VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

Koko: px
Aloita esitys sivulta:

Download "VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali"

Transkriptio

1 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin ämän yyppinn uormius on impulsiivinn voima, jolla on hyvin suuri vaioarvo F hyvin lyhyn ajan. Dynamiiassa osoiaan, ä voiman F impulssi on sn aihuama sysmin liimäärän muuos. Kun x& ja x& 2 ova massan m nopu nnn impulsiivisn voiman vaiuusa ja sn jäln, on impulssin suuruus I F F m x& m x& () 2 Ylinn impulssiuormius aroiaa uvan uormiusilanna, jossa sysmiin vaiuaa hllä voima, jona impulssi on I F. Impulssin suuruull voiaan irjoiaa F() I F I lim F() (2) F Tarasllaan uvan 2 sysmin vasa, un siihn ohisuu hllä voima, jona impulssi on I F. Olaan, ä nnn impulssin vaiuusa sysmi on lvossa saaisssa asapainoasmassaan li x ( ) ja x &( ). Impulssin vaiuua sysmi saa aluilan x ( ) ja &( ), jossa siirymän jauvuun aia on x ( ) x Kuva. Impulssiuormius. ja aavan () pruslla x& ( ) / m. Vas on vaimnvaa ominaisvärählyä hn aluhojn muaissi. Kun vaimnnus on aliriiinn, on raaisu aiavälillä > sssion VMS9 aavojn (5) ja (6) pruslla m F() c x x() ζω Raaisua (3) sanoaan impulssivassi. Jos riyissi I F, on ysssä ysiöimpulssivas h() h() ζω (3) (4) Kuva 2. Sysmi. Kuvassa 3 on yypillinn ysiöimpulssivasn uvaaja.

2 7/2 h() Jos vaimnnusa i ol, on ζ ja ω ω, jolloin impulssivas ja ysiöimpulssivas ova x() (5) h() (6) Kuva 3. Ysiöimpulssivas. DUHAMELIN INTEGRAALI Käyämällä hyväsi impulssiuormiusa vasaavaa siirymävasa (3) voiaan hiää ylismpin uormiusfunioin äsilyyn sopiva analyyinn raaisumnlmä. Tää mnlmää sanoaan Duhamlin ingraalisi. Sn avulla on mahollisa löyää siirymävasn analyyinn raaisu monssa apausssa. Kovin muiain uormiusfunioin analyyisn äsilyyn i Duhamlin ingraali sovllu, sillä mamaais laus ulva liian hanalisi, mua numrinn raaisu on silloinin mahollinn. Duhamlin ingraali prusuu yhnlasupriaasn, jon mnlmää voiaan sovlaa vain linaarisill sysmill. Tarasllaan uvassa 2 siyä jousi-massavaimnnin sysmiä, joa on alusi lvossa asapainoasmassaan, unns siihn vaiuaa uvan 4 muainn uormiushrä. Kuormius voiaan ulia sarjasi prääisiä impulssiuormiusia, joisa uvassa on siy milivalaisa hä s vasaava impulssi F() I F(s)s (7) s I F(s) s Täsä aihuuu sysmiin siirymävas x (), joa saaaan aavasa (3) oamalla huomioon, ä impulssi vaiuaa hllä s. Kuva 4. Duhamlin ingraali. x() F(s)s ζω ( s ) ( s) (8) Siirymävas x () hllä saaaan lasmalla yhn nnn hä ullin impulssin vaiuus. Tämä mris siä, ä aavassa (8) ingroiaan muuujan s suhn välillä, jolloin siis on ingroiassa vaio. Näin saaaan siirymävasn lasmissi aliriiisn vaimnnusn apausssa Duhamlin ingraali ζω ( s ) x () F(s) ( s)s (9)

3 7/3 Jos vaimnnusa i ol, on ζ ja ω ω ja aava (9) ysinraisuu muooon x () F(s)( s)s () Kaavoja (9) ja () voiaan sovlaa siirymävasn lasnaan, jos sysmi on hllä lvossa asapainoasmassaan. Jos aluho x( ) ja x& ( ) ova nollasa poiava, on raaisussa muana myös näin aluhojn muainn ominaisvärähly. Tällöin on aavan (9) raaisuun lisäävä sssion VMS9 aavojn (5) ja (6) muainn rmi ja raaisuun () sssion VMS7 aavan (9) muainn rmi. ESIMERKKI VMS7E F F() Sovllaan Duhamlin ingraalia uvan 5 olmiopulssiuormiusa vasaavan siirymävasn lasnaan, un vaimnnusa i ol ja sysmin aluho ova nollia. Kuormiusfunion laus on Kuva 5. Kolmiopulssi. F () F / > Kaavasa () suraa vassi aiavälillä F x() F s( s )s F ωs( s )s ωscosωss cosω ωsss jolloin on sovllu ominaisulmaaajuun määrilmää ja sinin vähnnyslasuaavaa. Vasn x () lausssa olva ingraali voiaan lasa osiaisingroinnilla. Rajojn sijoiamisn jäln saaaan ulos ωscosωss cosω ω ω ωs ss cosω ω Kun ulos sijoiaan vasn x () laussn ja sivnnään, ul raaisusi x() F ω Aiavälill > saaaan vasaavasi

4 7/4 x () F s( s )s sillä F (), un >. Ingraali on rajaa luuun oamaa sama uin llä alussa. Vasn x () laussi ul F x() ( cosω ) cosω( cosω ) ω ω ω Tämä saaaan rigonomrian avulla muooon F x () cosω( ) ( ) > ω ω Alla on siy siirymävasn uvaaja, un sysmin paramrilla on arvo m 33g, 5N/m, F 5N ja s. Tällöin on ω 2,39ra/ s ja τ,5s, jon uormiuspulssin soaia 2 τ..2 Siirymävasn uvaaja.. x () Esimrisä näyy Duhamlin ingraalin hious. Mlo ysinraisisain uormiusmallisa suraava hanala lasu.

