Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Flow shop, työnvaiheketju, joustava linja, läpivirtauspaja. Kahden koneen flow shop Johnsonin algoritmi"

Transkriptio

1 Flow shop önvaheeju jousava lnja läpvrauspaja Flow shopssa önvaheden järjess on sama alla uoella Kosa vahea vo edelää jono vova ö olla vaheleva ja ö vova ohaa osensa äl ö evä oha osaan puhuaan permuaaoaaaulusa joa on N! appalea N:llä öllä Opmaalnen aaaulu e välämää ole permuaaoaaaulu mua leensä paras permuaaoaaaulu on lähellä opma. Tämä osn päee van saasessa laneessa(!) Kun vaheden välllä e ole pusurea (pusur- a välvarasoja) a ne ova pene vodaan puhua lnjauoannosa Lnjauoannossa ö evä leensä oha osaan usurpaa vodaan mallnaa vahena jossa prosessonaa = 0 Jono 1 Jono 2 Jono 3 Kahden oneen flow shop Johnsonn algorm Johnsonn algormlla mnmodaan ahden oneen flow shopn läpäsaa (maespan) seuraavas: Tö edelää aaaulussa öä j jos mn { 1 j2 } <= mn { 2 j1 } Toeuus: 1. Valaan mn { 1 2 } 2. Jos penn arvo on oneella 1 äeään aaaulua alusa 3. Jos penn arvo on oneella 2 äeään aaaulua lopusa 4. alaaan ohaan 1 unnes a ö on aaaulueu Idea: Kosa ensmmänen one ä oo ajan joa apausessa sn pdennsä aaauluun van jos onen one odoaa. Järjesämällä lhemp ö ana ensn ensmmäselle oneelle prään ämä odous mnmomaan 1

2 Kahden oneen flow shop Johnsonn algorm Esmer: Tö Vahe Jäljellä Sous Aaaulu = [1] 3 X XXX = [5] 3 X XX = [2] 3 1 X X = [4] 3 1 X = [3] Flow shop -opmonmall Em. ahden oneen apausa luuunoamaa flow shop evä opmodu sneraslla algormella Opmonmall saadaan helpoen säsoneen verson 1 pohjala: Lsäään ndes onelle ääräään öjärjess ölle Esessä mallssa möhäsmä osee van vmesä vahea. Todellsuudessa nän e välämää ole osa vodaan ajaella eä lnjan vahella on aarsä lnöjä muualle I-opmonmall..K on oneden ndes n K f 0 f - D f 1 { 1.. K - 1} ( - ) { 1.. I - 1 } j { 1.. I} ( 1- ) ( - ) { 1.. I - 1 } j { 1.. I} { 01 } j K 0 2

3 Flow shop -permuaaomall Opmonmall saadaan helpos säsoneen verson 1 pohjala (ed. alvo) lsäämällä rajouseho joa paoaa -marsn arvo samos " a uen seuraavassa säsoneen verson 2 pohjala: Lsäään ndes onelle ääräään öjärjess ölle onella ja oneden välllä nn eä päälleässä e apahdu n j Ł 0 j = 1 = 1 jk " { 01 } K j 1 j 1 ł " " j " j " j { 1.. I - 1 } { 1.. K - 1} Valmsumsheen el läpäsaojen summa (a ö saaavlla heellä = 0) Vaheden järjess onella Vaheden järjess oneden välllä Flow shop -esmer Esmerssä on vs öä ja neljä onea joden aua ö uleva samassa järjessessä Esmern daa: Tö D Erlase opmonreer uleva smseen mm. Koonasmöhäsmä asmmöhäsmä Vmesen vaheen valmsumnen Koonasläpäsaa Koneden äöase Ajouse alla oonasmöhäsmän mnmomses permuaaomalllla. Huom! Vär uvssa evä ole vasaava 3

4 Flow shop -esmer (permuaaomall) Ysoonen hden unnusluvun opmon e paa musa eösä. Täsä ssä mua avoea on usen edullsa oaa muaan usannusfunoon van penellän panoarvolla. Läpäsajan mnmova ajous. anoerome: Läpäsaa 10; Käöase 0 Käöase anoerome: Läpäsaa 9; Käöase 1 Läpäsaa Flow shop -esmer anoerome: Läpäsaa 8; Käöase 2 anoerome: Läpäsaa 5; Käöase 5 4

5 Flow shop -esmer anoerome: Läpäsaa 2; Käöase 8 anoerome: Läpäsaa 1; Käöase 9 Flow shop -esmer Käöaseen masmova ajous. anoerome: Läpäsaa 0; Käöase 10 Yheenveo esmern ulossa: anoerron läpäsaa anoerron äöase Läpäsaa Käöase Yheensä Huom! Käöase ulosssa on ss unn oneen ensmmäsen alousen ja vmesen valmsumsen erous joen pen luu edusaa oreaa äöasea 5

6 Open Flow shop ja re-enran Flow shop Avomessa flow shopssa ö vova alaa msä ahansa vaheesa ja loppua vasaavas - vrausjärjess säl Re-enran Flow shopssa uoe vo palaa oneelle uudesaan Opmonmall sama mall un edellä mua: rosessonaja aseeaan nolls ennen ensmmäsä vahea ja vmesen jäleen seuraavlle vahelle Uudelleen prosessoava vahee äsellään erllsnä lausna ja määräään lausen vällle edelävsreunaeho. Tom es säsoneellan. Jono 1 Jono 2 Jono 3 Tuoanolnja Tuoanolnja oosuu peräässä vahesa joden välllä e ole pusurea a nden oo on rajallnen. ö jaeu osn sandardou sneraseu erosunu oppmsärällä edeään nopeas resurss hvn hödnne van hde välnee maeraal ja övälnee vodaan soella äden ulouvlle maeraal söeään van heen paaan e juur jonoja välvarasoja ja vähän KET:a ja pna-alaa lh läpäsaa öden srel sö resursseja herä härölle Tahlnjassa ö srvä vaheesa oseen samalla heellä. Lnjan suunnelun ären avoe on vaheden ömäären asapanoamnen. Epäahlnjassa ahaavaheluja vodaan ompensoda pusurella ja srvällä övomalla. Kappalee srvä asemasa oseen er aona. B B Eso Nem 6

7 Epäahlnjan smulon Excelsmulaaorlla Epäahlnjan omnnan arvonnssa ären reer on lnjan hösuhde (oeuunu äöase) ss äännössä uoanomäärän masmon el odousen mnmon Odousa vahessa sn jos lnja on uossa (blocng) a ö e ole valmsunu edeläväsä vaheesa (sarvng) Läpäsaa e ole ovn relevan reer enää lnjan suunnelun ja raenamsen jäleen osa shen e juur voda vauaa alnja.xls Eso Nem Epäahlnja smulonulosa Jos vahee ova samanlasa rppuu lnjan apasee vaheden luumääräsä prosessonaojen hajonnasa ja pusuren oosa. Tässä cv = vaheaojen eshajona / esarvo Vahee ova esmäärn asapanossa Töä on oo ajan jonossa lnjan alussa B B Eso Nem 7

