin. Sille (j muille smntpisille vritioille) käytetään nimitystä Cuchyn päärvointegrli, mutt se ei ole integrlin virllinen määritelmä.

38 2.4 Integrli koko relikselin yli (cont.) Määritelmä 18 Jos f : R R ploittin jtkuv, niin f (x) dx = 0 f (x) dx + 0 f (x) dx, jos molemmt oiken puolen integrlit suppenevt. Kuitenkin pätee: Jos f (x) 0 kikill x R, niin R f (x) dx = lim f (x) dx R R Syy: Positiivisen funktion tpuksess ei voi tphtu esimerkin tpist ± kumoutumist, jok voi muuten sekoitt si. Tämä kv ei siis päde yleisesti, vrt. tpus f (x) = x.

39 2.4 Tyyppi II Perustpus f : ], b] R jtkuv, mutt sillä ei äärellistä rj-rvo, kun x +. Tällöin määritellään f (x) dx = lim ε 0+ +ε jos rj-rvo on olemss j äärellinen. Esimerkki 19 Lske epäoleellinen integrli 1 0 dx x. f (x) dx, Rtkisu: Kosk 1 ε dx 1 = 2/ x = 2 2 ε 2, x kun ε 0+, niin integrli suppenee j sen rvo on 2. ε

40 2.4 Mjornttiperite Epäoleellisen integrlin suppenemist voidn tutki mjornttiperitteen vull, jost seurvss eräs versio. Luse 20 Olkoon f (x) g(x) välillä < x b. Jos epäoleellinen integrli suppenee, niin myös I = g(x) dx f (x) dx suppenee j sen itseisrvo on korkeintn I.

41 2.4 Mjornttiperite (cont.) Esimerkki 21 Kosk j välillä 0 < x 1 x(1 + x) x 1 0 dx x = 2 suppenee, niin mjornttiperitteen mukn 1 suppenee j sen rvo on < 2. 0 dx x(1 + x)

42 2.4 Mjornttiperite (cont.) Esimerkki 22 Vstvsti Kosk mukn x(1 + x) < 1 = 1, kun x 1. x(0 + x) x 3/2 x 3/2 dx = 2 suppenee, niin mjornttiperitteen suppenee j sen rvo on < 2. 1 dx x(1 + x) Huomtn: Sopivn mjorntin vlint riippuu sekä funktiost että integroimisvälistä!

43 2.5 Integroimismenetelmiä Helpoimmt integrlit voi lske suorn peruskvoj käyttämällä. Os hnklmmist tpuksist plutuu näihin, jos integrlist onnistuu tunnistmn sisäfunktion derivtn. Systemttisempi menetelmiä ovt Osittisintegointi Sijoitusmenetelmä Osmurtohjotelmt Numeerinen integrointi 1 Näitä käsitellään seurvill sivuill. 1 Oheislukemist tällä kurssill.

44 2.5 Osittisintegrointi Luse 23 Olkoot f j g jtkuvsti derivoituvi funktioit välillä [, b] (eli käytännössä hiemn suuremmll voimell välillä). Tällöin f (x)g(x) dx = / b f (x)g(x) f (x)g (x) dx. Vstvsti integrlifunktioille pätee f (x)g(x) dx = f (x)g(x) f (x)g (x) dx. Perustelu: Tulon derivoimissääntö, integrointi j termien ryhmittely.

45 2.5 Osittisintegrointi (cont.) Ide: Toimii silloin, kun funktion f (x)g (x) integrointi on helpomp kuin lkuperäisen funktion f (x)g(x). Esimerkki 24 Lske integrli π 0 x sin x dx. Rtkisu: Kokeilln osittisintegrointi j vlitn f (x) = sin x j g(x) = x, jolloin f (x) = cos x (vkiot ei tässä trvit, mutt ei se väärinkään ole) j g (x) = 1. Näin sdn π 0 x sin x dx = / π ( cos x) x 0 π 0 ( cos x) 1 dx = π cos π / π sin x = π. 0

46 2.5 Osittisintegrointi (cont.) Huom: Jos f j g vlitn esimerkissä toisin päin, niin osittisintegrointi joht entistä hnklmpn integrliin.

47 2.5 Sijoitusmenetelmä Luse 25 Jos f on jtkuv j g jtkuvsti derivoituv suljetull välillä [, b], niin kun A = g(), B = g(b). f (g(x))g (x) dx = Käytännössä: Sijoitus u = g(x), jolloin B A f (u) du, du dx = g (x) du = g (x) dx Rjojen muutos: x = u = g() = A, x = b u = g(b) = B. Perustelu: Seur yhdistetyn funktion derivoimissäännöstä integroimll.

48 2.5 Sijoitusmenetelmä (cont.) Huom, että sijoituksen jälkeen ei trvitse enää plt lkuperäiseen muuttujn x (pitsi integrlifunktiot lskettess; kts. ll). Muunnos u = g(x) voidn (usein) kirjoitt myös käänteisfunktion vull: x = g 1 (u) dx = (g 1 ) (u) du = 1 g ( g 1 (u) ) du = 1 g (x) du, joten tulos on sm kuin ikisemmin. On suositeltv kirjoitt muunnos in molempiin suuntiin, kosk rjojen lskeminen on helpomp lkuperäistä muoto käyttämällä, mutt differentilin muuttuminen on (yleensä) helpompi lske käänteisen muodon vull. (Adms & Essex -kirjss nämä

49 2.5 Sijoitusmenetelmä (cont.) käsitellään erikseen kohdiss 5.6 j 6.3, mikä on tvlln turh.)

50 2.5 Sijoitusmenetelmä (cont.) Esimerkki 26 Lske integrli π 2 0 sin x dx. Rtkisu: Neliöjuuri hnkloitt integroimist, joten sijoitetn x = t 2, kun t 0. Tällöin dx = 2t dt j käänteisestä muodost t = x sdn (hiemn helpommin): kun x = 0, niin t = 0 = 0; kun x = π 2, niin t = π 2 = π. Näin ollen π 2 0 sin x dx = π 0 π 2t sin t dt = 2 t sin t dt = 2π. 0 (Viimeinen integrli lskettiin ikisemmin osittisintegroimll)

51 2.5 Sijoitusmenetelmä (cont.) Myös integrlifunktio voidn usein lske sijoitusmenetelmän vull, jolloin sijoituksen j integroinnin jälkeen pltn tkisin lkuperäiseen muuttujn x, toisin kuin määrätyn integrlin kohdll. Menetelmän ide tulee prhiten esille konkreettisess esimerkissä. Esimerkki 27 Määritä integrlifunktio dx x(1 + x). Rtkisu: Sijoitetn x = t 2, t > 0, eli t = x, jolloin sdn dx 2t = x(1 + x) t(1 + t 2 ) dt = 2 rctn t+c = 2 rctn x+c.