5 7/5 HARJOITUS VMS7H F() I I 2 Kuvan 2 sysmin paramri ova m 5g, 2N/ m ja c Ns /m. Sysmiin vaiuaa asi prääisä impulssiuormiusa, join impulssi ova I 2Ns ja I 2 Ns. Raais sysmin siirymin laus, un a), 5 τ ja b) τ, jossa τ on sysmin ominaisvärähysaia. Piirrä siirymin uvaaja ja si niin masimioha ja -arvo. Vas. a) max,76s xmax,85m b) max,39s xmax,228m Vihj: HARJOITUS VMS7H2 F() F Kuvan 2 sysmiin ohisuu ohisn uvan muainn asluormius. Raais sysmin siirymävasn x () laus Duhamlin ingraalia äyän, un aluho ova nollia. Piirrä siirymävasn uvaaja, un m 33g, 5N/ m, F 5N ja vaimnnussuh ζ on a), 2, b), ja c). Tarisa ulos liiioson avulla. Kuina suuria ova masimisiirymä vrrauna arvoon F /, joa on saaisn voiman F aihuama jousn piuunmuuos? F ζω ζω Vas. x() cosω ω a) x max, 527 b) x max, 729 c) 2 x max Vihj: Liiioso: Doumni las jousi-massa-vaimnnin-sysmin siirymän Duhamlin ingraalisa, un sysmiin vaiuaa uormius F().

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

Luento 7 Järjestelmien ylläpito

Luento 7 Järjestelmien ylläpito Luno 7 Järjslmin ylläpio Ahi Salo Tknillinn korkakoulu PL, 5 TKK Järjslmin ylläpidosa Priaallisia vaihohoja Uusiminn rplacmn Ennalahkäisvä huolo mainnanc Korjaaminn rpair ❶ Uusiminn Vioiun komponni korvaaan

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen

VÄRÄHTELYMEKANIIKKA SESSIO 19: Usean vapausasteen systeemin liikeyhtälöiden johto Newtonin lakia käyttäen 9/ VÄRÄHTELYMEKANIIKKA SESSIO 9: Usean vapausasteen systeemin liieyhtälöiden johto Newtonin laia äyttäen JOHDANTO Usean vapausasteen systeemillä taroitetaan meaanista systeemiä, jona liietilan uvaamiseen

Lisätiedot

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA

(1 + i) + JA. t=1. t=1. (1 + i) n (1 + i) n. = H + k (1 + i)n 1 i(1 + i) n + JA Investoinnin annattavuuden mittareita Opetusmonisteessa on asi sivua, joilla on hyvin lyhyesti uvattu jouo mittareita. Seuraavassa on muutama lisäommentti ja aavan-johto. Tarastelemme projetia, jona perusinvestointi

Lisätiedot

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora

Lisätiedot

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +.

ẍ(t) q(t)x(t) = f(t) 0 1 z(t) +. Diffrniaaliyhälö II, harjoius 3, 8 228, rakaisu JL, kuusi sivua a On muunnava linaarinn oisn kraluvun diffrniaaliyhälö ẍ qx f yhäpiäväksi nsimmäisn kraluvun linaarisksi kahdn skalaariyhälön sysmiksi Rak

Lisätiedot

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet

Muuttuvan kokonaissensitiivisyyden mallinnus valvontaohjelman riskinarvioinnissa esimerkkinä munintaparvet Muuuvan kokonaissnsiiivisyyn mallinnus valvonaohjlman riskinarvioinnissa simrkkinä muninaarv Tausa: Aimma salmonllarojki FooBUG rojki ja uusi malli muninaarvill 8. EFSA WG: salmonlla muninaarvissa. Samaa

Lisätiedot

Palkkielementti hum 3.10.13

Palkkielementti hum 3.10.13 Palilmntti hum.0. Palilmnttjä Tarastllaan tässä sitysssä vain Eulr-Brnoullin palitoriaan prustuvia palilmnttjä. Tässä palitoriassa olttaan, ttä palin poiiliaus säilyy taivutttunain tasona, joa on ohtisuorassa

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi

VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi 02/1 VÄRÄHTELYMEKANIIKKA SESSIO 02: Vapausasteet, värähtelyiden analysointi VAPAUSASTEET Valittaessa systeeille lasentaallia tulee yös sen vapausasteiden luuäärä äärätysi. Tää taroittaa seuraavaa: Lasentaallin

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte

VÄRÄHTELYMEKANIIKKA SESSIO 14: Yhden vapausasteen vaimeneva pakkovärähtely, harmoninen kuormitusheräte 4/ VÄRÄHTELYMEKANIIKKA SESSIO 4: Yhden vaausaseen vaieneva akkvärähely, harninen kuriusheräe LIIKEYHTÄLÖN JOHTO JA RATKAISU Kuvassa n esiey visksisi vaienneun yhden vaausaseen harnisen akkvärähelijän erusalli.