8 Epäahlnja luva övoma Kun uoee ova suura e pusureden äö usenaan ule smseen usuren lsäs vaheden ömäärän vahelua vodaan ompensoda luvan övoman äöllä Tämä edellää säänöjä öneöden srmselle Aheuaa hävöä epäopmaalsen öneämäärän seurausena un vahessa on useamp öneä Töneöden erlasa osaamsa (nopeuden vahelu) vodaan äää höds: Van parhaa öneä luva Eso Nem Epäahlnja luva övoma eualosäänöjä oeulossa 4 vaheen lnjalle: Non 80 % (90 %) hösuhde on saavueavssa helpos un uoevahelun (prosessonaa) CV on 03 (02) Tällön muana on ohuullsen suur mehsmäärän epäopmaalsuusappo Luva öneöä on % öneösä Vodaan oleaa eä leensä lnjan erosums- logsse ja muu höd ova suuremma un m. hösuheen menes Esmer Vasemmalla heensä 48 öneää ja e lmehshaaa mw = movng worers CV 0.1 ja 0.3 vaava öneöden osaamserohn Eso Nem 8

9 Epäahlnjan opmon permuaaomall Olennanen muuuja on öden eojärjess Aasempaan malln lsäään reunaeho jolla edelleään eä ö vaheella e ala ennen un edellnen ö seuraavalla vaheella on alanu ss vaadaan eä one (a pusurpaa) on vapauunu usurpaa mallnneaan 0-övahena Koneden äöasea masmodaan ässä mnmomalla vmesen ön valmsumsheeä I-opmonmall n j j 1 0 IK = 1 = 1 { 01 } j 1 K I j 1 j 1 " " j " j " j " j { 1.. I - 1 } { 1.. K - 1} { 1.. I - 1 } { 1.. K - 1} Vmesen ön valmsumshe Vaheden järjess onella Vaheden järjess oneden välllä Lnjavaamus Lnjaesmer Sama apaus Flow shoppna ja (pusurpaaomana) lnjana Opmodaan vmesen vaheen valmsumsa ja äöasea Tässä öden järjess on paoeu samas Flow shop Jonossa seuraava ö oneella 3 vo alaa he Lnja Bloced ö odoaa oneella 3 (auo aaaulussa) unnes one 4 vapauuu ja seuraava ö vo alaa 9

Sekatuotantoverstas Job shop. Flow shop vs. Job shop Esko Niemi

Sekatuotantoverstas Job shop. Flow shop vs. Job shop Esko Niemi Seauoanoversas Job shop Seauoanoversaassa öden reysä e ole rajoeu mllään avalla vaan ne vova ulea oman prosessnsa muases mnä ahansa oneden aua Tyypllsä omnasuusa: Tuoee ova vaheleva Työnvahee ja -vaheaja

Lisätiedot

Ympäristöakatemia 7.-8.6.2010 Rymättylä MITÄ ITÄMEREN HUONO TILA MEILLE MAKSAA? Kari Hyytiäinen MTT

Ympäristöakatemia 7.-8.6.2010 Rymättylä MITÄ ITÄMEREN HUONO TILA MEILLE MAKSAA? Kari Hyytiäinen MTT Ympärsöaaema 7.-8.6.2010 Rymäylä MITÄ ITÄMEREN HUONO TILA MEILLE MAKSAA? Kar Hyyänen MTT JOHDANTO Rehevöymnen Iämeren esenen ongelma Ravnneuormus (ypp ja fosfor) Saunnasa levälauoja Iämerellä jo 1800-luvulla

Lisätiedot

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN

YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY 1 YRITYSKOHTAISEN TEHOSTAMISPOTENTIAALIN MITTAAMINEN ENERGIAMARKKINAVIRASTO 1 Le 2 Säkön jakeluverkkoomnnan yryskoasen eosamsavoeen määrely YRITYSKOHTAISEN TEHOSTAMISTAVOITTEEN MÄÄRITTELY Asanosanen: Vaasan Säköverkko Oy Lyy pääökseen dnro 491/424/2007 Energamarkknavraso

Lisätiedot

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka

Taustaa KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT. Jukka Talvitie, Toni Levanen & Mikko Valkama TTY / Tietoliikennetekniikka IMA- Exurso: Kompleksluvu ja radosgnaal / KOMPLEKSILUVUT, VÄRÄHTELIJÄT JA RADIOSIGNAALIT Tausaa IMA- Exurso: Kompleksluvu ja radosgnaal / Kakk langaon vesnä ja radoeolkenne (makapuhelme, WLAN, ylesrado

Lisätiedot

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi:

Täydennetään teoriaa seuraavilla tuloksilla tapauksista, joissa moninkertaisen ominaisarvon geometrinen kertaluku on yksi: 77 Aemmn oleen, eä mars A on dagonalsouva. Tällanen on lanne äsmälleen sllon, un joasen omnasarvon geomernen eraluu on sama un algebrallnen. Täydenneään eoraa seuraavlla uloslla apaussa, jossa monnerasen

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia

VÄRÄHTELYMEKANIIKKA SESSIO 18: Yhden vapausasteen pakkovärähtely, transienttikuormituksia 8/ VÄRÄHTELYMEKANIIKKA SESSIO 8: Yhen vapausaseen paovärähely, ransieniuormiusia JOHDANTO c m x () Kuva. Syseemi. Transieniuormiusella aroieaan uormiusheräeä, joa aiheuaa syseemiin lyhyaiaisen liieilan.

Lisätiedot

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY

8 USEAN VAPAUSASTEEN SYSTEEMIN VAIMENEMATON PAKKOVÄRÄHTELY Värähelymeaa 8. 8 USEAN VAPAUSASEEN SYSEEMIN VAIMENEMAON PAKKOVÄRÄHELY 8. Normaalmuoomeeelmä Usea vapausasee syseem leyhälöde (7.) raaseme vaa aava (7.7) a (7.8) homogeese yhälö ylese raasu { } lsäs paovomaveora

Lisätiedot

Valmistuksen hieno-ohjaus

Valmistuksen hieno-ohjaus Valmsuksen heno-ohaus Yksäskonemall Prorson Opmonmall Opmaalse algorm Heurska Aseukse huomoon oava mall Rnnakkase konee Valmsuslna Sekauoano FM-äreselmä Lean-uoanoflosofa CONWIP Kanban Pullonkaula m. Yksäsen

Lisätiedot

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015

Ene-59.4130, Kuivatus- ja haihdutusprosessit teollisuudessa, Laskuharjoitus 5, syksy 2015 Ene-59.4130, Kuivaus- ja haihduusprosessi eollisuudessa, asuharjoius 5, sysy 2015 Tehävä 4 on ähiehävä Tehävä 1. eijuerrosilassa poleaan rinnain uora ja urvea. Kuoren oseus on 54% ja uiva-aineen ehollinen

Lisätiedot

Ohjelmiston testaus ja laatu. Ohjelmistotekniikka dokumentointi

Ohjelmiston testaus ja laatu. Ohjelmistotekniikka dokumentointi Ohjelmson esaus ja laau Ohjelmsoeknkka dokumenon Ohjelmsoyöhön kuuluu oleellsena osana dokumenen krjoamnen laadukkaden dokumenen uoamnen vakeaa akaaulujen panaessa päälle, dokumenonnsa on helppo npsää