52 2.5 Osmurtohjotelm Kikki rtionlifunktiot R(x) = P(x)/Q(x) voidn integroid osmurtohjotelmien vull. Ensimmäinen vihe: Jkokulmss jkmll (ti muuten) plutetn tilnne siihen, että deg P(x) < deg Q(x). Esimerkki 28 x x + 1 x 2 x 2 1 = (x 2 1) + 1 x 2 1 = (x + 1) 1 x + 1 x 3 x 2 1 = x 3 x x = x + 1 x x + 1 = 1 1 x + 1 = x 2 1 x x 2 1 = x 2 1 x x 2 1 = x(x 2 1) x x x 2 1 = x + x x 2 1

53 2.5 Osmurtohjotelm (cont.) Osmurtohjotelm voidn käyttää integroinniss seurvll tvll. Esimerkki 29 ( x x + 1 dx = 1 1 ) dx = x ln x C. x + 1 Toinen vihe: Jetn nimittäjässä olev polynomi Q(x) joko 1. ti 2. steen relisiin tekijöihin. Näin voidn in tehdä (inkin peritteess); kts. Kompleksiluvut-moniste. Suurimmss osss käytännön sovelluksi trvitn vin helpoint tulost x + b (x x 1 )(x x 2 ) = A + B, x x 1 x x 2 kun kertoimet A, B vlitn sopivll tvll.

54 2.5 Osmurtohjotelm (cont.) Esimerkki 30 Muodost lusekkeen Rtkisu: Hjotelm on muoto 2x + 3 (x 4)(x + 5) osmurtohjotelm. 2x + 3 (x 4)(x + 5) = A x 4 + B x + 5. Kerrotn yhtälö puolittin lusekkeell (x 4)(x + 5), jolloin sdn 2x + 3 = A(x + 5) + B(x 4). Kertoimet A j B sdn tästä khdell eri tvll: Tp 1: Sijoitetn vuorotellen x = 4 ti x = 5. Tp 2: Verrtn x:n potenssien kertoimi yhtälön eri puolill. Molempien tpojen tuloksen sdn A = 11/9 j B = 7/9.

55 2.5 Numeerinen integrointi Hnklien integrlien likirvoj voidn joskus lske Tylor-polynomien vull. Tämä edellyttää kuitenkin sitä, että integroitv funktio on nnettu jonkin lusekkeen vull. Joisskin sovelluksiss funktiost tunnetn vin sen rvot tietyissä pisteissä: y k = f (k x) (esim. mittusdt). Tällöin integrlill ei ole mitään yksiselitteistä oike rvo, mutt sitä voidn pproksimoid seurvill menetelmillä. Niitä voidn tietysti käyttää myös hnklien integrlien likirvon lskemisess.

56 2.5 Numeerinen integrointi (cont.) Yksinkertisin tp on puolisuunniks- eli trpetsisääntö, joss funktion kuvj pproksimoidn murtoviivll: ( 1 f (x) dx T n = h 2 y 0 + y 1 + y y n ) 2 y n, joss h = (b )/n on skelpituus, n N jkovälien lukumäärä, x k = + kh, 0 k n, ovt jkopisteet j y k = f (x k ).

57 2.5 Numeerinen integrointi (cont.) y y = f (x) b x Muit pproksimtioit ovt mm. Keskipistesääntö ( pylväsdigrmmi-pproksimtio ) f (x) dx M n = h(f (m 1 ) + f (m 2 ) + + f (m n )), m k = (x k 1 + x k )/2,

58 2.5 Numeerinen integrointi (cont.) y y = f (x) Simpsonin sääntö b x f (x) dx S n = h 3 (y 0+4y 1 +2y 2 +4y 3 +2y y n 1 +y n ),

59 2.5 Numeerinen integrointi (cont.) joss funktiot interpoloidn 2. steen polynomill khdell peräkkäisellä jkovälillä; jkovälien lukumäärän n täytyy oll prillinen. y y = f (x) b x

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1

a = x 0 < x 1 < x 2 < < x n = b f(x) dx = I. lim f(x k ) x k=1 5 Integrli 5.1 Määritelmä j ominisuudet Olkoon f : [, b] R jtkuv. Muodostetn välin [, b] jko = x 0 < x 1 < x 2 < < x n = b j siihen liittyvä yläsumm S = n M k (x k x k 1 ), M k = mx{f(x) x k 1 x x k },

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 8: Integrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 5.1.216 Pekk Alestlo,

Lisätiedot

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali

MS-A010{2,3,4,5} (SCI, ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 8: Integraalifunktio ja epäoleellinen integraali MS-A1{2,3,4,5} (SC, ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 8: ntegrlifunktio j epäoleellinen integrli Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 3.10.2016 Pekk Alestlo, Jrmo Mlinen

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 7: Integraali ja analyysin peruslause MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 7: Integrli j nlyysin perusluse Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 20, 2017

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{3,4} (ELEC*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos 10.10.2016 Pekk Alestlo, Jrmo Mlinen (Alto-yliopisto,

Lisätiedot

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät

MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 9: Integroimismenetelmät MS-A010{2,3,4,5} (SCI,ELEC*, ENG*) Differentili- j integrlilskent 1 Luento 9: Integroimismenetelmät Pekk Alestlo, Jrmo Mlinen Alto-yliopisto, Mtemtiikn j systeeminlyysin litos November 27, 2017 Pekk Alestlo,

Lisätiedot

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007

Ville Turunen: Mat Matematiikan peruskurssi P1 3. välikokeen alueen teoriatiivistelmä 2007 Ville Turunen: Mt-.4 Mtemtiikn peruskurssi P 3. välikokeen lueen teoritiivistelmä 27 Mterili: kirjt [Adms] R. A. Adms: Clculus, complete course (6th edition), [Ly] D. C. Ly: Liner lgebr nd its pplictions