Lisätiedot

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla

2.8 Mallintaminen ensimmäisen asteen polynomifunktion avulla MAB Matemaattisia malleja I.8. Mallintaminen ensimmäisen asteen.8 Mallintaminen ensimmäisen asteen polynomifuntion avulla Tutustutaan mallintamiseen esimerien autta. Esimeri.8. Määritä suoran yhtälö, un

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen

VÄRÄHTELYMEKANIIKKA SESSIO 21: Usean vapausasteen systeemin liikeyhtälöiden johto Lagrangen / ÄRÄHELYMEKANIIKKA SESSIO : Usean vapausasteen systeein liieyhtälöien johto Lagrangen yhtälöillä JOHDANO Kirjoitettaessa liieyhtälöitä suoraan Newtonin laeista äytetään systeeistä irrotettujen osien tai

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön?

a) Miksi signaalin jaksollisuus on tärkeä ominaisuus? Miten jaksollisuus vaikuttaa signaalin taajuussisältöön? L53, Sinaalioria J. Laiinn..5 E3SN, E3SN5Z Väliko, rakaisu Vasaa lyhysi suraaviin kysymyksiin. 6p a Miksi sinaalin aksollisuus on ärkä ominaisuus? Min aksollisuus vaikuaa sinaalin aauussisälöön? b Miä

Lisätiedot

VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA

VAIHELUKKOTEKNIIKKA JA TAKAISINKYTKETYT DEMODULAATTORIT KULMAMODULAATION ILMAISUSSA VIHELUOTENII J TISINYTETYT DEMODULTTORIT ULMMODULTION ILMISUSS Vaihohoinn ilmaisumnlmä kulmamoulaaioill? 5357 Tioliiknnkniikka I Osa 9 ari ärkkäinn ä 05 VIHELUO PLL FM & PM -ILMISINPIIRINÄ Ellä on arkaslu

Lisätiedot

2 Taylor-polynomit ja -sarjat

2 Taylor-polynomit ja -sarjat 2 Taylor-polynomit ja -sarjat 2. Taylor-polynomi Taylor-polynomi P n (x; x 0 ) funtion paras n-asteinen polynomiapprosimaatio (derivoinnin annalta) pisteen x 0 lähellä. Maclaurin-polynomi: tapaus x 0 0.

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 13: Yhden vapausasteen vaimenematon pakkovärähtely, herätteenä roottorin epätasapaino tai alustan liike

VÄRÄHTELYMEKANIIKKA SESSIO 13: Yhden vapausasteen vaimenematon pakkovärähtely, herätteenä roottorin epätasapaino tai alustan liike / VÄRÄHELYMEKANIIKKA SESSIO : Yhde vapausasee vaieeao paoväähely, heäeeä oooi epäasapaio ai alusa liie ROOORIN EPÄASAPAINO Haoisesi vaiheleva paovoia voi esiiyä pyöivie oeeosie yheydessä. aasellaa esieiä

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille

Rahoitusriskit ja johdannaiset Matti Estola. luento 13 Black-Scholes malli optioiden hinnoille Rahoiusriski ja johannaise Mai Esola lueno 3 Black-choles malli opioien hinnoille . Ion lemma Japanilainen maemaaikko Kiyoshi Iō oisi seuraavana esieävän lemman vuonna 95 arikkelissaan: On sochasic ifferenial

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 09: Yhden vapausasteen vaimeneva ominaisvärähtely

VÄRÄHTELYMEKANIIKKA SESSIO 09: Yhden vapausasteen vaimeneva ominaisvärähtely 9/ VÄRÄHTELYMEKNKK SESSO 9: Yhn vpun vinv oinivärähly LKEYHTÄLÖ Viooi vinnu vinnuvoin oln olvn uorn vrrnnollinn värählvän n nopun li F v () jo on vinnuvio. Kuv on viooii vinnun värählijän prulli, jo vinnu

Lisätiedot

Koska yhteys tavalliseen eksponenttifunktion sarjakehitelmään on selvä, asetetaan seuraava määritelmä.

Koska yhteys tavalliseen eksponenttifunktion sarjakehitelmään on selvä, asetetaan seuraava määritelmä. Ma-.433/433/45 Mariisiksponnifunkio, K3/P3/V3, syksy 22 Pkka Alsalo/(Hikki Apiola) Pkan ysävällissi käyööni anamaan lähkooiin oln hny omia lisäyksiäni, HA Viiiä [TE] Timo Eirola: Linaarialgbra, lunomonis

Lisätiedot

Variations on the Black-Scholes Model

Variations on the Black-Scholes Model Variations on th Black-Schols Mol Sovlltun matmatiikan jatko-opintosminaari 6.9 Koh-tuus maksaa osinkoja avoittna on tarkastlla tilantita, joissa B&S yhtälö i ol riittävä sllaisnaan (sim. option koh-tuus

Lisätiedot

Yhden vapausasteen värähtely - harjoitustehtäviä

Yhden vapausasteen värähtely - harjoitustehtäviä Dynaiia 1 Liie luuun 8. g 8.1 Kuvan jousi-assa syseeissä on = 10 g ja = 2,5 N/. Siiryä iaaan saaisesa asapainoaseasa lähien. luheellä = 0 s assa on saaisessa asapainoaseassaan ja sillä on nopeus 0,5 /

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 10: Avaruusristikon sauvaelementti.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 10: Avaruusristikon sauvaelementti. / EEMEIMEEEMÄ PERSEE SESSIO : Avasistion savalmntti. AVARSRISIKO EEMEIVERKKO Avasistion taaan ataisn päästään ättämällä lmnttivoa jona solmt ovat istion nivlin ohdilla in istion sava on lmntti. Kvassa

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

Eksponentti- ja logaritmiyhtälö

Eksponentti- ja logaritmiyhtälö Esponentti- ja logaritmiyhtälö Esponenttifuntio Oloon a 1 positiivinen reaaliluu. Reaalifuntiota f() = a nimitetään esponenttifuntiosi ja luua a sen antaluvusi. Jos a > 1, niin esponenttifuntio f : R R,

Lisätiedot

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt:

2. Tutki toteuttaako seuraava vapaassa tilassa oleva kenttä Maxwellin yhtälöt: 84 RDIOTKNIIKN PRUSTT aois. Las a gadini f, n f,, b divgnssi, n c oooi, n on n b- ohdassa.. Ti oaao saava vapaassa ilassa olva nä Mawllin hälö:.. Oloon vapaassa ilassa sähönä oplsivoina sinä. Määiä a aallon

Lisätiedot

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely.