Lisätiedot

MUODONMUUTOKSET. Lähtöotaksumat:

MUODONMUUTOKSET. Lähtöotaksumat: MUODONMUUTOKSET Lähöoaksuma:. Maeraal on sorooppsa ja homogeensa. Hooken lak on vomassa (fyskaalnen lneaarsuus) 3. Bernoulln hypoees on vomassa (eknnen avuuseora) 4. Muodonmuuokse ova nn penä rakeneen

Lisätiedot

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia

6.4 Variaatiolaskennan oletusten rajoitukset. 6.5 Eulerin yhtälön ratkaisuiden erikoistapauksia 6.4 Variaaiolaskennan oleusen rajoiukse Sivu ss. 27 31 läheien Kirk, ss. 13 143] ja KS, Ch. 5] pohjala Lähökoha oli: jos J:llä on eksremaali (), niin J:n variaaio δj( (), δ()) ():ä pikin on nolla. 1. Välämäön

Lisätiedot

r i m i v i = L i = vakio, (2)

r i m i v i = L i = vakio, (2) 4 TÖRMÄYKSET ILMATYYNYPÖYDÄLLÄ 41 Erstetyn systeemn sälymslat Kun kaks kappaletta törmää tosnsa ne vuorovakuttavat keskenään tetyn ajan Vuorovakutuksella tarkotetaan stä että kappaleet vahtavat keskenään

Lisätiedot

01/2013. Köyhyyden dynamiikka Suomessa 1995 2008. Eläketurvakeskus. Ilpo Suoniemi

01/2013. Köyhyyden dynamiikka Suomessa 1995 2008. Eläketurvakeskus. Ilpo Suoniemi 0/203 ELÄKETURVAKESKUKSEN TUTKIMUKSIA PALKANSAAJIEN TUTKIMUSLAITOKSEN TUTKIMUKSIA 4 Köhden dnamkka Suomessa 995 2008 Ilpo Suonem Eläkeurvakeskus PENSIONSSKYDDSCENTRALEN 0/203 ELÄKETURVAKESKUKSEN TUTKIMUKSIA

Lisätiedot

Ylioppilastutkintolautakunta S tudentexamensnämnden

Ylioppilastutkintolautakunta S tudentexamensnämnden Ylioppilastutintolautaunta S tudenteamensnämnden MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 0..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden ja sisältöjen luonnehdinta ei sido ylioppilastutintolautaunnan

Lisätiedot

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd

PK-YRITYKSEN ARVONMÄÄRITYS. KTT, DI TOIVO KOSKI elearning Community Ltd PK-YRITYKSEN ARVONMÄÄRITYS KTT, DI TOIVO KOSKI elearning Communiy Ld Yriyksen arvonmääriys 1. Yriyksen ase- eli subsanssiarvo Arvioidaan yriyksen aseen vasaavaa puolella olevan omaisuuden käypäarvo, josa

Lisätiedot

Luento 6 Luotettavuus ja vikaantumisprosessit

Luento 6 Luotettavuus ja vikaantumisprosessit Tkll korkakoulu ysmaalyys laboraoro Luo 6 Luoavuus a vkaaumsrosss Ah alo ysmaalyys laboraoro Tkll korkakoulu PL 00, 005 TKK Tkll korkakoulu ysmaalyys laboraoro Määrlmä Tarkaslava ykskö luoavuus o s odäkösyys,

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista

Rahoitusriskit ja johdannaiset Matti Estola. luento 12 Stokastisista prosesseista Rahoiusriski ja johdannaise Mai Esola lueno Sokasisisa prosesseisa . Markov ominaisuus Markov -prosessi on sokasinen prosessi, missä ainoasaan muuujan viimeinen havaino on relevani muuujan seuraavaa arvoa

Lisätiedot

Valmistaminen tai ostaminen varastoon tasainen kysyntä

Valmistaminen tai ostaminen varastoon tasainen kysyntä Valmsamnen varasoon Make-o-sock (MTS) -uoanoapaa käyävä yrykse, joka valmsava loppuuoea a osa erssä ja valmsuksen jälkeen varasova uoee varasoon odoamaan kysynää MTS-uoanomalln euna ova lyhye omusaja asakkaalle,

Lisätiedot

MENETELMÄSELOSTE 11.6.2013 MAATALOUDEN TUOTTAJAHINTAINDEKSI 2010=100

MENETELMÄSELOSTE 11.6.2013 MAATALOUDEN TUOTTAJAHINTAINDEKSI 2010=100 MENETELMÄSELOSTE 11.6.2013 MAATALOUDEN TUOTTAJAHINTAINDEKSI 2010=100 Ssällyslueelo 1 TAUSTAA... 3 2 INDEKSIN MÄÄRITELMÄ JA KÄYTTÖ... 5 3 MAATALOUDEN HINTAINDEKSIN RAKENNE JA HINTASEURANTA NIMIKKEITTÄIN...

Lisätiedot

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007

Rak-54.116 Rakenteiden mekaniikka C, RM C (4 ov) Tentti 30.8.2007 Rak-54.116 Rakeneden mekankka, RM (4 ov) Ten.8.7 Krjoa jokaeen koepapern elvä - koko nme, puhuelunm allevvauna - oao, vuokur, enn pävämäärä ekä enävä opnojako koodeneen - opkeljanumero, mukaan luken arkukrjan

Lisätiedot

Asunto Oy Vapaaherran majakka

Asunto Oy Vapaaherran majakka A19 A19 Asunto Oy Vapaaherran majakka 4 h + k + s 93 m 2 asunto 1 parveke OLO / KHH yhteensä 800kg AULA WC K A17 A18 A17 A18 Asunto Oy Vapaaherran majakka 4 h + k + s 93 m 2 asunto 2 parveke OLO / KHH

Lisätiedot

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen

Jaetut resurssit. Tosiaikajärjestelmät Luento 5: Resurssien hallinta ja prioriteetit. Mitä voi mennä pieleen? Resurssikilpailu ja estyminen Tosakajärjestelmät Luento : Resurssen hallnta ja prorteett Tna Nklander Jaetut resursst Useat tapahtumat jakavat ohjelma-/lattesto-olota, jossa kesknänen possulkemnen on välttämätöntä. Ratkasuja: Ajonakanen

Lisätiedot

KOKONAISRATKAISUT YHDESTÄ PAIKASTA

KOKONAISRATKAISUT YHDESTÄ PAIKASTA KOKONAISRATKAISUT YHDESTÄ PAIKASTA Monpuolset järjestelmät varastontn ja tuotantoon TUOTELUETTELO 2009 Kappale D Varasto- ja hyllystövältasot vältasot optmaalsta tlankäyttöä varten SSI SCHÄFER: n varasto-

Lisätiedot

Esimerkkilaskelma. Jäykistävä CLT-seinä

Esimerkkilaskelma. Jäykistävä CLT-seinä Eimerilaelma Jäyitävä CLT-einä 30.5.014 Siällyluettelo 1 LÄHTÖTIEDOT... - 3 - LEVYJÄYKISTEEN TIEDOT... - 3-3 ATERIAALI... - 4-4 PANEELILEIKKAUSKESTÄVYYS... - 4-5 LAELLIN LEIKKAUSKESTÄVYYS... - 5-6 LAELLIEN

Lisätiedot

Tchebycheff-menetelmä ja STEM

Tchebycheff-menetelmä ja STEM Mat-2.142 Optmontopn semnaar K-2000 Montavoteopmont Semnaarestelmän tvstelmä Pentt Säynätjo 22.3.2000 Tchebycheff-menetelmä ja STEM 1. Johdanto Tchebycheff-menetelmä ja STEM ovat vuorovauttesa montavoteoptmontmenetelmä.