Lisätiedot

II.1. Suppeneminen., kun x > 0. Tavallinen lasku

II.1. Suppeneminen., kun x > 0. Tavallinen lasku II. EPÄOLEELLISET INTEGRAALIT nt II.. Suppeneminen Esim. Olkoon f() =, kun >. Tvllinen lsku = / =. Kuitenkn tätä integrli ei ole ikisemmss mielessä määritelty, kosk f ei ole rjoitettu välillä [, ] (eikä

Lisätiedot

5 Epäoleellinen integraali

5 Epäoleellinen integraali 5 Epäoleellinen integrli 5. Integrlin suppeneminen Olkoon f sellinen välillä [, b[ (ei siis välttämättä pisteessä b) määritelty funktio, että f on Riemnn-integroituv välillä [, ] kikill ], b[ eli on olemss

Lisätiedot

6 Integraalilaskentaa

6 Integraalilaskentaa 6 Integrlilskent 6. Integrlifunktio Funktion f integrlifunktioksi snotn funktiot F, jonk derivtt on f. Siis F (x) = f (x) määrittelyjoukon jokisell muuttujn rvoll x. Merkitään F(x) = f (x) dx. Integrlifunktion

Lisätiedot

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20

Sisältö. Integraali 10. syyskuuta 2005 sivu 1 / 20 Integrli 10. syyskuut 2005 sivu 1 / 20 Sisältö 1 Määrätty integrli j integrlifunktio 2 1.1 Integroituvist funktioit 3 1.2 Määrätyn integrlin ominisuuksi 4 1.3 Integrlifunktio 5 1.4 Integrlilskennn tärkeimmät

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 4 Tilvuuden j vipn ln lskeminen Kuten iemmin käsittelimme, määrätyn integrlin vull voi lske pintloj j tilvuuksi. Tyypillisenä sovelluksen tilvuuden lskemisest on tpus, joss

Lisätiedot

Riemannin integraalista

Riemannin integraalista Lebesguen integrliin sl. 2007 Ari Lehtonen Riemnnin integrlist Johdnto Tämän luentomonisteen trkoituksen on tutustutt lukij Lebesgue n integrliin j sen perusominisuuksiin mhdollisimmn yksinkertisess tpuksess:

Lisätiedot

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [

1. Derivaatan Testi. Jos funktio f on jatkuva avoimella välillä ]a, b[ ja x 0 ]a, b[ on kriit. tai singul. piste niin. { f (x) > 0, x ]a, x 0 [ 1. Derivtn Testi Jos funktio f on jtkuv voimell välillä ], b[ j x 0 ], b[ on kriit. ti singul. piste niin { f (x) < 0, x ], x 0 [ f x (x) > 0, x ]x 0, b[ 0 on lokli minimipiste (1) { f (x) > 0, x ], x

Lisätiedot

2.4 Pienimmän neliösumman menetelmä

2.4 Pienimmän neliösumman menetelmä 2.4 Pienimmän neliösummn menetelmä Optimointimenetelmiä trvitn usein kokeellisen dtn nlysoinniss. Mittuksiin liittyy virhettä, joten mittus on toistettv useit kertoj. Oletetn, että mittn suurett c j toistetn

Lisätiedot

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA

10. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA MAA0 0. Määrätyn integrlin käyttö eräiden pint-lojen lskemisess 0. MÄÄRÄTYN INTEGRAALIN KÄYTTÖ ERÄIDEN PINTA-ALOJEN LASKEMISESSA Edellä on todettu, että f (x)dx nt x-kselin j suorien x =, x = sekä funktion

Lisätiedot

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että

Analyysi 2. Harjoituksia lukuihin 1 3 / Kevät Anna sellainen välillä ] 2, 2[ jatkuva ja rajoitettu funktio f, että Anlyysi Hrjoituksi lukuihin 3 / Kevät 5. Ann sellinen välillä ], [ jtkuv j rjoitettu funktio f, että () sup A m A j inf A min A, (b) sup A m A j inf A = min A, (c) sup A = m A j inf A min A, (d) sup A

Lisätiedot

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO

Integraalilaskentaa. 1. Mihin integraalilaskentaa tarvitaan? MÄNTÄN LUKIO Integrlilskent Tämä on lukion oppimterileist hiemn poikkev yksinkertistettu selvitys määrätyn integrlin lskemisest. Kerromme miksi integroidn, mitä integroiminen trkoitt, miten integrli lsketn j miten

Lisätiedot

Viikon aiheet. Pinta-ala

Viikon aiheet. Pinta-ala info Viikon iheet Mpu I:sen voit suoritt: Kurssin loppukokeess 23.10. Arvosn: koe + lskrit Mikäli yo. ik ei sovi, voit suoritt loppukokeen yleistenttitilisuudess 24.11. Arvosn: koe + lskrit. Ilmoittudu

Lisätiedot

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b

x k 1 Riemannin summien käyttö integraalin approksimointiin ei ole erityisen tehokasta; jatkuvasti derivoituvalle funktiolle f virhe b 5 Integrlien lskemisest 51 Riemnnin summt [A2], [4, 61] Rjoitetun funktion f : [, b] R Riemnn-integroituvuudelle ytäpitäväksi on kurssill Anlyysi 2 osoitettu, että Riemnnin summill S P := f(ξ k ) ( ),

Lisätiedot

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku.