Vakuutusteknisistä riskeistä johtuvien suureiden laskemista varten käytettävä vakuutuslajiryhmittely. 1144/2011 7 Liite 1 Vauutustenisistä riseistä johtuvien suureiden lasemista varten äytettävä vauutuslajiryhmittely. Vauutuslajiryhmä Vauutusluoat Ensivauutus 1 Laisääteinen tapaturma 1 (laisääteinen) 2

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

Matemaattinen Analyysi

Matemaattinen Analyysi Vaasan yliopisto, evät 05 / ORMS00 Matemaattinen Analyysi 6. harjoitus. Approsimoi toisen asteen polynomilla P(x) = b 0 +b x+b x oheisen tauluon muaisia havaintoja. (Teorian löydät opetusmonisteen sivuilta

Lisätiedot

Naulalevylausunto LL13 naulalevylle

Naulalevylausunto LL13 naulalevylle LAUSUNTO NRO VTT-S-3259-12 1 (4) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 151 Lahti 27.4.212 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 11, 244 VTT Puh. 2 722 5566, Fax. 2 722 73

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1

VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1 / VÄRÄHTELYEANIIA SESSIO : Usean vapausasteen vaeneaton onasvärähtely osa JOHDANTO Usean vapausasteen systeen leyhtälöt ovat ylesessä tapausessa uotoa [ ]{ & } [ C]{ & } [ ] { } { F} & ( un vaennusta e

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot

Naulalevylausunto Kartro PTN naulalevylle

Naulalevylausunto Kartro PTN naulalevylle LAUSUNTO NRO VTT-S-04256-14 1 (6) Tilaaja Tilaus Yhteyshenilö ITW Construction Products Oy Jarmo Kytömäi Timmermalmintie 19A 01680 Vantaa 18.9.2014 Jarmo Kytömäi VTT Expert Services Oy Ari Kevarinmäi PL

Lisätiedot

KOHINA KULMAMODULAATIOISSA

KOHINA KULMAMODULAATIOISSA OHI ULMMOULIOISS ioliikkiikka I 559 ai äkkäi Osa 4 7 ulaoulaaio ouloii kohia vallissa iskiiaaoi koosuu ivaaoisa ja vhokäyäilaisisa. ivaaoi suaa -sigaali vaihkula uuosopua aajuu uuosa kskiaajuu C ypäillä.

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen

VÄRÄHTELYMEKANIIKKA SESSIO 12: Yhden vapausasteen vaimenematon pakkovärähtely, harmoninen / VÄRÄHTELYMEKANIIKKA SESSIO : Yhden vapausaseen vaieneaon pakkoväähely, haoninen kuoiusheäe JOHDANTO Ulkoisisa kuoiuksisa aiheuuvaa väähelyä sanoaan pakkoväähelyksi. Jos syseeissä on vaiennusa, on kyseessä

Lisätiedot

Naulalevylausunto LL13 Combi naulalevylle

Naulalevylausunto LL13 Combi naulalevylle LAUSUNTO NRO VTT-S-0361-1 1 (5) Tilaaja Tilaus Yhteyshenilö Lahti Levy Oy Asonatu 11 15100 Lahti 7.4.01 Simo Jouainen VTT Expert Services Oy Ari Kevarinmäi PL 1001, 0044 VTT Puh. 00 7 5566, ax. 00 7 7003

Lisätiedot

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Johdatus lukuteoriaan Harjoitus 1 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma Johdatus luuteoriaan Harjoitus 1 ss 008 Eemeli Blåsten Rataisuehdotelma Tehtävä 1 Oloot a ja b positiivisia oonaisluuja. Osoita, että on olemassa siäsitteinen luu h ('luujen a ja b pienin hteinen jaettava',

Lisätiedot

11. Jatkuva-aikainen optiohinnoittelu

11. Jatkuva-aikainen optiohinnoittelu . Jauva-aiainen opiohinnoielu Sijoiusoheien hinojen ehiymisä voiaan arasella myös jauva-aiaisina prosesseina Iô-prosessi erisuuruise perioiohaise hinnanmuuose mahollisia voiaan oisinaan raaisa analyyisesi.