Lisätiedot

INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA

INTERFERENSSIN VAIKUTUS LINEAARISESSA MODULAATIOSSA INTERFERENSSIN VIUTUS LINERISESS MOULTIOSS Teolkenneeknkka I 521359 a äkkänen Osa 15 1 19 Inefeenssn vakuus lneaasessa odulaaossa Radoaausa nefeenssä RFI sn usa äeselsä, kun oa kanoaaloaauus on lähellä

Lisätiedot

Muutama uusi näkökulma hinta-aggregoinnista ja hedonisista indeksimenetelmistä:

Muutama uusi näkökulma hinta-aggregoinnista ja hedonisista indeksimenetelmistä: Muuama uus näöulma hna-aggregonnsa ja hedonssa ndesmeneelmsä: Emprnen sovellus omso- ja lelojen vuorn An Suoperä Tlasoesus Hnna ja Pala 2006 1 1 JOHDANTO Laadunmuuosen onrollon ndeslasennassa vodaan jaaa

Lisätiedot

INTERFERENSSIN VAIKUTUS LINEAARISISSA MODULAATIOISSA

INTERFERENSSIN VAIKUTUS LINEAARISISSA MODULAATIOISSA 1 INTERFERENSSIN VIKUTUS LINERISISS MOULTIOISS Men yksaajunen häökanoaalo haaa lasua? 521357 Teolkenneeknkka I Osa 18 Ka Käkkänen Kevä 2015 KERTUST 2 Kanoaaloodulaaolle: os[2πf φ] Lneaanen odulaao Vahee

Lisätiedot

RATKAISUT: 21. Induktio

RATKAISUT: 21. Induktio Physica 9 2. painos 1(6) ATKAISUT ATKAISUT: 21.1 a) Kun magneettienttä muuttuu johdinsilmuan sisällä, johdinsilmuaan indusoituu lähdejännite. Tätä ilmiötä utsutaan indutiosi. b) Lenzin lai: Indutioilmiön

Lisätiedot

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle /

Differentiaali- ja integraalilaskenta 1 Ratkaisut 1. viikolle / MS-A8 Differentiaali- ja integraalilasenta, V/27 Differentiaali- ja integraalilasenta Rataisut. viiolle /. 3.4. Luujonot Tehtävä : Mitä ovat luujonon viisi ensimmäistä termiä, un luujono on a) (a n ) n=,

Lisätiedot

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu

Tilausohjatun tuotannon karkeasuunnittelu. Tilausohjatun tuotannon karkeasuunnittelu Tilausohjaun uoannon areasuunnielu Tilausohjaussa uoannossa sarjojen muodosaminen ei yleensä ole relevani ongelma, osa uoevaihelu on suura, mä juuri onin peruse MTO-uoannolle Tuoe- ja valmisusraenee ova

Lisätiedot

JLP:n käyttämättömät mahdollisuudet. Juha Lappi

JLP:n käyttämättömät mahdollisuudet. Juha Lappi JLP:n äyämäömä mahdollisuude Juha Lappi LP ehävä p z = a x + b z 0 Max or Min (.) 0 0 = = subjec o he following consrains: c a x + b z C, =,, q p q K r (.2) = = m n i ij K (.3) i= j= ij x xw= 0, =,, p

Lisätiedot

Asunto Oy Vapaaherran majakka

Asunto Oy Vapaaherran majakka A19 A19 Asunto Oy Vapaaherran majakka 4 h + k + s 93 m 2 asunto 1 parveke OLO /kuiv KHH yhteensä 800kg AULA WC K A17 A18 A17 A18 Asunto Oy Vapaaherran majakka 4 h + k + s 93 m 2 asunto 2 parveke OLO /kuiv

Lisätiedot

Perinteisten henkivakuutusten konvertointi joustavamaksuiksi henkivakuutuksiksi. Niittuinperä 8.4.2008

Perinteisten henkivakuutusten konvertointi joustavamaksuiksi henkivakuutuksiksi. Niittuinperä 8.4.2008 Pernesen henvauuusen onveron jousavaasus henvauuuss Nunperä 8.4.2008 Converson fro convenonal lfe nsurance polces no unversal lfe polces Nunperä 8.4.2008 Converson fro convenonal lfe nsurance polces no

Lisätiedot

More care. Buil in. COMPACT/ MINIKAIVUKONEET MUKAVAAJA TUOTTAVAA KAIVUUTA. Vain yksi seikka on odella rakaiseva: aeriaalin siiräinen ahdollisian nopeasi ja ehokkaasi. Ja kuen uukin Volvon kopaki konee,

Lisätiedot

4. A priori menetelmät

4. A priori menetelmät 4. A pror menetelmät 4. Arvofunkto-menetelmä 4.2 Lekskografnen järjestämnen 4.3 Tavoteohjelmont Tom Bäckström Optmontopn semnaar - Kevät 2000 / 4. Arvofunkto-menetelmä Päätöksentekjä antaa eksplsttsen

Lisätiedot

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5.

Kertausosa. Kertausosa. 4. Sijoitetaan x = 2 ja y = 3 suoran yhtälöön. 1. a) Tosi Piste (2,3) on suoralla. Epätosi Piste (2, 3) ei ole suoralla. 5. Kertausosa. Sijoitetaan ja y suoran yhtälöön.. a) d, ( ) ( ),0... d, ( 0 ( ) ) ( ) 0,9.... Kodin oordinaatit ovat (-,0;,0). Kodin ja oulun etäisyys d, (,0 0) (,0 0),0,...,0 (m) a) Tosi Piste (,) on suoralla.