Määritelmä Olkoon C R m yksinkertainen kaari ja γ : [a, b] R m sen yksinkertainen parametriesitys, joka on paloittain C 1 -polku. Muodostetn vektorikentän kri-integrli yksinkertisen kren tpuksess. Plutetn mieleen, että joukko C R m on yksinkertinen kri, jos löytyy sellinen jtkuv bijektio γ : [, b] C, jok on ploittin C 1 -funktio

Lisätiedot

4. Reaalifunktioiden määrätty integraali

4. Reaalifunktioiden määrätty integraali 6 4. Relifunktioiden määrätt integrli Vrsinisesti termi "integrli" tulee seurvss esitettävästä määrätstä integrlist, jok on läheistä suku summmiselle. Yhtes derivttn on sitten perustv ltu olev tulos, jot

Lisätiedot

Kertausta ja täydennystä

Kertausta ja täydennystä LUKU 1 Kertust j täydennystä 1.1. Merkintöjä N = {k Z k 0} = {0, 1, 2,... }, luonnollisten lukujen joukko. Z + = {k Z k > 0} = {1, 2,... }, positiivisten kokonislukujen joukko. (, b) on relikselin voin

Lisätiedot

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä

Integroimistehtävät, 10. syyskuuta 2005, sivu 1 / 29. Perustehtäviä. Tehtävä 1. Osoita, että vakiofunktio f(x) c on Riemann-integroituva välillä Integroimistehtävät,. syyskuut 5, sivu / 9 Perustehtäviä Tehtävä. Osoit, että vkiofunktio f(x) c on Riemnn-integroituv välillä [, b] j lske suorn määritelmän perusteell b f(x). Tehtävä. Osoit, että funktio,

Lisätiedot

3 Integraali ja derivaatta

3 Integraali ja derivaatta 3 Integrli j erivtt 3.1 Integrli ylärjns funktion Olkoon funktio f Riemnn-integroituv välin I jokisell suljetull osvälillä j välin I jokin kiinteä luku. Tällöin integrli määrittelee funktion G(): I R,

Lisätiedot

Matematiikan tukikurssi. Hannu Kivimäki

Matematiikan tukikurssi. Hannu Kivimäki Mtemtiikn tukikurssi Hnnu Kivimäki Sisältö I Ensimmäinen välikoe Integrointi 2 Osittisintegrointi 5 3 Osmurtohjotelm 4 Lisää osmurtoj 4 5 Sijoituskeino 9 6 Määrätty integrli 2 7 Ylä- j lsumm 22 8 Määrätyn

Lisätiedot

4 Taso- ja avaruuskäyrät

4 Taso- ja avaruuskäyrät P2-luentoj kevät 2008, Pekk Alestlo 4 Tso- j vruuskäyrät Tässä luvuss tutustutn tso- j vruuskäyriin, niiden krenpituuteen j krevuuteen. Konkreettisin sovelluksin trkstelln nnettu rt pitkin liikkuvn hiukksen

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 3 Määrätyn integrlin lskeminen Aiemmin määrittelimme määrätyn integrlin f (x)dx funktion f (x) l- j yläsummien rj-rvon. Määrätyllä integrlill on kksi intuitiivist tulkint:.

Lisätiedot

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 +

i 2 n 3 ( (n 1)a (i + 1) 3 = 1 + I. INTEGRAALILASKENTA Arkhimedes (287 22 e.kr.) prbelin segmentin pint-l Newton (642 727) j Leibniz (646 76) keksivät diff.- j int.-lskennn Cuhy (789 857) ε, δ Riemnn (826 866) Riemnnin integrli Lebesgue

Lisätiedot

Numeerinen integrointi.

Numeerinen integrointi. Numeerinen integrointi. Differentili- j integrlilskent 1, syksy 2015 Hrri Vrpnen Mtemtiikn j systeeminlyysin litos Alto-yliopisto Tiisti 6.10.2015 Sisältö Tylor-menetelmä. Käyttökelpoinen silloin, kun

Lisätiedot

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Pitkän matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 0 Pitkän mtemtiikn YO-kokeen TI-Nspire CAS -rtkisut Tekijät: Olli Krkkulinen Rtkisut on ldittu TI-Nspire CAS -tietokoneohjelmll kättäen Muistiinpnot -sovellust. Kvt j lskut on kirjoitettu Mth -ruutuihin.

Lisätiedot

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita:

521. 522. 523. 524. 525. 526. 527. 12. Lisää määrätystä integraalista. 12.1. Integraalin arvioimisesta. Osoita: VASTAUS: Osoita: Osoita: 12. Lisää määrätystä integrlist 12.1. Integrlin rvioimisest 521. Osoit: 1 + x 2 22 1 < < 1 + x21 21. 522. Osoit: x 3 < 5 x 6 + 8x + 9 < 15 1 5. 523. Osoit: 2 2 < e x2 x < 2e 2. e 524. Olkoon k >. Osoit:

Lisätiedot

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista

Differentiaali- ja integraalilaskenta 1: tiivistelmä ja oheislukemista Differentili- j integrlilskent 1: tiivistelmä j oheislukemist Pekk Alestlo 4. syyskuut 2014 Tähdellä merkityt kohdt on trkoitettu lähinnä oheislukemistoksi. Lisäksi mukn on joitkin lukiot kertvi kohti,

Lisätiedot

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1

SARJAT JA DIFFERENTIAALIYHTÄLÖT Funktiojonot 1 SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 JOUNI PARKKONEN Sisältö 0. Tästä tekstistä. Funktiojonot 0. Tästä tekstistä Tämä moniste on trkoitettu käytettäväksi kurssin Srjt j differentiliyhtälöt luentomterilin.

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Kurssikert 5 1 Jtkuvuus Trkstelln funktiot fx) josskin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jtkuv ti epäjtkuv. Jtkuvuuden ymmärtää prhiten trkstelemll epäjtkuv

Lisätiedot

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS

11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS 11. MÄÄRÄTTY INTEGRAALI JA TILAVUUS Tilvuus on sen verrn rkielämässä viljelty käsite, että useimmiten sen syvemmin edes miettimättä ymmärretään, mitä juomlsin ti pikkuvuvn kylpymmeen tilvuudell trkoitetn.

Lisätiedot

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA

OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA OSA 1: POLYNOMILASKENNAN KERTAUSTA, BINOMIN LASKUSÄÄNTÖJÄ JA YHTÄLÖNRATKAISUA Tekijät: Ari Heimonen, Hellevi Kupil, Ktj Leinonen, Tuomo Tll, Hnn Tuhknen, Pekk Vrniemi Alkupl Tiedekeskus Tietomn torninvrtij

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ PISTEYTYSKOKOUS 0 MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 30 PISTEYTYSKOKOUS 0 ) Sijoitetn x 0 Rtkistn = 0/04,0000 b) Jos neliön sivu on s, niin lävistäjä on s Ehto: s 6 s + s = 6, s 6 3 4s 6,70, joten piiri ) Suorn yhtälö

Lisätiedot

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen

7 Funktiosarjoista. 7.1 Funktiosarjojen suppeneminen 7 Funktiosrjoist 7. Funktiosrjojen suppeneminen Seurvksi trkstelln srjoj, joiden termit ovt (lukujen sijst) jollkin välillä I määriteltyjä funktioit. Täsmällisemmin funktiosrjll (ti lyhyemmin srjll) trkoitetn

Lisätiedot

Analyysin perusteet kauppatieteilijöille 800118P

Analyysin perusteet kauppatieteilijöille 800118P Anlyysin perusteet kupptieteilijöille 800118P Luentomoniste Kri Myllylä Niin Korteslhti Topi Törmä Oulun yliopisto Mtemttisten tieteiden litos Kevät 2015 Sisältö 1 Derivtt 3 1.1 Määritelmä..............................