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen

DEE Lineaariset järjestelmät Harjoitus 2, ratkaisuehdotukset. Johdanto differenssiyhtälöiden ratkaisemiseen D-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Johdanto differenssiyhtälöiden rataisemiseen Differenssiyhtälöillä uvataan disreettiaiaisten järjestelmien toimintaa. Disreettiaiainen taroittaa

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus

VÄRÄHTELYMEKANIIKKA SESSIO 16: Yhden vapausasteen vaimeneva pakkovärähtely, yleinen jaksollinen kuormitus 6/ VÄRÄHTELYMEKANIIKKA SESSIO 6: Yhde vpussee vimeev poväähely, yleie jsollie uomius YLEINEN JAKSOLLINEN KUORMITUS Hmois heäeä vsv pysyvä poväähely lusee löyyy helposi oeilemll. Hmoise heäee eoi void hyödyää

Lisätiedot

3 YHDEN VAPAUSASTEEN OMINAISVÄRÄHTELY

3 YHDEN VAPAUSASTEEN OMINAISVÄRÄHTELY Värählykaniikka 3. 3 YHDEN VAPAUSASTEEN OMINAISVÄRÄHTELY 3. Johano Oinaisvärähly arkoiaa kaanisn sysin liikä, jossa s liikkuu oin päin ilan ulkoisn voiin vaikuusa. Oinaisvärähly alkaa, jos sysillä on alkuhkllä

Lisätiedot

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi: 77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen

Lisätiedot

Ilpo Halonen Luonnehdintoja logiikasta 4. Luonnehdintoja logiikasta 4. Tautologioita 1. Tautologioita 3. Tautologioita 2. Johdatus logiikkaan

Ilpo Halonen Luonnehdintoja logiikasta 4. Luonnehdintoja logiikasta 4. Tautologioita 1. Tautologioita 3. Tautologioita 2. Johdatus logiikkaan Ilpo Halonn 2005 Luonnhdinoja logiikasa 4 Johdaus logiikkaan Ilpo Halonn Syksy 2005 ilpo.halonn@hlsinki.fi Filosofian laios Humanisinn idkuna whn you hav liminad h impossibl, whavr rmains, howvr improbabl,

Lisätiedot

järjestelmät Luento 4

järjestelmät Luento 4 DEE- Lineaarise järjeselmä Lueno 4 Lineaarise järjeselmä Riso Mionen 3.7.4 Lueno 3 - Recap Lineaarisen differenssiyhälöiden raaiseminen Impulssivaseen äsie Impulssivase ja onvoluuiosumma Lineaarise järjeselmä

Lisätiedot

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = =

2. Laskuharjoitus 2. siis. Tasasähköllä Z k vaipan resistanssi. Muilla taajuuksilla esim. umpinaiselle koaksiaalivaipalle saadaan = = 2 Lasuarjoitus 2 21 Kytentäimpedanssin asenta Mitä taroittaa ytentäimpedanssi? 5 ma:n suuruinen äiriövirta oasiaaiaapein vaipassa (uojoto) aieuttaa 1 mv:n suuruisen äiriöjännitteen 1 m:n mataa Miä on ytentäimpedanssin

Lisätiedot

funktiojono. Funktiosarja f k a k (x x 0 ) k

funktiojono. Funktiosarja f k a k (x x 0 ) k SARJAT JA DIFFERENTIAALIYHTÄLÖT 2003 3 4. Funtiosarjat Tässä luvussa esitettävissä funtiosarjojen tulosissa yhdistämme luujen 3 teoriaa. Esimeri 4.. Geometrinen sarja x suppenee aiilla x ], [ ja hajaantuu

Lisätiedot

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi

Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa

Lisätiedot

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö:

Osi+aisintegroin3. Palautetaan mieleen tulon derivoimissääntö: 9//3 Osi+aisintegroin3 Palautetaan mieleen tulon derivoimissääntö: d df(x) dg(x) (f(x) g(x)) = g(x) + f(x) Integroidaan yhtälön molemmat puolet x:n suhteen: d (f(x) g(x)) = df(x) g(x) + f(x) dg(x) f(x)

Lisätiedot

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S<

t P1 `UT. Kaupparek. nro Y-tunnus Hämeenlinnan. hallinto- oikeudelle. Muutoksenhakijat. 1( UiH S< 1(0 1 4 1 1 4 UiH 0 0 0 1 S< A S I A N A J O T O I M I S T O O S S I G U S T A F S S O N P L 2 9, Ra u h a n k a t u 2 0, 1 5 1 1 1 L a h t i P u h e l i n 0 3 / 7 8 1 8 9 6 0, G S M 0 5 0 0 / 8 4 0 5

Lisätiedot

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat

Olkoot X ja Y riippumattomia satunnaismuuttujia, joiden odotusarvot, varianssit ja kovarianssi ovat Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset Mat-.3 Koesuunnittelu ja tilastolliset mallit. harjoituset / Rataisut Aiheet: Avainsanat: Satunnaismuuttujat ja todennäöisyysjaaumat Kertymäfuntio

Lisätiedot

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi

Sähköstatiikka ja magnetismi Kondensaattorit ja kapasitanssi Sähköstatiikka ja magnetismi Konensaattorit ja kapasitanssi ntti Haarto 1.5.13 Yleistä Konensaattori toimii virtapiirissä sähköisen potentiaalin varastona Kapasitanssi on konensaattorin varauksen Q ja

Lisätiedot

Piehingin osayleiskaava 27.10.2014 Kysely alueen asukkaille ja maanomistajille

Piehingin osayleiskaava 27.10.2014 Kysely alueen asukkaille ja maanomistajille Phingin osayliskaava 27.10.2014 Kysly alun asukkaill ja maanomistajill Arvoisa vastaanottaja, Raahn kaupunginhallitus on päättänyt aloittaa Phingin osayliskaavan ajaasaistamistyön. Phingin osayliskaava

Lisätiedot

Yhteysopas. Windows-ohjeet paikallisesti liitettyä tulostinta varten. Mitä paikallinen tulostaminen on? Ohjelmiston asentaminen CD-levyltä