Lisätiedot

Voutila ASEMAKAAVAN SELOSTUS. 2519 Dnro 788/2015. Hongistonkuja Asemakaavan muutos 25. kaup. osa, Kortteli 74, tontti 3 ja katualue

Voutila ASEMAKAAVAN SELOSTUS. 2519 Dnro 788/2015. Hongistonkuja Asemakaavan muutos 25. kaup. osa, Kortteli 74, tontti 3 ja katualue SEMV SESS 59 Dnro 788/5 Vouil Hongisonuj semvn muuos 5 up os, oreli 74, oni 3 j ulue iljjohj äivi Slorn Vireille ulo 35 Yhdysunluun 5 Yhdysunluun 75 invoiminen SSYSEE ERS- J SEED 3 v-lueen sijini 3 vn

Lisätiedot

Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite

Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite. Vaihtovirta ja vaihtojännite S-66. Elekronkan perskrss Leno III: vass Päöeho en perskykennä kondensaaor Vahovrran lyhenney merknäapa Vakea vahovra-analyys? analyys? Kompleksarmekka odellnen vahovra-analyys analyys alkaa asavrralla

Lisätiedot

4rrr. PYSwvYoesrÄ. 0809-cPR-1115. Tarvasjoen Teräsovi Oy Junnaronkatu 16 24100 Salo SE RTI FI KAATTI TUOTTEE N SUORITUSTASON EN 12101-2:2003

4rrr. PYSwvYoesrÄ. 0809-cPR-1115. Tarvasjoen Teräsovi Oy Junnaronkatu 16 24100 Salo SE RTI FI KAATTI TUOTTEE N SUORITUSTASON EN 12101-2:2003 4rrr VTT XPRT SRVCS Y llmeu ls r 0809 VTT XPRT SRVCS Y P 1001.02044\TT S RT KAATT TUTT SURTUSTAS PYSwvYesrÄ 0809PR1115 urpn prlmenn j neuvsn seuksen : 305/201 1 (rkennusueseus el CPR), jk n nneu mlskuun

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali

VÄRÄHTELYMEKANIIKKA SESSIO 17: Yhden vapausasteen pakkovärähtely, impulssikuormitus ja Duhamelin integraali 7/ VÄRÄHTELYMEKANIIKKA SESSIO 7: Yhn vapausasn paovärähly, impulssiuormius ja Duhamlin ingraali IMPULSSIKUORMITUS Maanisn sysmiin ohisuva jasoon hrä on usin ajasa riippuva lyhyaiainn uormius. Ysinraisin

Lisätiedot

Frégier'n lause. Simo K. Kivelä, P B Q A

Frégier'n lause. Simo K. Kivelä, P B Q A Smo K. Kvelä, 13.7.004 Fréger'n lause Tosen asteen ärllä ellpsellä, paraaelella, hperelellä ja nden erostapauslla on melonen määrä snertasa säännöllssomnasuusa. Eräs tällanen on Fréger'n lause: Oloon P

Lisätiedot

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA

3 SIGNAALIN SUODATUS 3.1 SYSTEEMIN VASTE AIKATASOSSA S I G N A A L I T E O R I A, O S A I I I TL98Z SIGNAALITEORIA, OSA III 44 3 Signaalin suodaus...44 3. Sysmin vas aikaasossa... 44 3. Kausaalisuus a sabiilisuus... 46 3.3 Vas aauusasossa... 46 3.4 Ampliudivas

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Montavoteoptmont ja teollsten prosessen hallnta Ylassstentt Juss Hakanen juss.hakanen@jyu.f syksy 2010 Interaktvset menetelmät Idea: päätöksentekjää hyödynnetään aktvsest ratkasuprosessn akana

Lisätiedot

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt

( ) 5 t. ( ) 20 dt ( ) ( ) ( ) ( + ) ( ) ( ) ( + ) / ( ) du ( t ) dt SMG-500 Verolasennan numeerise meneelmä Ehdouse harjoiusen 4 raaisuisi Haeaan ensin ehävän analyyinen raaisu: dx 0 0 0 0 dx 00e = 0 = 00e 00 x = e + = 5e + alueho: x(0 = 0 0 x 0 = 5e + = 0 = 5 0 0 0 5

Lisätiedot

Harjoitukset (KOMPRIMOINTI)

Harjoitukset (KOMPRIMOINTI) Kmrmntharjtuksa (7) Harjtukset (KOMPRIMOINI) Kmressreja käytetään esmerkks seuraavssa svelluksssa: kaasujen srt, neumaattnen kuljetus anelmahult rsesstellsuudessa kaasureaktden, kaasujen nesteyttämsen

Lisätiedot

käsitteitä Asiakirjaselvitys Vaatimuksenmukaisuustodistus/-vakuus Saateasiakirja Luomun merkinnät

käsitteitä Asiakirjaselvitys Vaatimuksenmukaisuustodistus/-vakuus Saateasiakirja Luomun merkinnät n u m o a u L akirj i as a j a a i p p u a k s i ä ö i i h Vä aikei amm käsieiä Asiakirjaselviys Vaaimuksenmukaisuusodisus/-vakuus Saaeasiakirja Luomun merkinnä Asiakirjaselviys Pakollinen asiakirja Tällä

Lisätiedot

Tietoliikennesignaalit

Tietoliikennesignaalit ieoliikennesignaali 1 ieoliikenne inormaaion siiroa sähköisiä signaaleja käyäen. Signaali vaiheleva jännie ms., jonka vaiheluun on sisällyey inormaaioa. Signaalin ominaisuuksia voi ukia a aikaasossa ime

Lisätiedot

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x ,

III. SARJATEORIAN ALKEITA. III.1. Sarjan suppeneminen. x k = x 1 + x 2 + x , III. SARJATEORIAN ALKEITA Sarja on formaali summa III.. Sarjan suppeneminen = x + x 2 + x 3 +..., missä R aiilla N (merintä ei välttämättä taroita mitään reaaliluua). Luvut x, x 2,... ovat sarjan yhteenlasettavat

Lisätiedot

Painotetun metriikan ja NBI menetelmä

Painotetun metriikan ja NBI menetelmä Panotetun metrkan ja NBI menetelmä Optmontopn semnaar - Kevät / 1 Estelmän ssältö Paretopsteden generont panotetussa metrkossa Panotettu L p -metrkka Panotettu L -metrkka el panotettu Tchebycheff -metrkka

Lisätiedot

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet

PRS-xPxxx- ja LBB 4428/00 - tehovahvistimet Vestntäjärjestelmät PRS-xPxxx- ja -tehovahvstmet PRS-xPxxx- ja - tehovahvstmet www.boschsecrty.f 1, 2, 4, ta 8 äänlähtöä (valnta 100 / 70 / 50 V:n lähdöstä) Äänenkästtely ja jokasen vahvstnkanavan vve

Lisätiedot

Soorrea. OUTC'KUMPU Oy.' Malminetsintä. O. POhjamies/pAL ,4 1 (3) VLF -MI'ITAUS. Periaate. Lähetysase.mat

Soorrea. OUTC'KUMPU Oy.' Malminetsintä. O. POhjamies/pAL ,4 1 (3) VLF -MI'ITAUS. Periaate. Lähetysase.mat - OUTCKUMPU Oy Malmnesnä O POhames/pAL 94 (3) VLF -MTAUS Peraae Läheysasema VU (= Very M Frequency) -ruauks$sa käyeään apuna 5-0 khz aauusaueea omva asea Näden asemen anenrrl ova pysyä a nssä kulkeva vra

Lisätiedot

Mat Tilastollisen analyysin perusteet, kevät 2007

Mat Tilastollisen analyysin perusteet, kevät 2007 Mat-.04 Tlastollsen analyysn perusteet, evät 007. luento: Johdatus varanssanalyysn S ysteemanalyysn Laboratoro Ka Vrtanen Kertaus: ahden rppumattoman otosen t-test () () Perusjouo oostuu ahdesta ryhmästä

Lisätiedot

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010

MÄNTTÄ-VILPPULAN KAUPUNKI. Mustalahden asemakaava Liikenneselvitys. Työ: E23641. Tampere 18.5.2010 MÄNÄ-VLPPULAN KAUPUNK Musalahden asemakaava Liikenneselviys yö: E ampere 8..00 ARX Ympärisö Oy PL 0 ampere Puhelin 00 000 elefax 00 00 www.airix.fi oimiso: urku, ampere, Espoo ja Oulu Mänä-Vilppulan kaupunki,

Lisätiedot

RATKAISUT: 10. Lämpötila ja paine

RATKAISUT: 10. Lämpötila ja paine Physica 9. painos (6). Lämpötila ja paine :. Lämpötila ja paine. a) Suure, jolla uvataan aineen termoynaamista tilaa. b) Termoynaamisen eli absoluuttisen lämpötila-asteion ysiö. c) Alin mahollinen lämpötila.