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Mtemtiikn tukikurssi Integrointi Integrointi on derivoinnin käänteistoimitus: jos funktion F(x) derivtt on f (x), niin funktion f (x) integrli on F(x). Täten, kosk esimerkiksi funktion x + e x derivtt

Lisätiedot

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia.

2 Riemann-integraali. 2.1 Porrasfunktion integraali. Aloitetaan integraalin täsmällinen määrittely tutkimalla porrasfunktion integraalia. 2 Riemnn-integrli 2.1 Porrsfunktion integrli Aloitetn integrlin täsmällinen määrittely tutkimll porrsfunktion integrli. Määritelmä 2.1 (Porrsfunktion integrli). Olkoon f : [, b] R porrsfunktio j P = {x

Lisätiedot

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2.

lim + 3 = lim = lim (1p.) (3p.) b) Lausekkeen täytyy supistua (x-2):lla, joten osoittajan nollakohta on 2. Mtemtiikk III 0600 Kurssi / Differetili- j itegrlilske jtkokurssi Tee 7 tehtävää ) Määritä lim ( ) ) + b) Määritä vkio site, että luseke ( ) + + ( )( ) ( + + ) + + + + + lim + lim lim (p) o jtkuv myös

Lisätiedot

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä?

Reaalinen lukualue. Millainen on luku, jossa on päättymätön ja jaksoton desimaalikehitelmä? Relinen lukulue POLYNOMIFUNKTIOT JA -YHTÄLÖT, MAA Millinen on luku, joss on päättymätön j jksoton desimlikehitelmä? Onko sellisi? Trkstelln Pythgorn luseest stv yksikköneliön lävistäjää, luku + = x x =.

Lisätiedot

Riemannin integraalista

Riemannin integraalista TAMPEREEN YLIOPISTO Pro grdu -tutkielm Aij Stenberg Riemnnin integrlist Mtemtiikn j tilstotieteen litos Mtemtiikk Syyskuu 2010 2 Tmpereen yliopisto Mtemtiikn j tilstotieteen litos STENBERG, AIJA: Riemnnin

Lisätiedot

Ristitulo ja skalaarikolmitulo

Ristitulo ja skalaarikolmitulo Ristitulo j sklrikolmitulo Opetussuunnitelmn 00 mukinen kurssi Vektorit (MAA) sisältää vektoreiden lskutoimituksist keskeisenä ineksen yhteenlskun, vähennyslskun, vektorin kertomisen luvull j vektoreiden

Lisätiedot

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin

Laudatur 10 MAA10 ratkaisut kertausharjoituksiin Ludtur MAA rtkisut kertushrjoituksiin Integrlifunktio. ) Jokin integrli funktio on esimerkiksi F( ) b) Kikki integrlifunktiot F( ) + C, missä C on vkio Vstus: ) F( ) b) F( ) + C, C on vkio. Kikki integrlifunktiot

Lisätiedot

MS-A010X Di erentiaali- ja integraalilaskenta Lukujoukot. 1.2 Jonot. 1.2 Perusongelmat. 1.3 Suppeneminen I. 1.2 Jonojen ominaisuuksia

MS-A010X Di erentiaali- ja integraalilaskenta Lukujoukot. 1.2 Jonot. 1.2 Perusongelmat. 1.3 Suppeneminen I. 1.2 Jonojen ominaisuuksia MS-AX Di erentili- j integrlilskent Pekk Alestlo Alto-yliopisto 24..26 Kiitokset Riikk Kortteelle, Jrmo Mliselle j kurssien opiskelijoille pinovirheiden korjuksist. Sisältö Nämä klvot sisältävät otsikoss

Lisätiedot

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R.

TEHTÄVÄ 1. Olkoon (f n ) jono jatkuvia funktioita f n : [a, b] R, joka suppenee välillä [a, b] tasaisesti kohti funktiota f : [a, b] R. Topologi I Hrjoitus 10, rtkisuj AP TEHTÄVÄ 1. Olkoon (f n ) jono jtkuvi funktioit f n : [, b] R, jok suppenee välillä [, b] tsisesti kohti funktiot f : [, b] R. Osoit, että tällöin f n (x) dx f(x) dx.

Lisätiedot

Sinilause ja kosinilause

Sinilause ja kosinilause Siniluse j kosiniluse GEOMETRI M3 Mikäli kolmion korkeus j knt tiedetään, voidn pint-l lske. Esimerkki: Lske kolmion l, kun 38 kulmn viereiset sivut ovt 8, j 6,8. Nyt knt tiedetään, korkeutt ei! 38 8,

Lisätiedot

Numeerinen integrointi

Numeerinen integrointi Pitkärnt: Lj mtemtiikk IX9 Numeerinen integrointi IX9 Numeerinen integrointi Numeerisell integroinnill trkoitetn määrätyn integrlin, eli reliluvun I(f,,b) = f(x)dx lskemist numeerisin keinoin (likimäärin)

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 5.2.2013

Preliminäärikoe Pitkä Matematiikka 5.2.2013 Preliminäärikoe Pitkä Mtemtiikk 5..0 Kokeess s vstt enintään kymmeneen tehtävään. Tähdellä ( * ) merkittyjen tehtävien mksimipistemäärä on 9, muiden tehtävien mksimipistemäärä on 6.. ) Rtkise yhtälö b)

Lisätiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot

Kertymäfunktio. Kertymäfunktio. Kertymäfunktio: Mitä opimme? 2/2. Kertymäfunktio: Mitä opimme? 1/2. Kertymäfunktio: Esitiedot TKK (c) Ilkk Mellin (24) 1 Johdtus todennäköisyyslskentn TKK (c) Ilkk Mellin (24) 2 : Mitä opimme? 1/2 Jos stunnisilmiötä hlutn mllint mtemttisesti, on ilmiön tulosvihtoehdot kuvttv numeerisess muodoss.