Yhteysopas. Windows-ohjeet paikallisesti liitettyä tulostinta varten. Mitä paikallinen tulostaminen on? Ohjelmiston asentaminen CD-levyltä Yhtysopas Sivu 1/6 Yhtysopas Winows-ohjt paikallissti liitttyä tulostinta vartn Huomautus: Kun asnnat paikallissti liitttyä tulostinta, ja Ohjlmisto ja käyttöoppaat -CD-lvy i tu käyttöjärjstlmää, käytä

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

K-KS vakuutussumma on kiinteä euromäärä

K-KS vakuutussumma on kiinteä euromäärä Kesinäinen Henivauutusyhtiö IIIELLA TEKNIIKALLA LAKUPERUTE H-TUTKINTOA ARTEN HENKIAKUUTU REKURIIIELLA TEKNIIKALLA OIMAAOLO 2 AIKALAKU JA AKUUTUIKÄ Tätä lasuperustetta sovelletaan..25 alaen myönnettäviin

Lisätiedot

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta

TKK Tietoliikennelaboratorio Seppo Saastamoinen Sivu 1/5 Konvoluution laskeminen vaihe vaiheelta KK ieoliikennelaboraorio 7.2.27 Seppo Saasamoinen Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali, kun ulosignaali ja järjeselmän

Lisätiedot

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5

Konvoluution laskeminen vaihe vaiheelta Sivu 1/5 S-72. Signaali ja järjeselmä Laskuharjoiukse, syksy 28 Konvoluuion laskeminen vaihe vaiheela Sivu /5 Konvoluuion laskeminen vaihe vaiheela Konvoluuion avulla saadaan laskeua aika-alueessa järjeselmän lähösignaali,

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi

VÄRÄHTELYMEKANIIKKA SESSIO 06: Ekvivalentti systeemi 6/ VÄRÄHTEYMEKANKKA SESS 6: Evvle sysee JHDANT Use äyä pplee uodos sysee vod orv yhde vpussee evvlell llll os se pplede se/ul-se vod lusu s oord vull. Tällö sysee geoers vod uodos yheyde se e pplede leloe

Lisätiedot

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset

DEE Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille tarkoitetut ratkaisuehdotukset DEE- Lineaariset järjestelmät Harjoitus 5, harjoitustenpitäjille taroitetut rataisuehdotuset Tämän harjoitusen ideana on opetella -muunnosen äyttöä differenssiyhtälöiden rataisemisessa Lisäsi äytetään

Lisätiedot

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( )

Luento 2. S Signaalit ja järjestelmät 5 op TKK Tietoliikenne Laboratorio 1. Jean Baptiste Joseph Fourier ( ) Luento Jasollisten signaalien Fourier-sarjat Viivaspetri S-.7. Signaalit ja järjestelmät 5 op KK ietoliienne Laboratorio Jean Baptiste Joseph Fourier (768-83) Ransalainen matemaatio ja fyysio. Esitti Fourier-sarjat

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 19: Gaussin integrointi emojanan alueessa. / ELEMENIMENEELMÄN PERUSEE SESSIO : Gaussin intgrointi mojanan alussa. JOHDANO Ylisssä lujuusopin lmnttimntlmässä lmntin jäykkyysmatriisi [ k ] ja kvivalnttinn solmukuormitusvktori { r } lasktaan määrätyistä

Lisätiedot

Systeemimallit: sisältö

Systeemimallit: sisältö Syseemimalli: sisälö Malliyypi ja muuuja Inpu-oupu -uvaus ja ilayhälömalli, ila Linearisoini Jauva-aiaisen lineaarisen järjeselmän siirofunio, sabiilisuus Laplace-muunnos Disreeiaiaisen lineaarisen järjeselmän

Lisätiedot

INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA

INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA INTERFERENSSIN VIUTUS LINERISESS MOULTIOSS Teolkenneeknkka I 521359 a äkkänen Osa 15 1 19 Inefeenssn vakuus lneaasessa odulaaossa Radoaausa nefeenssä RFI sn usa äeselsä, kun oa kanoaaloaauus on lähellä

Lisätiedot

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1

Tehtävä 2 Todista luennoilla annettu kaava: jos lukujen n ja m alkulukuesitykset. ja m = k=1 Luuteoria Harjoitus 1 evät 2011 Alesis Kosi 1 Tehtävä 1 Näytä: jos a ja b ovat positiivisia oonaisluuja joille (a, b) = 1 ja a c, seä lisäsi b c, niin silloin ab c. Vastaus Kosa a c, niin jaollisuuden

Lisätiedot

a. Varsinainen prosessi on tuttua tilaesitysmuotoa:

a. Varsinainen prosessi on tuttua tilaesitysmuotoa: ELEC-C Sääöeniia 7. lauharjoiu Vaaue. r - K u K C y a. Varinainen proei on uua ilaeiymuooa: A Bu y C Kuvaa nähdään, eä ilamallin iäänmenona on u r K. Salaaria ei voi vähenää mariiia, joen un on n -veori,

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k.