Lisätiedot

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet

Työntekijän eläkelain (TyEL) mukaisen eläkevakuutuksen erityisperusteet Työnteijän eläelain (TyEL) muaisen eläeauutusen erityisperusteet 202 2 TYÖNTEKIJÄN ELÄKELAIN (TYEL) MUKAISEN ELÄKEVAKUUTUKSEN ERITYISPERUSTEET Voimaantulosäännöset Perusteen 20.2.2006 oimaantulosäännös

Lisätiedot

LIGNIININ RAKENNE JA OMINAISUUDET

LIGNIININ RAKENNE JA OMINAISUUDET 16006 LIGNIININ RAKENNE JA INAISUUDET Hlatomen nmeämnen γ 16006 6 α 1 β 5 3 4 e Lgnnn prekursort (monomeert) Lgnnn bosyntees e e e Peroksdaasn ja vetyperoksdn läsnäollessa prekursorsta muodostuu resonanssstablotu

Lisätiedot

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö:

Puupintaisen sandwichkattoelementin. lujuuslaskelmat. Sisältö: Puupntasen sandwchkattoelementn lujuuslaskelmat. Ssältö: Sandwch kattoelementn rakenne ja omnasuudet Laatan laskennan kulku Tulosten vertalua FEM-malln ja analyyttsen malln välllä. Elementn rakenne Puupntasa

Lisätiedot

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2012-12-17. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2012-12-17 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi, joka on ehy liikenne- ja viesinäiniseriön

Lisätiedot

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos.

Esitä koherentin QAM-ilmaisimen lohkokaavio, ja osoita matemaattisesti, että ilmaisimen lähdöstä saadaan kantataajuiset I- ja Q-signaalit ulos. Sgnaalt ja järjestelmät Laskuharjotukset Svu /9. Ampltudmodulaato (AM) Spektranalysaattorlla mtattn 50 ohmn järjestelmässä ampltudmodulaattorn (AM) lähtöä, jollon havattn 3 mpulssa spektrssä taajuukslla

Lisätiedot

FYSA220/2 (FYS222/2) VALON POLARISAATIO

FYSA220/2 (FYS222/2) VALON POLARISAATIO FYSA220/2 (FYS222/2) VALON POLARSAATO Työssä tutktaan valoaallon tulotason suuntasen ja stä vastaan kohtsuoran komponentn hejastumsta lasn pnnasta. Havannosta lasketaan Brewstern lan perusteella lasn tatekerron

Lisätiedot

HIRVENSALMEN KUNNAN VARHAISKASVATUSSUUNNITELMA

HIRVENSALMEN KUNNAN VARHAISKASVATUSSUUNNITELMA HIRVENSALMEN KUNNAN VARHAISKASVATUSSUUNNITELMA HIRVENSALMEN KUNNAN VARHAISKASVATUSSUUNNITELMA SISÄLTÖ ALKUSANAT 4 1 VARHAISKASVATUSSUUNNITELMAN TAVOITTEET 6 2 VARHAISKASVATUS 7 2.1 Mä varhaskasvaus on?

Lisätiedot

Kutsu kevätkokoukseen!

Kutsu kevätkokoukseen! Y S- Tv A 1/13 JÄSENLEHTI Tää. 4 H YT-v 6 P p p? 10 Sf 12 Mä Tp A K vä!. 22 PUHEENJOHTAJALTA Tpä!!!! #x??* T ERTO J A p Y- : Y S- Tv A : ä Y T E : ä, www..f Y Fcb. Pää: M O, p YSTEA p@.f T: R P, vv vv@.f

Lisätiedot

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3:

Hanoin tornit. Merkitään a n :llä pienintä tarvittavaa määrää siirtoja n:lle kiekolle. Tietysti a 1 = 1. Helposti nähdään myös, että a 2 = 3: Hanoin tornit Oloot n ieoa asetettu olmeen tanoon uvan osoittamalla tavalla (uvassa n = 7). Siirtämällä yhtä ieoa errallaan, ieot on asetettava toiseen tanoon samaan järjestyseen. Isompaa ieoa ei missään

Lisätiedot

www.espegard.fi OSALLISTU KOLMEN ESPEGARD-TULIPADAN ARVONTAAN Lue lisää sivulla 8

www.espegard.fi OSALLISTU KOLMEN ESPEGARD-TULIPADAN ARVONTAAN Lue lisää sivulla 8 I P A L K u 2 0 2 j n m 0.. y 3 Sy Vom ä vero Eegrd r P ä www.eegrd.f l yn y Kto jouet etttr OSALLISTU KOLMEN ESPEGARD-TULIPADAN ARVONTAAN Lue lää vull 8 Tuotenro. 278 (25 + 229 + 00 l 03) Sätytelne +

Lisätiedot

KVANTISOINTIKOHINA JA KANAVAN AWGN- KOHINA PULSSIKOODIMODULAATIOSSA

KVANTISOINTIKOHINA JA KANAVAN AWGN- KOHINA PULSSIKOODIMODULAATIOSSA KVANTIOINTIKOHINA JA KANAVAN AWGN- KOHINA PULIKOODIMODULAATIOA Teolkenneeknkka I 5359A Kar Kärkkänen Osa 6 5 Kvansonkohna PCM-järjeselmässä PCM:ssa on kaks vrhelähdeä:. kvansonkohna,. kanavan kohnan aheuama

Lisätiedot

Joulukuun vaativammat valmennustehtävät ratkaisut

Joulukuun vaativammat valmennustehtävät ratkaisut Jouluuun vaativammat valmennustehtävät rataisut. Tapa. Pätee z = x + y, joten z = (x + y = x + y, josta sieventämällä seuraa xy 4x 4y + 4 = 0. Siispä (x (y =. Tästä yhtälöstä saadaan suoraan x =, y = 4

Lisätiedot

Kertojien ikä ja sukupuoli

Kertojien ikä ja sukupuoli SANASOPUKKAA TAULUKOINA Keromuks yheesä 16; 1 kuouuj, 9 oms, 6 meleerveyslll yöskeelevää Keromukse kerä 17.11.11-1.12.12 22 verlu 1 er pkkkull Suomess Keroje kä pou mehssä ku sssk käryhmää - 63- vuo. Keroje