Lisätiedot

Sarjat ja integraalit

Sarjat ja integraalit Srjt j integrlit c Mtemttisten tieteiden litos, Oulun yliopisto Versio: 9.3.0 Viimeksi muoknnut: Peter Hästö Sisältö Funktion rj-rvo j jtkuvuus. Peruskäsitteitä........................................

Lisätiedot

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15

Sisältö. Funktiojonot ja -sarjat 10. syyskuuta 2005 sivu 1 / 15 Funktiojonot j -srjt 10. syyskuut 2005 sivu 1 / 15 Sisältö 1 Funktiojonoist 2 2 Funktiosrjoist 5 3 Funktiojonojen j -srjojen derivointi j integrointi 7 4 Potenssisrjt 9 5 Tylorin polynomit j srjt 12 5.1

Lisätiedot

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön.

funktion voi tarkistaa derivoimalla. Sijoitusmenettely perustuu ketjusääntöön. I.6. Sijoitusmenettely A. Integrlifunktiot Integrlifunktiot etsittäessä on sopiv derivoimissääntö luettv tkperin. funktion voi trkist derivoimll. Sijoitusmenettely perustuu ketjusääntöön. Löydetyn 6..

Lisätiedot

Kuvausta f sanotaan tällöin isomorfismiksi.

Kuvausta f sanotaan tällöin isomorfismiksi. Määritelmä..12. Oletetn, että 1 =(V 1,E 1 ) j 2 =(V 2,E 2 ) ovt yksinkertisi verkkoj. Verkot 1 j 2 ovt isomorfiset, jos seurvt ehdot toteutuvt: (1) on olemss bijektio f : V 1 V 2 (2) kikill, b V 1 pätee,

Lisätiedot

Lebesguen integraali - Rieszin määritelmä

Lebesguen integraali - Rieszin määritelmä Lebesguen integrli - Rieszin määritelmä Tru Lehtonen Mtemtiikn pro grdu-tutkielm Jyväskylän yliopisto Mtemtiikn j tilstotieteen litos Kevät 216 Tiivistelmä Jyväskylän Yliopisto Lehtonen, Tru Puliin: Lebesguen

Lisätiedot

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa Sisältö MS-AX Differentili- j integrlilskent Pekk Alestlo Alto-yliopisto.9.26 Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä

Lisätiedot

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat. 1.2 Jonot. jossa Sisältö MS-AX Differentili- j integrlilskent Nämä klvot sisältävät otsikoss minitun kurssin keskeisen mterilin, mutt myös pljon oheislukemist. Luennoill voidn käsitellä myös täydentäviä esimerkkejä, kosk

Lisätiedot

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.2014 Ratkaisut ja arvostelu VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 3.6.4 Rtkisut j rvostelu. Koululisen todistuksen keskirvo x on lskettu ) b) c) d) kymmenen ineen perusteell. Jos koululinen nostisi neljän ineen

Lisätiedot

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa

Luku 15. Integraali. Esimerkki Suoraan edellisen luvun derivointikaavojen perusteella on voimassa Luku 5. Integrli Merkitsemme seurvss [, b]:llä lukusuorn suljettu väliä { R : b}. Olkoon f välillä [, b] määritelty funktio. Snomme, että välillä [, b] määritelty funktio g on funktion f integrlifunktio

Lisätiedot

2.2 Monotoniset jonot

2.2 Monotoniset jonot Mtemtiik tito 9, RATKAISUT Mootoiset joot ) Kosk,,,, ii 0 Lukujoo ( ) o siis lhlt rjoitettu Toislt 0 Lukujoo (

Lisätiedot

Monikulmion pinta-ala ylioppilaille

Monikulmion pinta-ala ylioppilaille Solmu 3/9 Monikulmion pint-l lioppilille Mik Koskenoj Mtemtiikn j tilstotieteen litos Helsingin liopisto Tehtävä. Kuusikulmion M kärjet ovt tson pisteissä (, ), (3, ), (, ), (4, 3), (, ) j (, ). Lske M:n

Lisätiedot

Matematiikan perusteet taloustieteilijöille 2 800118P

Matematiikan perusteet taloustieteilijöille 2 800118P Mtemtiikn perusteet tloustieteilijöille 2 800118P Luentomoniste Kri Myllylä Niin Korteslhti Oulun yliopisto Mtemttisten tieteiden litos Kevät 2014 Sisältö 1 Mtriisilgebr j optimointi 4 11 Määritelmä 4

Lisätiedot

Analyyttiset funktiot ja integrointiteorian alkeita

Analyyttiset funktiot ja integrointiteorian alkeita Anlyyttiset funktiot j integrointiteorin lkeit 6. helmikuut 2006 isältö 1 Kertust 1 2 Anlyyttiset funktiot 2 2.1 Anlyyttiset funktiot tsoll................... 2 2.2 Monogeeniset funktiot vruudess R n.............

Lisätiedot

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja

5 ( 1 3 )k, c) AB 3AC ja AB AC sekä vektoreiden AB ja MATEMATIIKAN PERUSKURSSI I Hrjoitustehtäviä syksy 4. Millä reliluvun rvoill ) 9 =, b) + +, e) 5?. Kirjoit Σ-merkkiä käyttäen summt 4, ) + 4 + 6 + +, b) 8 + 4 6 + + n n, c) + + + 4 + + 99, d)

Lisätiedot

Matemaattiset menetelmät I. Seppo Hassi

Matemaattiset menetelmät I. Seppo Hassi Mtemttiset menetelmät I Seppo Hssi Syksy 2011 iii Esipuhe Tämä on 1. versio Mtemttiset menetelmät I-kurssin opetusmonisteest, jok perustuu Vsn yliopistoss luennoimni vstvn nimiseen kurssiin. Sisältö noudtt

Lisätiedot

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause

Pythagoraan lause. Pythagoras Samoslainen. Pythagoraan lause Pythgorn luse Pythgors Smoslinen Pythgors on legendrinen kreikklinen mtemtiikko j filosofi. Tiedot hänen elämästään ovt epävrmoj j ristiriitisi. Tärkein Pythgorst j pythgorlisi koskev lähde on Lmlihosin

Lisätiedot

MITEN MÄÄRITÄN ASYMPTOOTIT?