[ ] [ 2 [ ] [ ] ( ) [ ] Tehtävä 1. ( ) ( ) ( ) ( ) ( ) ( ) 2( ) = 1. E v k 1( ) R E[ v k v k ] E e k e k e k e k. e k e k e k e k. ehtävä. x( + ) x( y x( + e ( y x( + e ( E v E e ( ) e ( R E[ v v ] E e e e e e e e e 6 estimointivirhe: ~ x( x( x$( x( - b y ( - b y ( estimointivirheen odotusarvo: x( - b x( - b e ( - b x( - b e ( ( -

Lisätiedot

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15

Vakuutusmatematiikan sovellukset 20.11.2008 klo 9-15 SHV-tutinto Vauutusmatematiian sovelluset 20.11.2008 lo 9-15 1(7) Y1. Seuraava tauluo ertoo vauutusyhtiön masamat orvauset vahinovuoden ja orvausen masuvuoden muaan ryhmiteltynä (tuhansina euroina): Vahinovuosi

Lisätiedot

Signaalit aika- ja taajuustasossa

Signaalit aika- ja taajuustasossa Sili lomuoo Sili ik- uussoss Alomuoo kuv sili käyäyymisä fukio li iksoss. Ylsä lomuoo rksll simrkiksi oskilloskoopi äyöllä. Siimuooi sili Asiφ Asiπf φ i Acosφ Acosπf φ muodos prus kikki sili uussisällö

Lisätiedot

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä

Ennen kuin mennään varsinaisesti tämän harjoituksen asioihin, otetaan aluksi yksi merkintätekninen juttu. Tarkastellaan differenssiyhtälöä DEE-00 Lineaariset järjestelmät Harjoitus, rataisuehdotuset Ennen uin mennään varsinaisesti tämän harjoitusen asioihin, otetaan alusi ysi merintäteninen juttu Tarastellaan differenssiyhtälöä y y y 0 Vaihtoehtoinen

Lisätiedot

järjestelmät Luento 8

järjestelmät Luento 8 DEE-111 Lineaariset järjestelmät Luento 8 1 Lineaariset järjestelmät Risto Mikkonen 7.8.214 Luento 7 - Recap Z-muunnos ja sen ominaisuudet Lineaaristen dierenssiyhtälöiden käsittely Alku- ja loppuarvot

Lisätiedot

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt

Luku 1: Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt SMG-00 Piirianalyysi II Harjoitustehtävät Luu : Järjestelmien lineaarisuus, differenssiyhtälöt, differentiaaliyhtälöt Järjestelmien lineaarisuus: Järjestelmä on lineaarinen, jos T u u T u T u, jossa ja

Lisätiedot

Viitteet. Viitteet. Viitteet

Viitteet. Viitteet. Viitteet Vii Vii Vii 1 2 1. Mariisiksponnifunkio Hikki Apiola Sisälää Pkka Alsalon ja Timo Eirolan mariaalia myös. Viiiä TE Timo Eirola: Linaarialgbra, lunomonis EN EirolaNvanlinna: Diyhälösysmi, lunomonis LAODEGolubiskyDllniz:

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike

VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhden vapausasteen vaimeneva pakkovärähtely, roottorin epätasapaino ja alustan liike 15/1 VÄRÄHTELYMEKANIIKKA SESSIO 15: Yhde vapausastee vaieeva pakkovärähtely, roottori epätasapaio ja alusta liike ROOTTORIN EPÄTASAPAINO Kute sessiossa VMS13 tuli esille, aiheuttaa pyörivie koeeosie epätasapaio

Lisätiedot

NAULALIITOSTEN MITOITUS

NAULALIITOSTEN MITOITUS NAULALIITOSTEN MITOITUS Sisällysluettelo 1 Yleistä... Esiporaus... 3 Materiaalit... 4 Kuormitustapa...3 5 Leiausrasitettu naula...4 5.1 Puutavara-puutavara -liitos...4 5. Kerto-Kerto -liitos...5 5.3 Kerto-Puutavara

Lisätiedot

Matematiikan tukikurssi: kurssikerta 12

Matematiikan tukikurssi: kurssikerta 12 Matematiikan tukikurssi: kurssikerta 2 Tenttiin valmentavia harjoituksia Huomio. Tähän tulee lisää ratkaisuja sitä mukaan kun ehin niitä kirjoittaa. Kurssilla käyään läpi tehtävistä niin monta kuin mahollista.

Lisätiedot

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,

Lisätiedot

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti MAA8 Ko 5..04 T konsptiin pisttsruudukko! Muista kirjata nimsi ja rhmäsi. Lu ohjt huolllissti A-Osio: Ei saa kättää laskinta. MAOL saa olla alusta asti kätössä. Maksimissaan h aikaa suorittaa A- Osio.

Lisätiedot

Ensimmäisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon. + p(x)y = r(x) (28)

Ensimmäisen kertaluvun differentiaaliyhtälö on lineaarinen, jos se voidaan kirjoittaa muotoon. + p(x)y = r(x) (28) .5 Linaarist diffrntiaaliyhtälöt 10 Ensimmäisn krtaluvun diffrntiaaliyhtälö on linaarinn, jos s voidaan kirjoittaa muotoon + p(x)y = r(x) (8) Yhtälö on linaarinn y:n ja y:n suhtn, p ja r voivat olla mitä

Lisätiedot

e n 4πε S Fysiikka III (Est) 2 VK

e n 4πε S Fysiikka III (Est) 2 VK S-11.137 Fysiikka III (Est) VK 7.5.009 1. Bohrin vtyatomimallissa lktronilla voi olla vain tittyjä nopuksia. Johda kaava sallituill nopuksill, ja lask sn avulla numrinn arvo suurimmall mahdollisll nopudll.

Lisätiedot

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 13: Avaruuskehän palkkielementti.