Lisätiedot

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET

MAATALOUSYRITTÄJÄN ELÄKELAIN MUKAISEN VAKUUTUKSEN PERUSTEET 5 TLOUYRTTÄJÄN ELÄKELN UKEN VKUUTUKEN PERUTEET PERUTEDEN OVELTNEN Näitä perusteita soelletaan..009 lähtien maatalousrittäjän eläelain 80/006 YEL muaisiin auutusiin. VKUUTUKU Vauutusmasu uodelta on maatalousrittäjän

Lisätiedot

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström

Näkymäalueanalyysi. Joukhaisselkä Tuore Kulvakkoselkä tuulipuisto 29.03.2012. Annukka Engström Näyäalueanalyysi Jouhaisselä Tuore Kulvaoselä tuulipuisto 29032012 Annua Engströ Näyäalueanalyysin uodostainen Näeäalueanalyysilla saadaan yleisuva siitä, ihin tuulivoialat äytettyjen lähtötietojen perusteella

Lisätiedot

Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys

Yleistä. Teräsrakenteiden liitokset. Liitos ja kiinnitys Ylestä Teäsakenteden ltokset (EC3-1-8, EC3-1-8-NA) Teäsakenteden lttämsessä tosnsa vodaan käyttää seuaava menetelmä: uuv-, ntt- ja nveltappltokset htsausltokset lmaltokset Ltos ja knntys Ltosta asttavan

Lisätiedot

5 Jatkuvan funktion integraali

5 Jatkuvan funktion integraali 5 Jkuvn funkion inegrli Derivlle kääneisä käsieä kusun inegrliksi. Aloien inegrliin uusuminen esimerkillä. Esimerkki 5.. Tuonolioksess on phunu kemiklivuoo. Määriellään funkio V sien, eä V () on vuoneen

Lisätiedot

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä

1. Luvut 1, 10 on laitettu ympyrän kehälle. Osoita, että löytyy kolme vierekkäistä Johdatus dskreettn matematkkaan Harjotus 3, 30.9.2015 1. Luvut 1, 10 on latettu ympyrän kehälle. Osota, että löytyy kolme verekkästä lukua, joden summa on vähntään 17. Ratkasu. Tällasa kolmkkoja on 10

Lisätiedot

Kuluttajahintojen muutokset

Kuluttajahintojen muutokset Kuluttajahntojen muutokset Samu Kurr, ekonomst, rahapoltkka- ja tutkmusosasto Tutkmuksen tausta ja tavotteet Tavaroden ja palveluden hnnat evät muutu jatkuvast, vaan ovat ana jossan määrn jäykkä lyhyellä

Lisätiedot

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto

ER-kaaviot. Ohjelmien analysointi. Tilakaaviot. UML-kaaviot (luokkakaavio) Tietohakemisto. UML-kaaviot (sekvenssikaavio) Kirjasto Ohelmen analsont Ohelmen kuvaamnen kaavolla ohelmen mmärtämnen kaavoden avulla kaavoden tuottamnen ohelmasta Erlasa kaavotppeä: ER-kaavot, tlakaavot, UML-kaavot tetohakemsto vuokaavot (tarkemmn) Vuoanals

Lisätiedot

U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A m i t o i t u s ta u l u k o t 04 I 2009 51028

U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A m i t o i t u s ta u l u k o t 04 I 2009 51028 U P O N O R Y H D Y S K U N TA - J A Y M P Ä R I S T Ö T E K N I I K K A m i t o i t u s ta u l u k o t 04 I 2009 51028 293 Mitoitustaulukot liitteet 1.1-9 294 m i t o i t u s ta u l u k o t Liite 1.1

Lisätiedot

Taiteen ja kulttuurin yleissuunnitelma Kuopion Saaristokaupunki

Taiteen ja kulttuurin yleissuunnitelma Kuopion Saaristokaupunki Taeen ja kuuurn yessuunnema Kuopon Saarsokaupunk 2.4.2007 HL Taeen ja kuuurn yessuunnema Kuopon Saarsokaupunk Johdano Kuopon Saarsokaupungn Taeen kaava yhdsää aeen, kuuurn ja rakenamsen avan uudea avaa.

Lisätiedot

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20

LVM/LMA/jp 2013-03-27. Valtioneuvoston asetus. ajoneuvojen käytöstä tiellä annetun asetuksen muuttamisesta. Annettu Helsingissä päivänä kuuta 20 LVM/LMA/jp 2013-03-27 Valioneuvoson aseus ajoneuvojen käyösä iellä anneun aseuksen uuaisesa Anneu Helsingissä päivänä kuua 20 Valioneuvoson pääöksen ukaisesi uueaan ajoneuvojen käyösä iellä anneun aseuksen

Lisätiedot

VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1

VÄRÄHTELYMEKANIIKKA SESSIO 23: Usean vapausasteen vaimenematon ominaisvärähtely osa 1 / VÄRÄHTELYEANIIA SESSIO : Usean vapausasteen vaeneaton onasvärähtely osa JOHDANTO Usean vapausasteen systeen leyhtälöt ovat ylesessä tapausessa uotoa [ ]{ & } [ C]{ & } [ ] { } { F} & ( un vaennusta e

Lisätiedot

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa

Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 139 Päivitetty a) 402 Suplementtikulmille on voimassa Pyramidi Analyyttinen geometria tehtävien rataisut sivu 9 Päivitetty 9..6 4 a) 4 Suplementtiulmille on voimassa b) a) α + β 8 α + β 8 β 6 c) b) c) α 6 6 + β 8 β 8 6 β 45 β 6 9 α 9 9 + β 8 β 8 + 9 β 7 Pyramidi

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO

LAPPEENRANNAN TEKNILLINEN YLIOPISTO LAPPEENRANNAN TEKNILLINEN YLIOPITO TYÖOHJE 2009 Keianteniian osasto Tenillisen eian laboratorio BJ90A0900 Tenillisen eian ja tenillisen polyeerieian laboratoriotyöt Ohje: Irina Turu, Katriina Liiatainen,

Lisätiedot

Asunto Oy Lahden Lehtorinne LAUNE ENNAKKOMARKKINOINTI

Asunto Oy Lahden Lehtorinne LAUNE ENNAKKOMARKKINOINTI LAUNE ENNAKKOMARKKINOINTI 3 Leppoiaa ja huolonta elämää Launeen maiemia Lahdea ol eeieä aemaa Lahti ijaitee ainutlaatuiella paialla Salpauelän harjujen ja Veijärven yhtymädaa. Järvenrantaaupungia aii

Lisätiedot

Tilastollisen fysiikan luennot

Tilastollisen fysiikan luennot Tlastollsen fyskan luennot Tvstelmät luvuttan I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ Lämpö on systeemen mkroskooppsten osen satunnasta lkettä Lämpöenerga vrtaa kuumemmasta kappaleesta kylmempään Jos kaks kappaletta

Lisätiedot

1 Excel-sovelluksen ohje

1 Excel-sovelluksen ohje 1 (11) 1 Excel-sovelluksen ohje Seuraavassa kuvaaan jakeluverkonhalijan kohuullisen konrolloiavien operaiivisen kusannusen (SKOPEX 1 ) arvioimiseen arkoieun Excel-sovelluksen oimina, mukaan lukien sovelluksen