MITEN MÄÄRITÄN ASYMPTOOTIT? MITEN MÄÄRITÄN ASYMPTOOTIT? Asmptootti Asmptootti on suor ti muu kärä, jot funktion kuvj f() rjtt lähest, kun muuttujn rvot lähestvät tiettä luku ti ääretöntä. Rjoitutn luksi niihin tpuksiin, joiss smptootti

Lisätiedot

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat / Jonot / 200. jossa / 200

1 Jonot. 2 Sarjat. 3 Jatkuvuus. 4 Derivaatta. 5 Taylor-polynomit ja -sarjat / Jonot / 200. jossa / 200 MS-AX Differentili- j integrlilskent Pekk Alestlo Alto-yliopisto 24..26 Kiitokset Riikk Kortteelle, Jrmo Mliselle j kurssien opiskelijoille pinovirheiden korjuksist. 24..26 Kiitokset Riikk Kortteelle,

Lisätiedot

Riemann-integraalin ja mittaintegraalin vertailua

Riemann-integraalin ja mittaintegraalin vertailua Riemnn-integrlin j mittintegrlin vertilu Pro grdu -tutkielm Pii Tskinen Mtemttisten tieteiden litos Oulun yliopisto Kevät 216 Sisältö Johdnto 3 1 Esitietoj 5 1.1 Välijost............................. 5

Lisätiedot

Differentiaali- ja integraalilaskenta 1

Differentiaali- ja integraalilaskenta 1 (DRAFT) Differentili- j integrlilskent 1 Hrri Vrpnen October 16, 2015 2 Esipuhe Tätä monistett on kirjoitettu Alto-yliopiston mtemtiikn j systeeminlyysin litoksen syksyn 2015 periodin I kursseill MS-A0103

Lisätiedot

sin θ θ θ r 2 sin 2 θ φ 2 = 0.

sin θ θ θ r 2 sin 2 θ φ 2 = 0. Mtemtiikn j tilstotieteen litos Osittisdifferentiliyhtälöt Kevät 21 Hrjoitus 9 Rtkisuj Jussi Mrtin 1. Osoit, että Lplce-yhtälö pllokoordinteiss on 2 u 1 r 2 2 u r r 1 r 2 sin θ u 1 2 u sin θ θ θ r 2 sin

Lisätiedot

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko

3.3 KIELIOPPIEN JÄSENNYSONGELMA Ratkaistava tehtävä: Annettu yhteydetön kielioppi G ja merkkijono x. Onko 3.3 KILIOPPIN JÄSNNYSONGLMA Rtkistv tehtävä: Annettu yhteydetön kielioppi G j merkkijono x. Onko x L(G)? Rtkisumenetelmä = jäsennyslgoritmi. Useit vihtoehtoisi menetelmiä, erityisesti kun G on jotin rjoitettu

Lisätiedot

Differentiaali- ja integraalilaskenta 1

Differentiaali- ja integraalilaskenta 1 (DRAFT) Differentili- j integrlilskent 1 Hrri Vrpnen October 16, 2015 2 Esipuhe Tätä monistett on kirjoitettu Alto-yliopiston mtemtiikn j systeeminlyysin litoksen syksyn 2015 periodin I kursseill MS-A0103

Lisätiedot

Säännöllisten operaattoreiden täydentäviä muistiinpanoja

Säännöllisten operaattoreiden täydentäviä muistiinpanoja Säännöllisten operttoreiden täydentäviä muistiinpnoj Antti-Juhni Kijnho 1. huhtikuut 2011 Vnht määritelmät Määritelmä 1. Äärellinen epätyhjä joukko on merkistö, j sen lkioit kutsutn merkeiksi. Määritelmä

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 2009 Sisältö Relilukujen peruskäsitteitä 2 Lukujonoist 3 2. Lukujonon rj-rvo....................... 3 2.2 Monotoniset jonot......................... 7 2.3 Osjonot..............................

Lisätiedot

4 DETERMINANTTI JA KÄÄNTEISMATRIISI

4 DETERMINANTTI JA KÄÄNTEISMATRIISI 4 DETERMINANTTI JA KÄÄNTEISMATRIISI Neliömtriisin determinntti Neliömtriisin A determinntti on luku, jot merkitään det(a) ti A. Lskeminen: -mtriisin A determinntti: det(a) -mtriisin A determinntti esim.

Lisätiedot

Analyysi B. Derivaatta ja integraali. Pertti Koivisto

Analyysi B. Derivaatta ja integraali. Pertti Koivisto Anlyysi B Derivtt j integrli Pertti Koivisto Kevät 7 Alkusnt Tämä moniste on trkoitettu oheislukemistoksi Tmpereen yliopistoss pidettävälle kurssille Anlyysi B. Monisteen tvoitteen on tuke luentojen seurmist,

Lisätiedot

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita.

Esimerkki 8.1 Määritellään operaattori A = x + d/dx. Laske Af, kun f = asin(bx). Tässä a ja b ovat vakioita. 8. Operttorit, mtriisit j ryhmäteori Mtemttinen operttori määrittelee opertion, jonk mukn sille nnettu funktiot muoktn. Operttorit ovt erityisen tärkeitä kvnttimekniikss, kosk siinä jokist suurett vst

Lisätiedot

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta.