ELEMENTTIMENETELMÄN PERUSTEET SESSIO 13: Avaruuskehän palkkielementti. / EEMENIMENEEMÄN PERUSEE SESSIO : Aarskhän palkkilmntti. AARUUSKEHÄN EEMENIERKKO solm solm Ka. Aarskhän lmnttirkko ja sn lmntti. Jos khä sisältää ain tasapaksja ja soria osia, sn tarkka ratkais saaaan

Lisätiedot

Todennäköisyyspohjainen käyttövarmuuden ja kunnossapidon suunnittelu

Todennäköisyyspohjainen käyttövarmuuden ja kunnossapidon suunnittelu Tonnäköisyyspojainn käyövarmuun ja kunnossapion suunnilu Hikki Prnu Tamprn knillinn yliopiso, Korkakoulunkau 6, Bo 589, 33 Tampr Pu. (3) 352628, la (3) 35237, ikki.prnu@u.i AVAINSANAT käyövarmuus, kunnossapio,

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen

järjestelmät Luku 2 Diskreettiaikaiset järjestelmät - aikataso DEE Lineaariset järjestelmät Risto Mikkonen DEE- Lineaariset järjestelmät Luu 2 Disreettiaiaiset järjestelmät - aiataso DEE- Lineaariset järjestelmät Risto Mionen 6.9.26 Diseettiaiainen vs jatuva-aiainen Jatuvan signaalin u(t) nätteistäminen disreetisi

Lisätiedot

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010

BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 2009) Betonipäivät 2010 DIPLOMITYÖ: BETONI-TERÄS LIITTORAKENTEIDEN SUUNNITTELU EUROKOODIEN MUKAAN (TTY 29) Beonipäivä 21 DIPLOMITYÖ prosessina Aie: yön eeäjän aloieesa Selviykse beonin, eräksen ja puun osala oli jo ey/käynnissä

Lisätiedot

Työ 15B, Lämpösäteily

Työ 15B, Lämpösäteily Työ 15B, Läpösäteily urssi: Tfy-3.15, Fysiikan laoratoriotyöt Ryhä: 18 Pari: 1 Jonas Ala Antti Tenhiälä Selostuksen laati: Jonas Ala Mittaukset tehty:.3.000 Selostus jätetty:..000 1. Johdanto Läpösäteily

Lisätiedot

S Piirianalyysi 2 1. Välikoe

S Piirianalyysi 2 1. Välikoe S-55.0 Piirianalyyi. Välioe.3.0 ae ehävä eri paperille uin ehävä 3 5. Muia irjoiaa joaieen paperiin elväi nimi, opielijanumero, urin nimi ja oodi. Tehävä laeaan oreaoulun oepaperille. Muia papereia ei

Lisätiedot

2.1. Bijektio. Funktion kasvaminen ja väheneminen ********************************************************

2.1. Bijektio. Funktion kasvaminen ja väheneminen ******************************************************** .. Funtion asvainen ja väheneinen.. Bijetio. Funtion asvainen ja väheneinen Palautetaan ieleen funtion äsite. ******************************************************** MÄÄRITELMÄ Oloot ja B asi ei-tyhjää

Lisätiedot

4 KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT

4 KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT KORKEAMMAN KL:N LINEAARISET DIFFERENTIAALIYHTÄLÖT Krtalukua n olvassa diffrntiaalihtälössä F(,,,, (n) ) = siint n:nnn krtaluvun drivaatta (n) = d n /d n ja mahdollissti almpia drivaattoja, :tä ja :ää.

Lisätiedot

EPOP Kevät

EPOP Kevät EPOP Kevät 2012 16.1.2012 Projeti 1 Muutosilmiöt Piirianalyysi 1:ssä äsitellyt tasa- ja vaihtovirta-analyysit ovat jatuvan tilan menetelmiä, joissa oletetaan, että piirin herätteet (riippumattomat lähteet)

Lisätiedot

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1.

Tehtävä 3. Määrää seuraavien jonojen raja-arvot 1. Jonotehtävät, 0/9/005, sivu / 5 Perustehtävät Tehtävä. Muotoile matemaattiset vastineet seuraavien väitteiden negaatioille (ts. vastaohdat).. Jono (a n ) suppenee ohti luua a.. Jono (a n ) on asvava. 3.

Lisätiedot

Arvio Suomen ei-päästökauppasektorin pitkän ajan tavoitteesta ja päästöistä vuoteen 2030 TUTKIMUSRAPORTTI VTT-R-01286-13

Arvio Suomen ei-päästökauppasektorin pitkän ajan tavoitteesta ja päästöistä vuoteen 2030 TUTKIMUSRAPORTTI VTT-R-01286-13 Arvio Suomen ei-pääsöauppaseorin piän ajan avoieesa ja pääsöisä vuoeen 2030 Kirjoiaja: Luoamusellisuus: Tomi J. Lindroos, Tommi Eholm, Ila Savolainen julinen 2 (29) Alusana Tämä rapori on osa ympärisöminiseriön

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

Monisilmukkainen vaihtovirtapiiri

Monisilmukkainen vaihtovirtapiiri Monisilmukkainen vaihovirapiiri Oeaan arkaselun koheeksi RLC-vaihovirapiiri jossa on käämejä, vasuksia ja kondensaaoreia. Kykenä Tarkasellaan virapiiriä, jossa yksinkeraiseen RLC-piiriin on kodensaaorin

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

Luento 11. Stationaariset prosessit

Luento 11. Stationaariset prosessit Lueno Soasisen prosessin ehosperi Saunnaissignaalin suodaus 5..7 Saionaarise prosessi Auoorrelaaio φ * * (, ) ( ) ( ) ( ) ( ), { } { } jos prosessi on saionaarinen auoorrelaaio ei riipu ajasa vaan ainoasaan

Lisätiedot