Lisätiedot

Sattuman matematiikkaa III

Sattuman matematiikkaa III Sattuman matematiiaa III Kolmogorovin asioomat ja frevenssitulinta Tommi Sottinen Tutija Matematiian ja tilastotieteen laitos, Helsingin yliopisto Laboratoire de Probabilités et Modèles Aléatoires, Université

Lisätiedot

2.4.2012. Ennen opiskelua OHJAUSTOIMINTA TALOTEKNIIKAN KOULUTUSOHJELMASSA

2.4.2012. Ennen opiskelua OHJAUSTOIMINTA TALOTEKNIIKAN KOULUTUSOHJELMASSA OHJAUSTOIMINTA TALOTEKNIIKAN KOULUTUSOHJELMASSA Mikkelin ammaikorkeakoulun pedagogisen sraegian mukaan ohuksen avoieena on edisää opiskelijoiden siouumisa opiskeluunsa, ukea heidän yksilöllisiä uravalinoan

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiian tuiurssi Kurssierta 5 Sarjojen suppeneminen Kiinnostusen ohteena on edelleen sarja a n = a + a 2 + a 3 + a 4 + n= Tämä summa on mahdollisesti äärellisenä olemassa, jolloin sanotaan että sarja

Lisätiedot

Turingin kone on kuin äärellinen automaatti, jolla on käytössään

Turingin kone on kuin äärellinen automaatti, jolla on käytössään 4 TUINGIN KONEET Ala Turg 1935 36 auha Koe vo srtää auha: T U I N G auhapää: ohjausykskkö: Turg koe o ku äärelle automaatt, jolla o käytössää auhapäätä vasemmalle ta okealle; se vo myös lukea ta krjottaa

Lisätiedot

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET

KUNTIEN ELÄKEVAKUUTUS 30.10.2008 VARHAISELÄKEMENOPERUSTEISESSA MAKSUSSA 1.1.2009 LÄHTIEN NOUDATETTAVAT LASKUPERUSTEET KUNTIN LÄKVKUUTU 328 VRHILÄKMNORUTI MKU 29 LÄHTIN NOUDTTTVT LKURUTT Valtuusuta ahstaa arhaseläemeoperustese masu eaode yhtesmäärä uodelle euromääräsest Tämä ahstettu masu o samalla lopullste masue yhtesmäärä

Lisätiedot

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry

RIL 256-2010 Suomen Rakennusinsinöörien Liitto RIL ry Suomen Rakennusinsinöörien Liio RIL ry Julkisen hankinojen kehiämismalli Tuoavuuden paranaminen TUKEFIN-meneelmällä 2 RIL 256-2010 RILin julkaisuilla on oma koisivu, joka löyyy osoieesa www.ril.fi Kirjakauppa

Lisätiedot

Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma

Käyttövarmuuden ja kunnossapidon perusteet, KSU-4310: Tentti ma KSU-430/Ten 4..2008/Prof. Seppo Vranen /3 Käyövarmuuden ja kunnossapdon perusee, KSU-430: Ten ma 4..2008 Huom. Vasaus van veen kysymykseen. Funko- ja/a ohjelmoavan laskmen, musnpanojen, luenomonseden ja

Lisätiedot

KITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA

KITTILÄ Levi MYYDÄÄN LOMARAKENNUS- KIINTEISTÖ 48. Kohde 202 261-409-33-94 283/2 YLEISKARTTA 8 7 0 :9 0 9 :97 6 9 609: 89 9:6 97 7 :60 rp :90 80 7 6 7 8 :9 0 rp0 6 68 69 6 7 :96 rp7rp8 6 8 9 YYDÄÄN LOAKENNUS- :6 KNTESTÖ 8 :98 :09 :9 6 :9 8 90 9: 9 :0 76 8 :9.7 Kohde 0 66 9 7 rp9 0.7 rp66 :9 9.8

Lisätiedot

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET

APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPERUSTEET APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄ- ELÄKEVAKUUTUKSEN LASKUPEUSTEET Koooma 28.3.2006. Viimeisin perustemuutos on ahistettu 16.1.2003. APTEEKKIEN ELÄKEKASSAN TEL:N MUKAISEN LISÄELÄKEVAKUUTUKSEN LASKU-

Lisätiedot

R 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta.

R 2. E tot. Lasketaan energialähde kerrallaan 10 Ω:n vastuksen läpi oleva virta. D-000 Pranalyys Harjotus 3 / vkko 5 4.4 Laske kuvan vrta käyttäen energalähteden muunnoksa. Tarkotuksena on saada energalähteden muutokslla ja yhdstämsllä akaan yksnkertanen pr, josta vo Ohmn lan avulla

Lisätiedot

Sähköstaattinen energia

Sähköstaattinen energia ähköstaattnen enega Potentaalenegan a potentaaln suhde on samanlanen kun Coulomn voman a sähkökentän suhde: ähkökenttä vakuttaa vaattuun kappaleeseen nn, että se kokee Coulomn voman, mutta sähkökenttä

Lisätiedot

b 4i j k ovat yhdensuuntaiset.

b 4i j k ovat yhdensuuntaiset. MAA5. 1 Koe 29.9.2012 Jussi Tyni Valitse 6 tehtävää! Muista tehdä pisteytysruuduo ensimmäisen onseptin yläreunaan! Perustele vastausesi välivaiheilla! 1. Oloon vetorit a 2i 6 j 3 ja b i 4 j 3 a) Määritä

Lisätiedot

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A

TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintakuulustelujen matematiikan koe 30.5.2006. sarja A TKK, TTY, LTY, OY, ÅA, VY, TY / Insinööriosastot Valintauulustelujen matematiian oe 30.5.006 sarja A Ohjeita. Sijoita joainen tehtävä omalle sivulleen. Laadi rataisut seleästi v älivaiheineen, tarvittaessa

Lisätiedot

Menetelmäseloste 15.11.2013 MAATALOUDEN TUOTANTOVÄLINEIDEN OSTOHINTAINDEKSI 2010=100

Menetelmäseloste 15.11.2013 MAATALOUDEN TUOTANTOVÄLINEIDEN OSTOHINTAINDEKSI 2010=100 Meneelmäselose 15.11.213 MAATALOUDEN TUOTANTOVÄLINEIDEN OSTOHINTAINDEKSI 21=1 2 Ssällyslueelo 1 TAUSTAA... 3 2 MÄÄRITELMÄ JA KÄYTTÖ... 5 3 RAKENNE JA HINTASEURANTA... 6 MAATALOUDEN TUOTANTOTARVIKKEET JA

Lisätiedot

TPE AIRRPORT VAIHE 2 MISSIO

TPE AIRRPORT VAIHE 2 MISSIO MISSIO ARRpor onepn voeen on edää j luod lplueu elnenoelämälle oo eeläeä j eeeä Suome Hyvä meju j omv nnväle yheyde Eurooppn edeuv eä yryä eä nl edämään enää vuorovuu Yheyde j hyvä meju edeuv myö mlun

Lisätiedot