A-Osio. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat. A-osiossa ei saa käyttää laskinta. MAA Loppukoe 5.. Jussi Tyni Tee pisteytysruudukko konseptin yläreunn! Vstuksiin väliviheet, jotk perustelevt vstuksesi! Lue ohjeet huolellisesti! A-Osio. Vlitse seurvist kolmest tehtävästä kksi, joihin

Lisätiedot

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten

Pintaintegraali. i j k cos(θ) sin(θ) 1. = r cos(θ)i r sin(θ)j + rk, r sin(θ) r cos(θ) 0 joten .4.8 intintegrli. He krtion z x + y sylinterin x + y y sisäpuolelle jäävän osn pint-l käyttämällä npkoordinttej x r cosθ j y r sinθ jolloin epäyhtälö x + y y on r sinθ. Rtkisu: Symmetrin nojll voidn trkstell

Lisätiedot

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1

Painopiste. josta edelleen. x i m i. (1) m L A TEX 1 ( ) x 1... x k µ x k+1... x n. m 1 g... m n g. Kuva 1. i=1. i=k+1. i=1 Pinopiste Snomme ts-ineiseksi kpplett, jonk mteriliss ei ole sisäisiä tiheyden vihteluj. Tällisen kppleen pinopisteen sijinti voidn joskus päätellä kppleen muodon perusteell. Esimerkiksi ts-ineisen pllon

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 ANALYYSI I, kevät 009 Sisältö Relilukujen peruskäsitteitä Lukujonoist 4. Lukujonon rj-rvo....................... 4. Monotoniset jonot..........................3 Osjonot.............................. 7.4

Lisätiedot

Matematiikan peruskurssi. Seppo Hassi

Matematiikan peruskurssi. Seppo Hassi Mtemtiikn peruskurssi Seppo Hssi Syksy 2014 iii Esipuhe Tämä on 1. versio Mtemtiikn peruskurssin opetusmonisteest, jonk sisältö noudttelee pitkälti Vsn yliopistoss iemmin luennoimni Mtemttiset menetelmät

Lisätiedot

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on

Neliömatriisin A determinantti on luku, jota merkitään det(a) tai A. Se lasketaan seuraavasti: determinantti on 4. DETERINANTTI JA KÄÄNTEISATRIISI 6 4. Neliömtriisi determitti Neliömtriisi A determitti o luku, jot merkitää det(a) ti A. Se lsket seurvsti: -mtriisi A determitti o det(a) () -mtriisi A determitti void

Lisätiedot

Polynomien laskutoimitukset

Polynomien laskutoimitukset Polyomie lskutoimitukset Polyomi o summluseke, joss jokie yhteelskettv (termi) sisältää vi vkio j muuttuj välisiä kertolskuj. Esimerkki 0. Mm., 6 j ovt polyomej. Polyomist, joss o vi yksi termi, käytetää

Lisätiedot

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita:

2.6 SÄÄNNÖLLISET LAUSEKKEET Automaattimalleista poikkeava tapa kuvata yksinkertaisia kieliä. Olkoot A ja B aakkoston Σ kieliä. Perusoperaatioita: 2.6 SÄÄNNÖLLISET LAUSEKKEET Automttimlleist poikkev tp kuvt yksinkertisi kieliä. Olkoot A j B kkoston Σ kieliä. Perusopertioit: Yhdiste: A B = {x Σ x A ti x B}; Ktentio: AB = {xy Σ x A, y B}; Potenssit:

Lisätiedot

ANALYYSI I, kevät 2009

ANALYYSI I, kevät 2009 5 Riemnnin integrli 7 ANALYYSI I, kevät 9 5. Integrlin perusominisuuksi................. 76 5. Anlyysin perusluse....................... 8 Sisältö Relilukujen peruskäsitteitä Lukujonoist 3. Lukujonon rj-rvo.......................

Lisätiedot

VEKTOREILLA LASKEMINEN

VEKTOREILLA LASKEMINEN ..07 VEKTOREILL LSKEMINEN YHTEENLSKU VEKTORIT, M4 Vektoreiden j summ on vektori +. Tämän summvektorin + lkupiste on vektorin lkupiste j loppupiste vektorin loppupiste, kun vektorin lkupisteenä on vektorin

Lisätiedot

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos 19.9.2016 Pekka Alestalo, Jarmo

Lisätiedot

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi!

Tee B-osion konseptiin etusivulle pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Välivaiheet perustelevat vastauksesi! MAA8 Koe 4.4.016 Jussi Tyni Tee B-osion konseptiin etusivulle pisteytysruudukko! Muist kirjt nimesi j ryhmäsi. Väliviheet perustelevt vstuksesi! A-osio. Ilmn lskint. MAOLi s käyttää. Mksimissn 1h ik. Lske

Lisätiedot

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi Tehtävä. Jtk loogisesti oheisi jonoj khdell seurvksi tulevll termillä. Perustele vstuksesi lyhyesti. ), c, e, g, b),,, 7,, Rtkisut: ) i j k - oike perustelu j oiket kirjimet, nnetn p - oike perustelu,

Lisätiedot

R4 Harjoitustehtävien ratkaisut

R4 Harjoitustehtävien ratkaisut . Mitkä seurvist lusekkeist eivät ole polynomej? Miksi eivät? Polynomin termine eksponentti on luonnollinen luku, ne lusekkeet, joiss eksponentti ei ole luonnollinen luku ei ole myöskään polynomi.. x x

Lisätiedot

ANALYYSI 3. Tero Kilpeläinen

ANALYYSI 3. Tero Kilpeläinen ANALYYSI 3 Tero Kilpeläinen Luentomuistiinpnoj syksyltä 2005 20. lokkuut 2005 Sisältö 1. Esitietoj 2 1.1. Riemnn-integrli............................ 2 1.2. Derivtt................................. 4 1.3.

Lisätiedot

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek

.) (b) Vertaa p :tä vastaavaa kineettistä energiaa perustilan kokonaisenergiaan. ( ) ( ) = = Ek S-446, FYSIIKKA IV (Sf) Kevät 5, HSf Rtkisut HSf- Kvnttimekninen hrmoninen värähtelijä on perustillln (mss m) Värähtelyn mplitudi on A () ske p (Värähtelijä sijitsee välillä A ) (b) Vert p :tä vstv kineettistä

Lisätiedot

Mika Hirvensalo. Insinöörimatematiikka B 2014

Mika Hirvensalo. Insinöörimatematiikka B 2014 Mik Hirvenslo Insinöörimtemtiikk B 4 Sisältö Rj-rvo j jtkuvuus....................................................... 5. Differentili- j integrlilskennn kehityksestä............................. 5. Relilukujen

Lisätiedot

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa

Integraalilaskennasta lukiossa ja lukion oppikirjasarjoissa Integrlilskennst lukioss j lukion oppikirjsrjoiss Mtemtiikn pro grdu -tutkielm Mikko Huttunen Helsingin yliopisto 14. mliskuut 2013 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunt/Ossto

Lisätiedot